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Numerical solution of hyperelastic membranes
by energy minimization

Rabah Bouzidi, Anh Le van
Laboratory of Civil Engineering, Faculty of Sciences, University of Nantes, 2, rue de la Houssinière BP 92208, 

44322 Nantes cedex 3, France
In this work, a numerical approach is presented for solving problems of finitely deformed membrane structures made

of compressible hyperelastic material and subjected to external pressure loadings. Instead of following the usual finite

element procedure that requires computing the material tangent stiffness and the geometric stiffness, here we solve the

membrane structures by directly minimizing the total potential energy, which proves to be an attractive alternative for

inflatable structures.

The numerical computations are performed over two simple geometries the circular and the rectangular mem

branes and over a more complex structure a parabolic antenna using the Saint Venant Kirchhoff and neo Hook

ean models. Whenever available, analytical or semi analytic solutions are used to validate the finite element results.

Keywords: Energy minimization; Triangular finite element; Circular membrane; Rectangular membrane; Parabolic antenna
1. Introduction
In this work, a numerical approach is presented for

solving problems of membrane structures subjected to

an external pressure loading. The problem is both geo

metrically nonlinear due to finite deformations and

materially nonlinear through a hyperelastic constitutive

relationship. Here, the structures are assumed to be

made of a quasi incompressible hyperelastic material de

1

scribed by either the Saint Venant Kirchhoff or a neo

Hookean type models.

Usually, the classical finite element method is used in

order to solve such nonlinear problems. It involves an

iterative scheme to satisfy the equilibrium equations

and requires computing the material tangent stiffness

and the geometric stiffness. Here, the membrane struc

tures are solved by directly minimizing the total potential

energy. Whereas the proposed approach is theoretically

equivalent to the traditional finite element method, it

proves to be an attractive alternative which is particu

larly efficient for complex inflatable structures.

All the numerical computations are performed using

a three dimensional flexible triangular finite element,

which is able to handle the above mentioned nonlineari

ties. The finite element has no bending stiffness and the



tangent matrix is singular for the rotation degrees of

freedom. The numerical solution is carried out by means

of an iterative method like the conjugate gradient or

Newton one.

The proposed finite element is validated through the

well known Hencky problem [1] related to the inflation

of a circular membrane clamped at its rim. The obtained

numerical results will be compared to the standard non

linear finite element solution, using the total Lagrangian

formulation and membrane elements, and a semi analyt

ical solution for the Saint Venant Kirchhoff model.

The second validation is related to problem of an

orthotropic rectangular membrane. A semi analytical

solution will be presented in the case of orthotropic

behavior. This solution will be used to validate the finite

element in the case of isotropic behavior.

In order to prove the ability of the proposed ap

proach to deal with large scale problems, the final appli

cation is carried out on a parabolic antenna made of two

separate parts subjected to different pressures. By vary

ing the applied pressures, it is shown that different bifur

cated folding modes can be obtained on the deformed

configurations.
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Fig. 1. (a) Definition of pressurized volume h. The reference

surface S0 maps into the current surface S. (b) Case where the

prescribed displacements are zero.
2. The approach of total potential energy minimization

2.1. The potential energy of the external loading

Consider a body which undergoes the deformation /
or the displacement ~U , carrying positions X in the refer

ence configuration X0 to positions x /(X) X+~U in

the current configuration X.
The reference boundary surface oX0 of X0 is decom

posed into disjoint parts oX0U and oX0T, over which the

boundary conditions are written as

~UðX Þ ¼ ~U
gðX Þ on oX0U ð1Þ

~T � P~N ¼ ~T
g

on oX0T ð2Þ
where ~U

g
denotes given (prescribed) displacement, ~T

g

the given nominal traction vector, P the first Piola

Kirchhoff stress tensor (not symmetric) related to the

Cauchy stress tensor r by PF�T Jr, where F ¼ Iþ
rX

~U is the deformation gradient, J detF. Use will also

be made of the second Piola Kirchhoff stress tensor R
(symmetric) related to the first one by P FR.

Nanson�s formula [5,8] for the transformation of sur

face elements shows that the nominal traction vector ~T is

in general a deformation sensitive loading depending on

displacement ~U and F. In the case of an inflated mem

brane, one part of oX0T (the outer side of the membrane)

is traction free while the remaining part (the inner

side) denoted by S0 is subjected to a pressure p, so

that traction vector ~T there writes

~T � P~N ¼ ~T
g ¼ pJF�T~N on S0 ð3Þ
2

2.1.1. Conservative surface loading [7]

A prescribed nominal surface loading ~T
gð~X ; ~U ;FÞ de

fined over the reference surface S0 derives from external

potential energy V extð~UÞ if 8~v� virtual velocity field satis

fying ~v� ¼~0 over S0U, the virtual power of the surface

loading can be expressed as:

}�ð~T gÞ �
Z
S0

~T
gð~X ; ~U ;FÞ~v�ðX ÞdS0 ¼

oV ext

o~U
½~v �� ð4Þ

where oV ext

o~U
is the Gateaux derivative of Vext, which is

related to the first variation of Vext by: 8d~U ; dV ext ¼
oV ext

o~U
½d~U �.
When (4) is satisfied, ~T

g
is referred to as a conserva

tive surface loading.
2.1.2. Definition of the pressurized volume h
From (1), the boundary line oS0 of S0 is subjected to

the prescribed displacements

8~X 2 oS0; ~UðX Þ ¼ ~U
gðX Þ ð5Þ

Let us denote by Slat the surface swept in the three

dimensional space, up to current time, by line oS. The

pressurized volume h is then defined as that bounded

by surfaces S0, S and Slat at current time (Fig. 1a).

More often than not the prescribed displacements ~U
g

are zero, so that Slat is the empty set and h is merely the

volume between S0 and S (Fig. 1b).
2.1.3. Properties of volume h

• The pressurized volume h is a functional of the dis

placement field ~U . In order to express this, we write

h ¼ hð~UÞ.
• In general, the explicit expression for hð~UÞ as a func

tional of ~U is unknown. Nevertheless, its first varia

tion dh corresponding to a variation d~U of ~U can

be determined by the following relation:

8d~U ; dh ¼
Z
S0

d~UJF�T~N dS0 ð6Þ



2.1.4. Pressure potential energy

Assuming that the whole line oS is subjected to pre

scribed displacements (5) and that pressure p is uniform

over surface S, then the pressure loading derives from

the potential [6]:

V extð~UÞ ¼
Z

pðhÞdh ð7Þ

where the symbol � stands for a primitive. In particular,

if the pressure is so controlled that it is independent of

volume h, then the pressure potential energy is

V extð~UÞ ¼ phð~UÞ. If the pressure varies as a function

of volume h according to the law ph K constant, then

the potential energy is V extð~UÞ ¼ K log hð~UÞ.
For numerical purposes, we assume pressure p to be

constant. The membrane surface is discretized into trian

gular finite elements (as shown in Fig. 2). In order to

compute the pressurized volume h we transform it into

surface integrals by means of the Gauss theorem:

h ¼ 1

3

Z
S
x! n!dS ð8Þ

where x! is the current vector position of a particle on

the surface S, n! the outward normal to S. The surface

integral (8) becomes a discrete summation over the finite

elements:

V ext ¼
1

3

X
elements

piSi

X3

i 1

xai þ xbi þ xci
3

ni

� �
ð9Þ
2.2. The internal potential energy (strain energy)

We consider a hyperelastic material described by a

strain energy w per unit reference volume (rather than

per unit mass), function of either the right stretch tensor

C ¼ gijG
i

!
� Gj

!
or the Green strain tensor E ¼ 1

2
ðC IÞ.

Coefficients gij are the covariant components of metric

tensor g defined in the current configuration and vectors

Gi
!

form the dual of the natural basis in the reference

configuration.

The first and second Piola Kirchhoff stress tensors P
and R, respectively, are given by

R ¼ owðEÞ
oE

¼ 2
owðCÞ
oC

PT ¼ o~wðFÞ
oF

ð10Þ
a 
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Fig. 2. Deformation of a triangle element.
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where ~w(F) w(C FTF). By introducing the strain

energy

V intð~UÞ ¼
Z
X0

~wðFð~UÞÞdX0 ð11Þ

the virtual stress power along a virtual velocity field ~v�

can be expressed as a function of the Gateaux derivative

of Vint

}�
int �

Z
X
r : rx~v

� dX ¼
Z
X0

PT : rX~v
� dX0

¼
Z
X0

o~wðFÞ
oF

: rX~v
� dX0 ¼

oV int

o~U
½~v��

ð12Þ

From relation (12), one says that the Piola Kirchhoff

stress P derives from internal potential energy V intð~UÞ.
For an isotropic material without internal con

straints, the strain energy per unit volume w can be

expressed in terms of the invariants of the right

Cauchy Green tensor C

w ¼ wðI1ðCÞ; I2ðCÞ; I3ðCÞÞ ð13Þ

with I1(C) trC, I2ðCÞ ¼ 1
2
ððtrCÞ2 trðCÞ2Þ, I3(C)

detC J2.

Two constitutive models are used for numerical

purposes:

(i) the Saint Venant Kirchhoff model, for which the

strain energy is

w ¼ k
2
ðtrEÞ2 þ lE : E ð14Þ

where k and l are material parameters;

(ii) and the compressible isotropic model described by

a strain energy of neo Hookean type

w ¼ l
2
ðtrC 3Þ l ln J þ k

2
ðln JÞ2 ð15Þ

which yields from the constitutive law (10)

R ¼ lðI C�1Þ þ k
2
ln detC � C�1 ð16Þ

If the body undergoes a rigid body motion, the defor

mation gradient F is equal to an orthogonal tensor, ten

sor C is equal to the identity tensor and the stress (16) is

zero, as expected.

Use will be also made of Young�s modulus E and

Poisson�s ratio m related to parameters (k, l) as in small

strains: k Em/(1+m)(1 2m), l E/2(1+m).
When using the triangular finite elements (Fig. 2), the

mixed components of C are defined by

Cj
i ¼ dik Dkj ð17Þ

where D and d are the metric tensors in the reference and

current configuration with their covariant components

defined as:



½D� ¼
~AB � ~AB ~AB � ~AC
~AB � ~AC ~AC � ~AC

" #
½d� ¼

~ab � ~ab ~ab � ~ac
~ab � ~ac ~ac � ~ac

" #

ð18Þ

Since the strain tensor is constant inside each finite

element, the strain energy is simply obtained as the prod

uct of the strain energy by the volume of the element

V element
int ¼

Z
element

wdX0 ¼ wS0h ð19Þ

where S0 is the reference area of the membrane element

and h the reference thickness.

2.3. Minimization of the total potential energy

The minimization approach is based on the following

result.

Proposition. If:

(i) the external loading derives from an external poten

tial energy Vext (e.g. relation (9)),

(ii) and the constitutive law is hyperelastic, so that the

stresses derive from the internal potential energy Vint

(11).

Then, the total potential energy V�Vext+Vint is

stationary at the solution displacement field ~U .

Proof. The principle of virtual power gives : 8~v� CAH,

0 ¼ }�
ext þ }�

int

�
Z

S0T

~T
dð~X ; ~U ;FÞ �~v�ðX ÞdS0Z

X0

PT : rX~v
� dX0 ¼

oðV ext þ V intÞ
o~U

½~v�� ð20Þ

Relation (20) shows that the first variation of V is

dV ¼ oV
o~U

½d~U � ¼ 0. h

Furthermore it is shown that a stable solution ~U cor

responds to a minimum of V.

The minimization algorithm is rather classical. It is

based on the descent method like the conjugate gradient

or the Newton method. Nevertheless, we insist on the

fact that the gradient of the total potential, which gives

the direction of descent, must be computed in exact way.

Thus, it is necessary to provide the analytical expression

of the gradient of the potential in order to have the suf

ficient accuracy and to correctly handle some phenom

ena like membrane folding.
3. Inflation of an isotropic circular membrane

In order to validate the proposed numerical model,

we consider the Hencky�s problem [1 4], which consists
4

in a circular membrane of (initial) radius a and thickness

h, clamped on its rim and subjected to lateral pressure p.

Here it is assumed that the material obeys either the

Saint Venant Kirchhoff or neo Hookean models (Eqs.

(14) and (15)).

The obtained numerical results will be compared

to:

(i) The standard nonlinear finite element solution,

using the total Lagrangian formulation and mem

brane elements (six node triangles and eight node

quadrilaterals).

(ii) Fichter�s semi analytical solution [2] for the Saint

Venant Kirchhoff model.

Analytical solutions for circular membranes made

in incompressible isotropic materials can be found in

[10,11]. For compressible materials, analytical solutions

are rather few since the absence of isochoric constraints

leads to more complicated kinematics. A review of solu

tion strategies for compressible isotropic materials was

presented by Horgan in Chapter 4 of [8]. When solving

a circular membrane, Fichter [2] dropped some second

order terms in the Green strain components and consid

ered the pressure as a dead load. These approximations

led to a simplified solution which is chosen here for com

parison in moderate rotations.
3.1. Fichter’s semi analytical solution

Let us summarize Fichter�s semi analytical solution

given in [2]. For brevity�s sake, the dimensionless radial

co ordinate r/a will be denoted q. The deflection w is

searched in the form of a power series:

wðqÞ ¼ a
pa
Eh

� �1=3 X1
0

a2nð1 q2nþ2Þ ð21Þ

By replacing this expression in the equilibrium equa

tion, one obtains the circumferential stress Rhh

RhhðqÞ ¼
E
4

pa
Eh

� �2=3 X1
0

ð2nþ 1Þb2nq2n ð22Þ

Taking into account the boundary condition w(a) 0

enables one to determine the coefficients a2n and b2n. The

values up to n 10 are given in [2]

b2 ¼ 1
b2
0

b4 ¼ 2
3b5

0

b6 ¼ 13
18b8

0

b8 ¼ 17
18b11

0

b10 ¼ 37
27b14

0

b12 ¼ 1205
567b17

0

b14 ¼ 219241
63504b20

0

b16 ¼ 6634069
1143072b23

0

b18 ¼ 51523763
5143824b26

0

b20 ¼ 998796305
56582064b29

0

ð23Þ
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and

a0 ¼ 1
b1
0

a2 ¼ 1
2b4

0

a4 ¼ 5
9b7

0

a6 ¼ 55
72b10

0

a8 ¼ 7
6b13

0

a10 ¼ 205
108b16

0

a12 ¼ 17051
5292b19

0

a14 ¼ 2864485
508032b22

0

a16 ¼ 103863265
10287648b25

0

a18 ¼ 27047983
1469664b28

0

a20 ¼ 42367613873
1244805408b31

0

ð24Þ

It should be noted that all the coefficients depend on

b0. By using the boundary condition w(a) 0, Fichter

showed that b0 is related to the Poisson�s ratio by the fol

lowing equation:

ð1 mÞb0 þ ð3 mÞb2 þ ð5 mÞb4 þ ð7 mÞb6 þ � � � ¼ 0

ð25Þ

It follows that all the other coefficients also depend

on the Poisson�s ratio only.

3.2. Numerical results

The geometry and mechanical properties of the circu

lar membrane are: radius a 0.1375 m, equivalent

Young modulus E* E Æh 600 kPam, Poisson ratio

m 0.3. The membrane inflation is modelled by triangu

lar finite elements as described in Section 2. The mesh

contains 1024 triangular elements.

The initial and deformed shapes of the membrane are

shown in Fig. 3a and b.

Fig. 4 shows the central deflection (at r 0) versus the

pressure. Fig. 4b shows that for small deflections the

numerical results are in very good agreement with

the semi analytical solution given by Fichter (Relation
(a)

(b)

Fig. 3. Meshed initial and deformed shapes of the circular

membrane.

Fig. 4. Central deflection versus the pressure, with Saint

Venant Kirchhoff and neo Hookean potentials. (a) High

pressure range. (b) Low pressure range.
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(21)) which is not valid for higher pressures, as explained

above.

Moreover, the proposed numerical scheme gives ex

actly the same values as the standard nonlinear finite ele

ment method, over the whole load range, for both the

Saint Venant Kirchhoff and the neo Hookean models,

Eqs. (14) and (15). It should be noted that the neo

Hookean model leads to a limit point, at the pressure

p 3,006,180 Pa.
4. Inflation of an orthotropic rectangular membrane

In this section, we deal with the problem of a rectan

gular membrane inflation. We first give a semi analytical

solution in the case of orthotropic behavior and then

its modelling by the triangular finite element based

on the minimization of the energy. For simplicity, a



comparison between these two solutions is presented for

isotropic behavior case only.

4.1. Semi analytical solution

Let us consider a rectangular membrane with sides 2a

and 2b, clamped at its rim, subjected to a uniform pres

sure p and made of an orthotropic elastic material. In

order to simplify the subsequent equations, Cartesian

co ordinates X and Y will be replaced by dimensionless

quantities n X/a and g Y/b.

We build the semi analytical solution in the large

deflection case: the in plane displacements of the mem

brane u(n,g), v(n,g) and the deflection w(n,g). In order

to automatically satisfy the kinematic boundary condi

tions, we assume the following polynomial expressions

for the displacement components:

uðn; gÞ ¼ gðn; gÞ
Xn

i 1

a2i�1n
2i�1

vðn; gÞ ¼ gðn; gÞ
Xn

i 1

b2i�1g
2i�1

wðn; gÞ ¼ gðn; gÞ w0 þ
Xn

i 1

c2in
2i þ d2ig

2i

" # ð26Þ

g(n,g) is chosen so that the boundary kinematic condi

tions are satisfied.

gðn; gÞ ¼ ð1 n2Þð1 g2Þ

The orthotropy is taken into account with distinct

coefficients for u and v displacement components. We

also introduced different coefficients in the expression

of the deflection w for X and Y directions. Minimizing

the total potential energy provides the coefficients of the

polynomial series and the displacement field in the rec

tangular membrane. For this we need to evaluate the fi

nite strain components:

EXX ¼ 1

a
ou
on

þ 1

2a2
ow
on

� �2

EXX ¼ 1

b
ov
og

þ 1

2b2
ow
og

� �2

EXY ¼ 1

2b
ou
og

þ 1

2a
ov
on

þ 1

2ab
ow
on

ow
og

ð27Þ

As a matter of fact, the large strain terms in the

above definition have been omitted in order to facilitate

the obtention of a semi analytical solution. Conse

quently, while the proposed semi analytical solution is

able to account for large rotations, the comparison is

only valid for moderate strains. On the other hand, the

finite element procedure described below includes all

the nonlinear terms and should be more accurate than

the semi analytical solution. Recall that the elasticity

matrix for an elastic orthotropic material writes:
6

RXX

RYY

RXY

8><
>:

9>=
>; ¼

DXX DXY 0

DXY DYY 0

0 0 2GXY

2
64

3
75 EXX

EYY

EXY

8><
>:

9>=
>; ð28Þ

The Dij terms depend on the material constants EX,

EY and mXY

DXX ¼ EXh
1 mXY mYX

; DYY ¼ EY h
1 mYX mXY

;

DXY ¼ mXY EY h
1 mYX mXY

ð29Þ

where EX is the Young modulus in the length direction,

EY the Young modulus in the width direction, GXY the

shearing modulus, h the membrane thickness and mXY
the Poisson ratio (mXY/EX mYX/EY). Then, the strain en

ergy density for an orthotropic material takes the form:

w ¼ 1

2
ðDXXE2

XX þ 2DXY EXXEYY þ DYY E2
YY þ 4GXY E2

XY Þ

ð30Þ
The strain energy is obtained after integration of the

strain energy density over the membrane:

V int ¼ hab
Z 1

�1

Z 1

�1

wdX dY ð31Þ

A symbolic calculus of Vint is carried out up to the

fifth order terms of the displacement series. The solution

is not presented here because of its complexity. However

at this stage, we have evaluated the strain energy in the

case of a large deflection without any numerical approx

imation like linearization or other simplification usually

used in the classical finite elements method. The only

terms which were neglected are those of the large strains

(Eq. (27)). Taking into account these terms makes it very

difficult to obtain the analytical expression of Vint by

means of the actual symbolic calculation systems.

4.2. Pressure potential energy

The pressure potential energy is the product of the

pressure by the integral of the deflection on the mem

brane. Rigorously, we must evaluate the exact volume

of the membrane by taking into account the horizontal

displacements. It means that it the pressure work only

on the deflection component. In this case, the pressure

vector is assumed to still parallel to z during the inflation

and do not follow the membrane normal. This approxi

mation affects slightly the shape of the membrane and

gives less rounded surface. Taking into account the

dimensionless coordinates, the pressure potential energy

can be written in the following form:

V ext ¼ P 2a2b
Z 1

�1

Z 1

�1

wðX ; Y ÞdX dY

¼ 16pab
Xn

i 1

c2i þ d2i

4i2 1
ð32Þ



Fig. 5. Rectangular membrane simulation.
where n is the chosen degree of the polynomial series.

This expression of the pressure potential is obtained

with the help of a symbolic calculus tools. The displace

ment is computed by minimizing the total potential en

ergy Vtot Vint+Vext relatively to the coefficients of the

power series:

oV
oai

¼ 0
oV
obj

¼ 0
oV
ock

¼ 0
oV
odl

¼ 0 for all i; j; k; l

ð33Þ

The analytic expression of Vtot upto n 5 (Eq. (26)) is

obtained by means of symbolic calculus tools. The min

imization is achieved numerically by a Newton like iter

ative scheme or the conjugate gradient method. All the

coefficients depend on the following parameters: the

pressure p, the dimensions 2a and 2b of the membrane

and the material properties.

In fact, the initial purpose of this analytic solution is

to use it in an inverse analysis. The symbolic expressions

of the displacement�s polynomial coefficients have been

obtained up to n 1. however, this analytic solution is

not presented here until more complete developments.

4.3. Numerical results

In this section, we present a comparison between the

orthotropic semi analytical solution presented in the

previous section and the triangular finite element on

an isotropic rectangular membrane. Given the material

properties of the membrane, we can evaluate the coeffi

cients of the displacement series by a numerical minimi

zation of the total potential energy. We used some data

issued from simple tension experiments for measurement

of Young�s modulus listed in Table 1.

4.3.1. Semi analytical solution results

The minimization of the total potential energy (33)

with the semi analytical solution gives the coefficients

of the polynomial series (26). The obtained values are

listed in the Table 2.
Table 1

Isotropic membrane data

p (Pa) a (m) b (m) EXh (Pa)

60,000 0.15 0.20 80,000

Table 2

Polynomial series coefficients obtained for the semi analytical solutio

w0 0.05716

ai 0.09261 1.73120

bi 0.04561 1.58834

ci 0.55763 9.40701

di 0.95364 3.95415

7

In spite of the isotropic behaviour that we retained

for this study, one can note that the coefficients obtained

are not isotropic by permutation of axes X and Y. This

orthotropism of the shape is due only to the dimension

of the plate which are not the same according to two

dimensions.
4.3.2. Triangular finite element solution results

We have modelled the same rectangular membrane

with the triangular finite element. Fig. 5 shows one of

the meshes used to discretize the membrane.

For the results analysis, we have considered the con

vergence of the results obtained by the proposed finite

element. Fig. 6 shows the dependence of the central

deflection and the total potential energy on the mesh

refinement. Convergence on displacement is faster than

convergence on total energy. It is suitable to not penalize

the process of convergence by an energy criterion with a

great restriction. For the results presented here, the cri

terion of convergence relates to total energy. The varia

tion of the energy between successive iteration must be

less than 10�6 Nm.
EYh (Pa) mXY GXY

80,000 0.3 5000

n

18.11561 0.58344 0.01450

10.31184 0.22604 0.00187

0.44526 0.02019 0.00060

2.27647 0.13073 0.00547
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Fig. 7. Relative difference between the semi analytical and

triangular finite element solutions.

Fig. 8. Deformed shape of the parabolic antenna. p1=1000 Pa

and p2=10,000 Pa.

Fig. 6. Results convergence of the triangular finite element.

Fig. 9. Deformed shapes under higher internal pressure.

p1=10,000 Pa and p2=100,000 Pa.
4.3.3. Semi analytical and finite elements results

comparison

We have compared the deflection w obtained from

the two models: semi analytical noted wa and the trian

gular finite element noted wfe. In order to underline the

difference between the two solutions, lets define the rel

ative difference between them as: (wfe wa)/max(wfe).

We have represented on Fig. 7 the distribution of the rel

ative difference over the membrane surface. At the center

of the membrane, We obtained the following deflection:

wfe 0.0611 m and wa 0.0572 m which gives 6.4% of

relative difference.

The difference between these two solutions is due

essentially to the difference of their shape but not to their

amplitude. The average relative difference over the mem

brane is about 2.5%. The restriction on the order of the

polynomial series can explain this difference.

5. Inflation of a parabolic antenna

As an application to large scale problems, we consider

the inflation of a parabolic antenna used in space devices.
8

The antenna is made of two separate closed membranes,

sewed together along a circumferential rim and subjected

to different internal pressures p1 and p2. In the unstressed

state, the whole structure lies in a plane. Under pressure

p1, the inner circular membranes become two parabo

loids. One of them is transparent to the electromagnetic

waves and the second one acts as a concave reflector. Un

der pressure p2, the outer membrane becomes a torus,

and the final shape of the antenna can be controlled by

adjusting the two pressures. It should be noted that this

study only aims to show typical results of such structures

due to geometrical incompatibilities. We take the inner

radius equal to 1 m, the radius of the torus is equal to

0.1 m. The material verifies the Saint Venant Kirchhoff

model with the equivalent Young modulus product of

the Young modulus E by the thickness of the membrane

h E* E Æh 350,000 Pam and Poisson ration m 0.3.

Fig. 8 shows the structure under pressures p1 1000 Pa

and p2 10,000 Pa. The paraboloids remain quite plane

and contain some shallow folds regularly distributed in

the radial direction. Due to the geometric incompatibil

ity, the torus warps out of its plane and displays more vis

ible folds regularly distributed along the circumference.



When the inner pressure p1 is increased up to 10,000

Pa and the outer pressure p2 to 100,000 Pa, the parabo

loids became more convex and the torus breaks down

into rounded sectors separated by more marked folds

(as shown in Fig. 9). This example shows the ability of

the proposed approach to deal with the ill conditioned

stiffness matrix when passing bifurcations from axisym

metric states. Although the solution does not handle the

self contact of the membranes for instance, the exter

nal torus may overlap the parabolic part of the antenna

at some locations the obtained deformed shapes are

quite realistic. Computations including contact aspects

are in progress in order to obtain more precise numerical

results.
6. Conclusions

In this work, we have proposed a numerical ap

proach to deal with hyperelastic membrane structures

undergoing large deformations. The membrane surface

has been divided into triangular finite elements and the

solution achieved by directly minimizing the total poten

tial energy, instead of satisfying the equilibrium equa

tions as done with the usual finite element method.

The finite element procedure has been validated on

the Hencky�s problem of a circular membrane. Two

compressible isotropic hyperelastic potentials have been

used: the Saint Venant Kirchhoff and the neo Hookean

ones. The obtained numerical results have been found to

be in exact agreement with those given by the standard

finite element method using the total Lagrangian formu

lation and membrane elements. They also agreed very

well with the semi analytical solution developed by

Fichter [2], using a polynomial series developed up to

order 10.

Contrary to the circular membrane case, for which

expressions for the displacement coefficients are found

explicitly, it is not so easy to analytically solve the elast

ostatic problem of the rectangular membrane and we

have to develop a semi analytical solution for the rectan

gular membrane. Again, the displacement field is ex

pressed in polynomial series forms. However, the order

of the polynomial series is limited here to 5 because

the analytic expression of the strain energy (31) becomes

lengthy as the order increases. The comparison between

semi analytical and finite element minimization shows a

greater divergence than in the case of the circular mem
9

brane. Nevertheless, the maximum difference is about 8

% and the average difference is about 2.5%.

Application to the inflation of a parabolic antenna

shows the ability of the proposed approach to deal with

large scale problems with solutions bifurcated from axi

symmetric states.

Further developments in progress prove that the con

tact problem of inflatable structures encountering fric

tionless obstacles can be easily dealt with by the

proposed minimization technique as well.
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