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Abstract 

Different types of numerical models exist to describe the non-linear behaviour of reinforced 

concrete structures. Based on the level of discretisation they are often classified as refined 

or simplified ones. The efficiency of two simplified models using beam elements and 

damage mechanics in describing the global and local behaviour of lightly reinforced 

concrete structural walls subjected to seismic loadings is investigated in this paper. The first 

model uses an implicit and the second an explicit numerical scheme. For each case, the 

results of the CAMUS 2000 experimental program are used to validate the approache. 

Keywords: reinforced concrete, damage mechanics, beam elements, simplified analysis. 
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Introduction 

Reinforced concrete (R/C) bearing walls with limited reinforcement are often used in 

France and other European countries. Recent experimental programs (e.g. CASSBA, 

CAMUS) have showed that this type of structural element exhibits good behaviour under 

seismic loading, although its ductility might be limited due to the light reinforcement and 

the existence of large sections in the walls with practically no steel [1]. Some 

unconventional mechanisms of earthquake resistance have also been highlighted such as 

rigid block-type rotations of the walls (at the interface between the foundation and the soil 

or at the level of construction joints) or the excitation of high frequency vibrations 

corresponding to pumping vertical motions (due to the opening and closing of wide 

horizontal cracks and the conversion of part of the seismic into potential energy). 

Furthermore, in case of an out of plane loading additional fluctuation of the axial force may 

arise and heavy damage is expected since cracks do not completely close at load reversal. It 

is therefore easily understood that the conventional elastic seismic analysis is not adequate 

to take into account all these effects. More reliable numerical tools are necessary to assist 

engineers during the design phase. 

Various modelling strategies have been proposed up to now for the non-linear analysis 

of R/C structures. Their level of complexity is usually proportional to the dimension of the 

problem. Detailed 2D or 3D finite element models with local constitutive relationships are 

typically used for predicting the response of structural elements or substructures, whereas 

simplified global or local models are useful for the dynamic response analysis of structures. 

In this paper the performance of two simplified models - a fibre model and a beam model 

with multiple integration points -  is evaluated using the experimental results of two five-
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storey lightly R/C walls subjected to dynamic loading. Both models use local constitutive 

laws based on damage mechanics and plasticity. The use of an implicit (for the fibre model) 

and an explicit numerical scheme (for the beam model) is also investigated. 

 
The CAMUS 2000 research program 
 
The 3-years experimental and numerical research program CAMUS 2000 was launched in 

1998 with the aim of evaluating the effects of torsion and the behaviour of lightly R/C walls 

subjected to bi-directional motions [2]. The design of the mock-ups was made according to 

the "multifuse" concept commonly used in France that privileges diffuse rupture at several 

stories instead of concentration at the base of the building with the creation of one plastic 

hinge. Low percentages of reinforcement combined with an appropriate distribution at 

several levels helps to dissipate energy via wide crack patterns at different heights of the 

wall and leads into multiplication of the dissipation zones [3].   

Two 1/3rd scaled models were tested on the Azalée shaking table of Commissariat à 

l’Energie Atomique (C.E.A.) in the Saclay Nuclear Centre. The specimens were composed 

of two parallel braced walls linked with 6 square slabs. A highly reinforced footing allowed 

the anchorage to the shaking table. Two shear walls in one direction and a steel bracing 

system in the orthogonal direction provided structural stiffness. Due to similarity laws 

additional masses of 6.55 tons were positioned at each story. The first structure (CAMUS 

2000-1) was subjected to a horizontal bi-directional excitation (Figure 1). A set of 

accelerograms of increasing amplitude (0.15g, 0.22g, 0.25g, 0.40g, 0.55g and 0.65g) was 

applied to the specimen. The accelerograms were modified in time according to the ratio 

 to account for similarity rules. For the second test (CAMUS 2000-2) only an in 1 / 3
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plane excitation was applied. The torsional response was caused by the dissymmetry in the 

horizontal dimensions of the two walls (Figure 2). The distribution of reinforcement for 

both specimens is described in Tables 1 and 2. 

 
Fibre model (implicit procedure) 

1. Numerical tools 

Non-linear dynamic analysis of civil engineering buildings requires large-scale calculations 

and the use of delicate solution strategies. The response of a structure subjected to severe 

loading depends on a strong interaction between "material" (plasticity, cracks), "structural" 

(geometry, mass distribution, construction joints) and "environmental" effects (boundary 

conditions, soil – structure interaction). The major sources of non-linearity for a R/C 

structure are often on the "material" level. In order to reproduce correctly the main physical 

phenomena at this level (damage, permanent strain, crack-reclosure) one has to use 

advanced local constitutive relationships. For the structural level however, a "simplified 

approach" helps to reduce the computational cost and facilitates parametrical studies. 

The choice of a multifibre finite element configuration combines the advantage of using 

Bernoulli beam type finite elements with 1D local constitutive laws. Each finite element is 

a beam discretized into several fibres where different material properties can be assigned 

(Figure 3). In case where shear deformations are prevailing the Timoshenko beam theory 

can also be adopted [4]. For the general 3D case the cross section behaviour - the relation 

between the generalized strains  and the generalized stresses  - becomes: 

            
(1) 
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    and 

 

where  is the normal force, Sy et Sx the shear forces,  the torque,  and  the 

bending moments,  the axial strain,  the twist,  and  the curvatures. The matrix 

 has the following form [5]: 

  (2) 

where the coefficients are obtained by integrating over the cross section (y and z axes) : 

;  ;   

;   

;  ;   (3)  

;  

; ;  

E and G are the Young’s and shear modulus that vary in y and z, ky and kz are the shear 

reduction factors. The chosen modulus can be initial, secant or tangent, depending on the 

iterative algorithm used to solve the global equilibrium equations.  The components of the 

constitutive matrix are computed by numerical integration according to (3), with one Gauss 

point per fibre. An implicit numerical scheme using the initial Young’s modulus is chosen 

for the following calculations done with the fibre model. 
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The non-linear behaviour of the materials is described within the thermodynamic 

framework for irreversible processes [6]. To model the behaviour of reinforcement bars we 

choose the classical plasticity theory with a non-linear kinematic hardening in order to 

reproduce correctly the observed hysteresis loops [7]. The free energy for this model takes 

the following form:  

         (4) 

in which  is the Hooke’s elasticity tensor,  is the plastic strain and  the hardening 

internal variable. The constitutive equations are obtained by derivation: 

,         (5) 
 

 
where X is the stress like hardening variable. The latter is used to describe a modified 

form of the plasticity criterion allowing remaining within the associated plasticity theory: 

          (6) 

where a, b and  are material parameters. Due to the particular geometric 

characteristics of steel bars only a 1D implementation of the model is carried out. The 

evolution equation has been modified to account for the particular behaviour of reinforcing 

steel used in civil engineering. Based on the normality rule in an associated framework we 

have: 

   (7) 
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 if  and  

 if .  

 is a material parameter corresponding to the stress-strain plateau length without 

hardening. A typical stress-strain curve predicted by this model is given in Figure 4. 

The constitutive model for concrete in earthquake engineering ought to take into account 

some observed phenomena such as decrease in material stiffness due to cracking, stiffness 

recovery which occurs at crack closure, inelastic strains concomitant to damage and strain 

rate effects. To account for such complex phenomena we use a damage model with two 

scalar damage variables - D1 for damage in tension and D2 for damage in compression (La 

Borderie model [8]). Unilateral effect and stiffness recovery (damage deactivation) are also 

included. Inelastic strains are taken into account thanks to an isotropic tensor. To account 

for strain rate effects in dynamics, the model has been improved by modifying the 

evolution laws (as it is usually done for visco-plastic models [9]). The Gibbs free energy of 

the model can be expressed as: 

     (8) 

where b1 and b2 are material coefficients, whereas <.>+ and <.>- denotes the positive or 

negative values of the given variable.  and  are the crack closure function and the 

crack closure stress respectively. E is the initial Young's modulus and n the Poisson ratio. 

For a 1D implementation of the model, the total strain is:  

            (9) 
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where  is the elastic strain and  the inelastic strain. The partition of the stress is 

obtained as: 

                                                (10) 

Damage criteria are expressed as  (i=1 for tension or 2 for 

compression,  is the associated force to the damage variable  and  a threshold 

depending on the hardening variables). The evolution laws for the damage variables  are 

obtained thanks to normality rules: 

  (11) 

As for visco-plasticity, the plastic multiplier is imposed as function of the threshold 

criterion, 

  (12) 

where  is the initial elastic threshold and and are parameters to be identified for 

tension and compression to recover the relative effects of strain rate on the peak stress 

observed on concrete specimens subject to various dynamic loads. 
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A typical stress-strain response of the model for a uniaxial cyclic loading (tension, 

compression) and for two different strain rates is given in Figure 5. 

2. Numerical simulation 

The finite element mesh used for the calculations is presented in Figure 6. The additional 

masses and the weight load of each floor are concentrated at each storey. The stiffness of 

the springs below the shaking table is calibrated to fit the first eigenmodes measured before 

the application of the seismic loads. The following calculations are done with the finite 

element code CAST3M developed at C.E.A.. 

A first series of calculations (modal analysis) is performed to check the ability of the 

proposed model to reproduce the main characteristics of the CAMUS 2000-1 specimen 

(boundary conditions, masse distributions). The shaking table has to be included to the 

mesh (with orthogonal beams) to insure the good correlation of the calculations. The values 

of the first four eigen frequencies and mode shapes are presented in Figure 7 (fiber model). 

Comparison with the measured ones shows a good agreement. 

Despite the lack of physical meaning, damping is generally introduced in the analysis 

through viscous forces generated by the means of a damping matrix (the classical viscous 

Rayleigh damping matrix, derived from the general expression proposed by Caughey [10]). 

Two parameters – the Rayleigh damping coefficients - allow calibrating the matrix by 

imposing the value of the damping ratio for two eigenmodes. For the following calculations 

the Rayleigh damping coefficients have been adjusted to ensure a value of 1 % on the first 

mode and 2 % on the second mode. It is important for concrete structures - where cracking 

induces loss of stiffness and shift of the fundamental frequency - to keep these damping 



 10 

values constant throughout the analysis even during strong non-linear behaviour. Therefore, 

the damping of the first eigenmode has been chosen so as to remain around the minimum 

(almost constant) range of the Rayleigh diagram.  

Results for the transient dynamic calculations are presented in terms of horizontal top 

displacements in the plane (X direction) of the walls (Figure 8) and global flexural moment 

in the Y direction (Figure 9) for the signal corresponding to 0.55g. Tables 3 and 4 allow a 

comparison between computation and experimental results (global and local quantities) for 

the CAMUS 2000-1 and CAMUS 2000-2 mock-ups. The results have been obtained 

without further calibration of the model. Work is in progress on the effects of damping [11] 

and improvements of the modelling are carried out to account for torsion and 3D material 

behaviour using an enhanced beam formulation [12]. 

 

Beam model (explicit procedure) 

1. Numerical tools 

Explicit procedures combined with simplified modelling strategies are very useful for 

solving transient dynamic problems. Taking advantage of the small number of degrees of 

freedom needed in a simplified modelling strategy, explicit procedures contribute to a 

significant reduction of the computational cost since they require no iterations and no 

calculation of the tangent stiffness matrix. Even though they are conditionally stable, this is 

not always a constraint in Earthquake Engineering because a much smaller time step should 

be chosen to obtain results that are accurate.  
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To verify the efficiency of an explicit procedure coupled with a simplified approach in 

describing the seismic behaviour of R/C wall structures we use a simplified finite element 

mesh to model the CAMUS 2000-1 specimen. The mesh is realized using 3D beam 

elements with multiple integration points. It differs from the one presented in the previous 

paragraphs from the fact that all structural members are characterised by homogeneous 

cross-sections. The explicit version of the commercial computer code ABAQUS is chosen 

for the analyses. The description of the mesh follows (Figure 10): 

- The structure is modelled using Timoshenko beams. The transverse shear deformation is 

considered linear elastic, independent of the axial and bending behaviour. 

- The sections of the Timoshenko beam elements differ according to the various structural 

components. More specifically: 

§ Walls. Beam elements with  rectangular section (25 integration points per 

section) are chosen to model R/C walls. The longitudinal reinforcement is 

introduced using box section elements (16 integration points per section). The 

area of the reinforcement bars is transformed into an equivalent area of the box 

section. Concentrated masses simulate the additional masses placed along the 

walls. 

§ Slab. Rectangular and box section elements are used to mesh the slabs. The mass 

blocks added to the floors to represent the dead load of the structure are modelled 

using fictive box sections. The density of the material is chosen according to 

weight of the blocks, whereas the stiffness of the elements is limited in order to 

avoid their influence on the dynamic behaviour of the structure.  
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§ Bracing system. The bracing system is modelled with I section elements (13 

integration points per section). The geometry of sections corresponds to the 

geometry of the steel sections adopted in reality.  

§ Basement. A network of elements simulates the stiffness of the basement in the 

three directions. Rectangular section elements are used for concrete and box 

section elements for reinforcement. The specimen is connected to the table via 

four circular section beams elements. A preload is applied to these components 

to reproduce the reality.  

§ Shaking table. A rigid body composed by rectangular section beams simulates 

the shaking table. Circular beam elements simulate the compliance of the table. 

The mass of the table is taken into account through an appropriate material 

density. 

- A lumped mass formulation is adopted. 

- The cross-section of each beam is integrated numerically to obtain the force-

moment/strain-curvature relations for the section. In that way a complete generality in 

material response is achieved, since each point of the section is considered 

independently by the constitutive routines. 

The elastic-plastic model of ABAQUS is chosen to describe the behaviour of steel 

members. The PRM model simulates the cyclic behaviour of concrete (PRM for Pontiroli-

Rouquand-Mazars : [13], [14], [15]). This model distinguishes the behaviour under 

“traction” and  “compression” at the level of a transition zone defined by (sft, eft), where 
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cracks close (Figure 11 for the cyclic response). In these coordinates, the main equations of 

the PRM model for an uniaxial loading take the following form  : 

– Partition of strain and stress tensors:   

      e = ed + eft and s = sd + sft (13) 

-  Constitutive equations (E0 is the initial Young’s modulus) :    

      under traction          (s - sft) = E0 × (1-Dt) × (e-eft) (14)  

under compression  (s - sft) = E0 × (1-Dc) × (e-eft) 

Dt is evolved in traction and in compression through the variable  [13], with x 

= e when load is traction and x = (e-eft) when load is compression; the maximum value  of 

both evolutions is introduced in the calculation. 

Dc evolved through the same variable with x = e. Then Di = fct ( , ed0, Ai, Bi)  with i = 

t, c.  drives the damage evolution after the initial threshold ed0, Ai, Bi are material 

parameters. eft = eft0 (material parameter) when Dc=0 and is directly link to Dc afterwards; 

sft = f(eft, Dc). 

-  In order to describe dissipation due to hysteretic loops (Figure 11) a hysteretic stress 

term is added: 

        shyst = (b1 + b2Di) E0 (1-Di) (e – eft) f(e – eft) (15) 

b1, b2 are the “Rayleigh” parameters and f is a function used to calibrate the evolution with 

the strain. 

2~
+= xe

e~
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This model has been set up in order to describe 3D situations with an explicit 

formulation useful for FEM calculation particularly for dynamic loadings. The general 3D 

formulation of the model relating strain and stress tensors (in bold) is reported below : 

       (   - ft  ) = 0 (1-D) (    -  ft) = (1-D) [ l0 trace(    -  ft)11  + 2µ0 (   -  ft)]  (16) 

where ft and ft are the crack closure stress and strain thresholds used to manage 

permanent effects; 0 is related to the initial mechanical characteristics. D is issued from a 

combination of the two modes of damage : 

D = at Dt + (1- at)Dc (17) 

at evolved in between 0 and 1 and the actual values depends on  (   - ft).  

The PRM model takes into account crack-closure effects, permanent strains, hysteretic 

loops and includes in its general form the effects of strain rate. It is formulated in an 

explicit form, compatible with the use of an explicit algorithm.  

2 Numerical simulations for the CAMUS 2001 mock-up 

A modal analysis is first carried out in order to check the performance of the model. As it 

was the case for the fiber model, the material parameters are issued from tests performed on 

concrete and re-bar samples. The calibration of boundary conditions (footing-support 

interface) comes from the measurement of the two first natural modes (5.5 Hz and 6.00 Hz 

for the out-of-plane and the in-plane flexure). Figure 7 shows that the results obtained for 

the other modes  are similar to the ones calculated with the fiber model.  

Seven seismic signals of increasing amplitude have been applied during the 

experimental campaign. Among them, only those corresponding to an intensity of 0.15g, 
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0.4g and 0.55g are considered in the numerical study. In spite of the simplified approach 

adopted, numerical and experimental data are in good agreement both at global and at local 

level. Displacement time histories obtained for 0.4g and 0.55g in the direction parallel to 

direction of the walls of the CAMUS 2000-1 specimen are shown in Figure 12. A 

satisfactory agreement between experimental and numerical axial load and moment time 

histories can also be observed for 0.55g in Figure 13 and Table 5 (maximum values). These 

results are also comparable to those obtained by the fiber implicit model (Table 3) which 

confirm the good performance of the beam explicit model. 

A complex state of stress inside the walls caused by the combination of bi-directional 

flexure and shear - similar to that observed during the tests - is also highlighted by the 

numerical analyses. PRM model allows studying the variation of damage at different points 

of the section. For example, the damage concentrated at the point TR of the left wall is 

plotted in Figure 14 (0.55g). The effects of tension and compression are considered 

separately. It can be observed that the damage due to tension is important at the base of the 

wall and decreases in the upper stories. On the contrary, compression causes limited 

damage only in the first story, close to the basement and to the connection with the slab of 

the first story.  That is where the maximum damage occurred during the tests. We can 

therefore conclude that the simplified approach adopted using a model based on damage 

mechanics associated to an explicit scheme of resolution is adequate to simulate the 

response of the CAMUS 2000-1 specimen subjected to a series of severe ground motions.  
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Conclusions 

The dynamic behaviour of two R/C wall buildings tested on a shaking table during the 

CAMUS 2000 experimental research programme was simulated using two different 

simplified modelling strategies (a fibre and a beam model) and two resolution schemes 

(implicit and explicit respectively). The constitutive relationships used for the materials 

were based on damage mechanics for concrete and plasticity for steel.  

Both models were able to reproduce correctly the global response of the structures in 

terms of maximum values and frequency content. Local phenomena (e.g. elongation of 

reinforcement bars, concentration of damage) were also qualitatively well simulated. 

However, in order to reproduce quantitatively all the local phenomena a 3D refined finite 

element model has to be adopted. A simplified modelling strategy can predict only the 

general trend of the local indicators. This limited accuracy characterising the results 

obtained with simplified models is balanced by their reduced computational cost. This 

aspect takes a fundamental importance when there is a need for parametric studies or 

vulnerability analyses [16]. 

Research in progress concerns the validation of the two proposed strategies with a new 

R/C wall specimen that is going to be tested at the shaking table facility of LNEC in 

Portugal. Instead of a steel bracing system, a more realistic wall with openings is used this 

time to provide stiffness in the transversal direction. Finally, research in also undertaken to 

verify the efficiency of explicit methods and the PRM model for dynamic problems of 

different nature  as the effects of impact of blocks on R/C slabs [17]. 
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Figure 1. CAMUS 2000-1: Layout of the specimen. 



 

 
Figure 2. CAMUS 2000-2: Non symmetric specimen anchored on the Azalée Shaking table 

(CEA-Saclay, France). 



 

 

Figure 3. Multifibre discretisation principle for a 2-node beam element. 

 



 
 

 

Figure 4 : Uniaxial steel modeling. Local model parameter identification. 
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Figure 5. La Borderie model : Uniaxial constitutive relations for concrete. Strain rate effects in tension 
and compression. 
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Figure 6 : CAMUS 2000-1 fiber model: Finite element mesh. 
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Figure 7. CAMUS 2000-1: Natural eigen frequencies and mode shapes. 

 



 

 

Figure 8. CAMUS 2000-1 fiber model : In plane top horizontal displacement (0.55g). 
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Figure 9. CAMUS 2000-1 fiber model : Out of plane bending moment (0.55g). 
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Figure 10. CAMUS 2000-1: Simplified beam model. A) Finite element mesh; B) Section shape 
adopted to model the bracing system; C) Rectangular section element for concrete members; D) Box 

section used to model the reinforcement and the mass blocks on the floors. Position and number of the 
integration points in each section are also indicated. 
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Figure 11. PRM model: Uniaxial stress-strain relationship. 
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Figure 12. CAMUS 2000-1 Beam model : Comparison between calculated (dotted line) and measured 
(solid line) horizontal top in plane displacements: A) 0.4g B) 0.55g. 
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Figure 13. CAMUS 2000-1 beam model :  Comparison between calculated (dotted line) and measured 
(solid line) A) axial load in the right wall B) moment at the base of the walls for 0.55g. 
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Figure 14. CAMUS 2000-1 beam model : Damage evolution at the point TR along the left wall: A) due to 

compression B) due to tension. 
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TABLE 1. CAMUS 2000-1: Reinforcement areas (cm2). 
 

 Floor 1 Floor 2 Floor 3 Floor 4 Floor 5 
Reinforcement  

areas 
0,95 
0,79 
0,64 
0,48 

0,48 
0,32 
0,16 

0,16 0,16 0,16 

 



TABLE 2 CAMUS 2000-2: Reinforcement areas. 
 

Wall Floor Reinforcement areas (cm2) 
 

1,30m x 0,06m 
1st 4,15 
2nd 2,86 
3rd 1,57 
4th 0,78 
5th 0,16 

 
2,10m x 0,06m 

1st 1,64 
2nd 1,48 
3rd 1,00 
4th 0,50 
5th 0,28 

 
 
 



TABLE 3 CAMUS 2000-1 fiber model : Numerical versus experimental results. 
  

PGA 0,15 g  0,40 g  0,55 g  0,65 g  
Comparisons Comp. Exp. Comp. Exp. Comp. Exp. Comp. Exp. 

Left Wall 
In-plane 

Disp.(mm) 

4,92 
 

4,08 
 

12,9 
 

13,2 22,4 18,7 
 

26,9 
 

31,0 

Right Wall 
In-plane 

Disp.(mm) 

4,40 4,31 15,7 16,1 20,6 18,3 29,5 40,3 

Out of plane 
Disp.(mm) 

+3,58 
-3,99 

+4,93 
-4,56 

+9,82 
-11,8 

+12,8 
-14,3 

+12,4 
-18,1 

+27,9 
-21,5 

+12,3 
-22,4 

+45,7 

In-plane 
Moment(kN.m) 

293  225  382  362  452  473  392  407  

Out of plane 
moment 

305  331  545  492  649  578  621  500  

Left Wall 
Vertical load 

(kN) 

- - - - +46,9  
 

-484  

+79  
 

-467  

+9  
 

-470  

+28  
 

-401  

 



TABLE 4 CAMUS 2000-2 fiber model: Numerical versus experimental results. 
 

PGA 0,80 g  1,12 g  
Comparisons Comp. Exp. Comp. Exp. 

Left Wall In-plane 
Displacement (mm) 

34,2 32,4 65,2 57,9  

Right Wall In-plane 
Displacement (mm) 

33,6 31,8 64,8 63,4  

Out of plane displacement (mm) 10,0 6,0  16,4 17,9  
Out of plane moment, wall 130 (kN.m) 348  469  393  519  

In-plane moment, wall 210 (kN.m) 458  727  503  632  
Total axial force, wall 130 (kN) -8,5  

-301  
+36  
-296  

-36,2  
-321  

+64  
-444  

Total axial force, wall 210 (kN) -52,6  
-303  

-64  
-278 

-57  
-335  

+13  
-398  



TABLE 5 CAMUS 2000-1 Beam Model : Numerical versus experimental results. 
 
 

PGA 0,40 g  0,55 g  
Comparisons Comp. Exp. Comp. Exp. 

Left Wall 
In-plane 

Disp.(mm) 

9.2 
 

13,2 16.5 18,7 
 

Right Wall 
In-plane 

Disp.(mm) 

8.1 16,1 15.4 18,3 

Out of plane 
Disp.(mm) 

+8.9 
-7.5 

+12,8 
-14,3 

+11.6 
-9.9 

+27,9 
-21,5 

In-plane 
Moment(kN.m) 

393  362  445  473  

Left Wall 
Vertical load 

(kN) 

+165 
-318 

- 
- 

+135 
-363  

+79  
-467  


