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1. Introduction

The contact between an elastic half-space and multiple rigid
indentors is of great interest in many engineering applications.
This was for instance used in [1,2] to model the dynamical contact
stresses between the tyre tread and the road for rolling noise
prediction.

The normal contact between a rigid surface and an elastic
half-space was first investigated by Boussinesq [3] using the
potential theory. Numerous analytical solutions were then
derived for a single indentor of axisymmetric profile by Sneddon
[4]. For a large number of indentors, Greenwood and Williamson
[5] developed a statistical spherical asperity-based model. A
deterministic numerical approach was also developed by using
some known half-space solutions to construct influence coeffi-
cients. It can be solved using the matrix inversion method of
Johnson [6] or the optimization method of Kalker [7]. It was
widely used and improved in [8–11]. However, these methods can
become time-consuming when the number of indentors in-
creases.

This paper presents a new technique for solving the problem of
multi-contact on an elastic half-space. It solves the problem in
two steps and is named the two-scale iterative method. The first
step consists in calculating the contact forces at the tips of the
indentors. The procedure is similar to the one proposed in [12,13]
but is valid here for three-dimensional problems and indentors of
: +33 2 40 84 59 92.
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random shape. The second step of the method gives the pressure
distribution at the contact interface using an iterative scheme that
starts from the contact forces obtained at the first step. After
having described the method, its efficiency in the case of close
proximity contacts will be demonstrated from dimensionless
numerical results involving spherical punches. Then experimental
contact data measured between spherical indentors and a rubber
block will be compared to predicted values obtained with the
method. The measurements are carried out using a digital
pressure sensing device which was successfully used in the
literature to compare numerical models with experimental
contact data in [14–16]. Finally, the correlations between the
measurements and the calculations will be discussed before
concluding remarks.
2. Two-scale iterative method for multi-contact on a half-space

The considered problem is illustrated in Fig. 1 and is governed
by the following relations of unilateral contact:

8ðx; yÞ 2 S;uðx; yÞ ¼
ZZ

Sc

pðx;ZÞTðx; y;x;ZÞdxdZ (1)

8ðx; yÞ 2 Sc;uðx; yÞ ¼ d� zðx; yÞ and pðx; yÞ40 (2)

where z describes the height of the rigid surface, d is the global
penetration between the contacting bodies, S is the surface of
the half-space, Sc is the contact area, u is the displacement at the
surface of the half-space and p is the normal pressure at the
contact interface. In the integral of Eq. (1), the influence function T



Fig. 1. Elastic half-space in contact with several rigid punches.

Fig. 2. Schematic view of the two-scale iterative method. (a) Macro-scale

calculation step: contact force Pk on tips; (b) micro-scale calculation step: first

pressure approximation p0; (c) micro-scale calculation step: final pressure

distribution p.
is defined by Boussinesq’s theory [3]:

8ðx; y; x0; y0Þ 2 S2; Tðx; y; x0; y0Þ ¼ pE�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q� ��1

(3)

with E� ¼ E=ð1� n2Þ where E is the Young modulus of the half-
space and n is its Poisson’s coefficient. Eq. (2) contains the two
conditions of non-penetration and of compressive contact
between the bodies. If the global penetration d is given, the
unknowns of the contact problem are the contact area Sc and the
pressure distribution p.

The resolution of Eqs. (1) and (2) can be very time consuming
when the number of asperities becomes large. So we propose to
solve this problem in two steps, as illustrated in Fig. 2. The first step,
denoted the macro-scale calculation, consists in an approximate
problem in which only the global forces acting at the tips of the
asperities are computed (Fig. 2(a)). Then, this solution is used in a
second step, denoted the micro-scale calculation, to compute the
pressure distribution in the whole contact area (Figs. 2(b) and (c)).

2.1. The macro-scale calculation step

Considering that the indenting surface is composed of N

asperities with tips of coordinates ðxk; yk; zkÞ, then the contact
forces Pk at the summit of the punches can be written as

8k 2 ½1;N�; Pk ¼ f k½dkHðdkÞ� (4)

where H is Heaviside’s function defined by HðdkÞ ¼ 0 if dko0 and
HðdkÞ ¼ 1 if dkX0. f k is the load–penetration function obtained for
the kth punch alone. It is assumed that the multiple contacts have
few influence on this function. The local penetration dk corre-
sponds to the displacement of the half-space at the summit of the
kth punch. If only the asperity k acts at the surface of the half-
space, then dk is simply equal to d� zk. In the multi-contact case,
each force Pl that acts at the tips of another punch l will induce a
displacement at punch k given by TklPl with Tkl ¼ Tðxk; yk; xl; ylÞ.
According to the superposition principle in linear elasticity theory,
the local penetration dk can then be written as

dk ¼ d� zk � uk ¼ d� zk �
XN

l¼1
lak

TklPl (5)

Introducing relation (5) in Eq. (4) lead to a non-linear system of N

equations with N unknowns Pk. It is solved using the New-
ton–Raphson iterative method and gives the contact forces Pk at
the tips of the asperities.

2.2. The micro-scale calculation step

Then the surface of the elastic half-space is divided in n

identical square elements with coordinates ðxi; yi; ziÞ and size
2

h� h. A global influence matrix, noted A, is defined. Its
coefficients are calculated using the analytical results of Love
[17] assuming that a uniform pressure is acting on each square
element. Defining a global pressure vector p ¼ fpig

T
i2½1;n� and a

displacement vector b ¼ fd� zig
T
i2½1;n� then the contact problem of

Eqs. (1) and (2) is written as a vectorial equation Ap ¼ b. Matrix A
is organized by blocks as follows:

A11 � � � A1k � � � A1N
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. . .
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bN

8>>>>>>>><
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9>>>>>>>>=
>>>>>>>>;

(6)

where N is the number of indentors at the macro-scale, Akk is the
local influence matrix, pk is the local pressure vector and bk is the
local displacement vector for the kth punch. The extra-diagonal
block Akl is the part of A relative to the interaction of punch l on
punch k.

From the macro-scale forces Pk, an initial approximation of the
contact pressure p0 ¼ fp0

1ðP1Þ � � �p0
kðPkÞ � � �p

0
NðPNÞg

T is calculated,
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where Akij
are the elements of matrix Akk and nk is the number of

points on the asperity k. The initial pressure p0
k on punch k is

obtained from Eq. (7) using the classical matrix inversion method
of Johnson [6].

Then the contact problem is solved using a non-linear block
Gauss–Seidel like algorithm. The iterative process starts from p0.
At step mþ 1, the pressure distribution on each punch k, noted
pmþ1

k , is calculated by inverting the following local linear problem:

Akkpmþ1
k ¼ bm

k �
Xk�1

l¼1

Aklp
mþ1
l �

XN

l¼kþ1

Aklp
m
l (8)

After this the negative pressures obtained in pmþ1
k are replaced by

zeros and the procedure is repeated on the other punches. The
procedure is stopped when no negative pressure has been
detected during the step and when the following convergence
criteria is respected:

kpmþ1 � pmk

kpmk
pe with kxk ¼

Xn

i¼1

jxij
2 (9)

The convergence parameter e fixes the precision of the method.
Finally, the two-scale iterative method gives the solution to the

global contact problem given by Eqs. (1) and (2). The proposed
approach enables to reduce the number of iterations because the
macro-scale step leads to a good initial pressure distribution p0

and because the resolution is simplified by applying the iterative
formula of Eq. (8) instead of inverting the global influence matrix
as in usual methods.
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Fig. 4. Pressure distributions in the case of seven spherical indentors.
3. Numerical results for multiple spherical indentors

The goal of this numerical study is to show the efficiency of the
proposed method even in close proximity contacts and to
compare its results with those of classical numerical methods.

The two-scale iterative method was implemented for two
configurations involving identical spherical indentors at the same
height. The first one was composed of two spherical caps of radius
d/2R = 0.1 d/2R = 0.25

Fig. 3. Pressure distributions in the

3

R which summits are separate by the distance d. The second
configuration involved seven spherical asperities of radius R, with
six asperities at the distance d from the last one and hexagonally
distributed around it. For the contact forces calculation step, the
load–penetration relation f k on each punch was given by Hertz’s
theory [18]:

Pk ¼ f kðdkÞ ¼ 4=3E�
ffiffiffi
R
p

d3=2
k (10)

with E ¼ 10 MPa and n ¼ 0:5 which corresponds to the elastic
behavior of rubber-like materials. For the second step of the
method, the surface of the half-space was meshed using square
identical elements of length h ¼ 0:0125R for the two indentors
case and h ¼ 0:025R for the seven indentors case.

Calculations were performed for several values of the para-
meter d=2R at a fixed value of d. Examples of pressure
distributions obtained for the two indentors case are given in
Fig. 3 for d=2R ¼ 0:1, 0.25 and 1.0 and d ¼ 0:05R. Dimensionless
pressure values p=pm are given, where pm is the mean pressure at
the contact interface. The circles in dotted lines have a radius R

and indicate the position of the punches. These results clearly
show the influence of the distance d on the interaction between
the two punches. When the indentors are very close, the local
contact areas are no longer circular and the local pressure
distributions become strongly asymmetrical. The same effects
are observed in Fig. 4 for seven indentors at d=2R ¼ 0:2 and 1.0
and d ¼ 0:1R. Additionally Fig. 5 gives the variation with d=2R of
the pressure distribution along the central radial line of the upper
asperity for both configurations. This clearly shows that when the
indentors are very far away ðd=2R ¼ 5Þ the local pressure
d/2R = 1.0

0

0.5

1

1.5
p/pm

case of two spherical indentors.
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matrix inversion method pr .
distribution is symmetrical and very similar to the one obtained
for a single spherical asperity. When the spheres are closer, the
distribution becomes asymmetrical and is no longer centered
around the tip of the punch.

The results presented above show the efficiency of the two-
scale iterative method for dealing with multi-contact problems
even for close proximity configurations. The accuracy of the
method was estimated by comparing the initial and final pressure
distributions, respectively p0 and p, with the reference pressure
distribution pr obtained using the classical matrix inversion
method of Johnson [6]. The differences in percents were estimated
using the indicators 100kp0 � prk=kprk and 100kp� prk=kprk. The
variation of these indicators with d=2R is represented in Fig. 6. In
both configurations, the difference between the initial pressure p0

and the reference pressure pr increases when the indentors
become closer, but the final pressure p is always the same as the
reference one. Then the two-scale iterative method leads to the
same result as the classical method even for close proximity
contact areas. Moreover, the first approximation p0 can give
accurate results when the punches are sparse enough. Finally, the
proposed method was about two and ten times faster than the
4

classical method, respectively, for two and seven asperities and
the iterative procedure of Eq. (8) converged in less than 10
iterations.
4. Experimental comparisons

The contact between a rubber block and surfaces composed of
spherical indentors was experimentally studied for comparison
with the proposed method. The purpose was to measure the
contact forces and normal stresses at the contact interface and to
compare them with the results of the model.
4.1. Materials and method

The bodies were brought into contact using a compression test
machine as shown in Fig. 7. The total applied load was measured
using a force transducer. The loading speed of the base plate was
V ¼ 1 mm �min�1 at which the viscoelasticity of the rubber was
neglected. Plain bearings were introduced between the indenting
surface and the punch of the press in order to spread out the
contact forces properly over the whole contact area during the
tests.

The normal stresses at the contact interface were measured in
real time using a pressure sensor linked to a computer. This sensor
is a resistive polymer divided in 1936 cells of 1.9 mm by 1.9 mm on
which the electrical impedance varies with pressure and is
converted into digital values between 0 and 255. Following the
recommendations of the manufacturer [19], these raw data were



calibrated from total load measured with the force transducer. It
was assumed that the relation between the pressure and the
digital output is linear and that zero output corresponds to null
pressure. Crinkle artefacts also appeared during loading due to
creasing of the sensor around the perimeter of the contact areas.
These were treated by removing small raw values using a
threshold which was fixed to 20. Finally, the overall system
accuracy was �10% of the full pressure scale which varies
between 0 and 3.5 MPa.

The dimensions of the rubber block (140� 140� 20 mm) were
chosen large enough in comparison with those of the indenting
Fig. 7. Experimental setup: (1) force transducer, (2) punch of the press, (3) plain

bearings, (4) indenting surface, (5) pressure sensor, (6) rubber block, (7) moving

base plate of the press and (8) sensor handle linked to a PC.

Fig. 8. Pictures of the three indenting surfaces S1, S2

5

surface in order to fulfill the half-space hypothesis needed in the
model. A Young’s modulus E ¼ 6 MPa was identified using Hertz’s
theory [18] from a contact test between a single spherical
indentor and the rubber block including the sensor at the
interface. A Poisson’s ratio n ¼ 0:5 was assumed. Three indenting
surfaces named S1; S2 and S3 were used for contact tests with the
rubber block, as shown in Fig. 8. Each surface was composed of
spherical asperities at the same height. The surface S1 had seven
identical indentors of radius 6 mm and hexagonally distributed.
The surface S2 was periodic and composed of 25 asperities of
equal radius (5 mm). The surface S3 had 24 indentors with random
positions and three possible radii (4, 5 or 6 mm). The surfaces
were steel-made and thus assumed perfectly rigid in comparison
with the rubber block. For each surface, the asperities were
numbered as shown in Fig. 8 for a proper implementation in the
model.

Concerning the experimental procedure, the contact pressures
were measured in quasi-statics for each surface. The tests were
performed for a total load P̃ varying between 0 and 150 N for S1

and from 0 to 300 N for S2 and S3. Each test was repeated four
times in order to have a better significance. Then three total loads
were considered for comparisons, which are 50, 100 and 150 N for
S1 and 200, 250 and 300 N for S2 and S3. First the pressure
distribution was measured as illustrated in Fig. 9 for surface S2 at
250 N. The square pixels on the figure have the size of a sensor
cell. The pressure range obtained after calibration is given on the
right. The crosses are the positions of the tips and the circles
describe the base of the spherical punches. Then the contact
forces at the tips of the asperities were calculated by integrating
the measured pressure inside each local contact area. The contact
forces and pressures were saved for each loading case for
comparison with the model.
and S3 (top) and associated numbering (bottom).
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4.2. Modelling implementation

To model the plain bearings used during the experiments, the
macro-scale step of the numerical method was formulated for a
known total normal load P with a ball-and-socket joint at its point
of application O. This enables the surface of the elastic half-space
to rotate during loading with angles a and b, respectively, around
the ðOxÞ and ðOyÞ axes. Assuming that these angles are small, the
local penetration dk at point ðxk; yk; zkÞ can be written as

dk ¼ d� zk � bxk � ayk � TklPl (11)

Then the contact equations can be written as in Eq. (4) where dk is
replaced by its expression given in Eq. (11). This gives a system of
N non-linear equations that contains N þ 3 unknowns which are
the N normal contact forces Pk, the global penetration d and
the two angles a and b. Thus three more equations are given by
the equilibrium equations in statics:

XN

k¼1

Pk ¼ P;
XN

k¼1

ykPk ¼ 0 and
XN

k¼1

xkPk ¼ 0 (12)

The combination of contact equations (4) and equilibrium
equations (12) leads to a non-linear system of equations which
is solved to give the contact forces. Then the contact pressure can
be calculated at a finer scale using the micro-scale calculation
step. The fine pressure distribution is next averaged on square
elements of the same size as the sensor cells. This enables a
rigorous comparison between calculated and measured pressures.

Concerning the input data entered in the model, the total load
P was given by the measured one P̃ for each test. The number of
asperities N was given by the numbers of spherical indentors for
each surface. Then for each punch the load–penetration relation f k

was described using Hertz’s relation given in Eq. (10). Young’s
modulus E was equal to the value 6 MPa estimated for the rubber
block and Poisson’s coefficient n was equal to 0.5. The geometrical
properties of the contacting bodies were also carefully imple-
mented in the model. A three-dimensional mapping of the
contacting surfaces was carried out using a high resolution
micro-topography measurement system. The position ðxk; yk; zkÞ

and the radius Rk of each asperity were locally calculated by
approaching the surface data with a sphere using a least mean
square procedure. The measured surface of the rubber block was
slightly curved which was taken into account in the model by
6

adding it to the height of the asperities. Finally, the coordinates
ðx0; y0Þ of point O could vary during experiments due to the
uncertainties in the centering of the plain bearings. These
coordinates were calculated for each test from the measured local
forces P̃i assuming that the sum of moments at point O was
experimentally null:

x0 ¼
1

P̃

XN

k¼1

xkP̃k and y0 ¼
1

P̃

XN

k¼1

ykP̃k (13)

Then the tips of the asperities were shifted as follows:
ðxk � x0; yk � y0; zkÞ. The main consequence is that each test is
unique due to centering uncertainties and must be individually
compared with the model.
4.3. Results

The two-scale iterative method was implemented as described
above for each indenting surface and each loading case. Then the
predicted values were compared to the measured data both for
contact forces and pressure distribution.

At the macro-scale, the numerical contact forces Pk were
compared to the measured contact forces P̃k. The comparisons
for the three loading cases are given in Fig. 10 for surface S1 and in
Fig. 11 for surfaces S2 and S3. Fig. 10 for surface S1 shows that the
measured central force was smaller than the peripheral forces for
the three total loads. The same observation was made in Fig. 11(a)
for surface S2. The smallest force was obtained in the middle of
the surface (punch 13) while the highest were found in the
corners (punches 1, 5, 21 and 25). This is the proof that an
interaction between the punches exists and is not negligible as it
was already underlined in the modelling part.

For surface S1, the differences between predicted and mea-
sured forces were below 10% for P ¼ 50 N and below 5% for P ¼

100 and 150 N. For surfaces S2 and S3, the differences were below
10% for most asperities but could be slightly higher than 10% for
some punches. These correlations are fairly acceptable by keeping
in mind both the precision of the measurement system and the
simple hypotheses of the model. The differences may be explained
by small errors in the centering and in the topography of the
contacting surfaces. The topography of the rubber block was
actually measured in free conditions which may not exactly
correspond to the initial contact conditions. Moreover, a shift in
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Table 1
Macro- and micro-scale indicators for the three surfaces at the three loading cases.

Surface S1 S2 S3

P (N) 50 100 150 200 250 300 200 250 300

ēM (%) 0.4 0.2 0.1 0.5 0.5 0.6 1.1 0.7 0.7

ēm (%) 5.9 4.8 4.9 3.9 4.2 4.0 7.4 7.4 7.0
the relative position of the surfaces can introduce errors in the
description of the height of the asperities.

Finally, the macro-scale differences were assessed using the
global indicator eM defined as follows:

eM ¼ 100
XN

k¼1

jPk � P̃kj
2

XN

k¼1

jP̃kj
2

,
(14)

where N is the number of punches. At the micro-scale, the
differences between pressure values were also evaluated using the
following indicator em:

em ¼ 100
Xn

i¼1

jpi � p̃ij
2

Xn

i¼1

jp̃ij
2

,
(15)
7

where n is the number of loaded cells, pi are the calculated
pressures and p̃i are the measured pressures. The indicators were
calculated and averaged from the four tests for a given surface at a
given total load in order to have significant comparisons. These
mean values are noted ēM and ēm. They are given in Table 1. For the
three surfaces, the macro-scale indicator was below 1% for the
three total loads, which means that the contact forces are globally
in very good agreement. At the micro-scale, ēm was below 10% for
the three configurations and the three surfaces, which means that
globally the calculated and the measured pressure distributions
were of the same order. Since the precision of the measurements
is �10%, the results show that the proposed method could be
relevant to model multi-contact problems at both scales.
5. Conclusion

A two-scale iterative method has been developed for solving
the problem of multiple contacts at the surface of an elastic half-
space. Numerical results for two and seven spherical indentors
show that the method is as accurate as the matrix inversion
method [6], even for close proximity contacts. Moreover, the
method is very time efficient which will probably make possible
the calculation of contact pressure on large surfaces with a great
number of indentors.

Concerning the experimental part, the differences between
predicted and measured results were below 10% for different
configurations of spherical indentors loaded on a rubber block.
These results are fairly acceptable considering the �10% precision
of the measurement system specified by the manufacturer. The
discrepancies observed for some punches were linked to errors or
shifting in the description of the surface of the rubber block. The
higher average differences for surfaces S2 and S3 may be explained
by the finite dimensions of the rubber block which could be
introduced in the model using a finite element model of the block
for the calculation of the influence coefficients.

The application of the method on larger surfaces involving
punches of random shape is in progress. Further developments of
the method should include the consideration of friction between
the indentors and the half-space. The viscoelastic behavior of the
half-space should also be taken into account so that the method
can be applied to practical contact problems, such as tyre-road
contact problems. The results obtained in this study show that
the two-scale iterative method can be a reliable tool for the
calculation of contact forces and stresses in applications where a
precision of 10% is acceptable. For instance, this is the case for the
prediction of contact stresses for tyre/road noise modelling, where
a difference of 10% in the contact forces will induce differences
below 1 dB in the noise level. For applications which need higher
accuracy, a comparison of the model involving contact areas and
pressure measurements with a sensor of finer resolution is
required.
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