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1. Introduction 
 

Moisture diffusion within an epoxy matrix based composite structure exposed to humid 

environmental conditions induces two types of internal stresses: the macroscopic stresses (at the 

scale of the composite plies) and the microscopic stresses (experienced by the elementary 

constituents of a considered ply). Macroscopic stresses induced by gradients of moisture 

concentration and/or the heterogeneity of the coefficients of moisture expansion are determined 

using continuum mechanics classical formalism. This method enables taking into account both 

space and time effects on moisture diffusion in the composite structure [1]. Localization of the 

macroscopic mechanical states at microscopic scale lead to different stresses in the matrix and the 

fiber. The discrepancies come from the strong heterogeneities of elastic properties, coefficients of 

moisture expansion and moisture content of the composite plies constituents. Scale transition 

models are often used in order to achieve the localization procedure. 

In the present work, a self-consistent hygro-elastic model, based on Eshelby [2] and Kröner [3] 

pioneering papers, is developed in order to determine the microscopic mechanical states in a 

composite ply. This model takes into account the microstructure of the constituents (in particular, 

the reinforcing fibers morphology) and the heterogeneous microscopic moisture content (actually 

the reinforcing carbon fibers do not absorb moisture, which is consequently concentrated in the 

polymer matrix). Both the classical purely numerical approach and a rigorous fully analytical 

treatment of the question are respectively achieved in sections 2 and 3. Section 4 compares the 

closed-form solution to the fully numerical self-consistent model for various geometrical 

arrangements of the fibers: uni-directional or laminated composites. 
 

2. Hygro-elastic micromechanical model 
 

2.1 Self-Consistent estimates for hygro-elastic properties. A self-consistent model based on 

Kröner [3] and Eshelby [2] hypotheses is extended to the hygroscopic loading of composite 

materials in order to determine localization of the stresses in the constituents of each ply: the matrix 

and the fiber. The material is investigated at two different scales for the needs of micromechanical 

modeling: a) the average behavior of a ply, defines the macroscopic scale, denoted by the 

superscript 
I
 b) the properties and mechanical states of the matrix and fiber are respectively 

indicated by the superscripts 
m
 and 

f
. These constituents define the microscopic scale of the 

material. The hygro-elastic behaviour of the material satisfies: 
 

(((( ))))α∆Cαααααααααααααααα ββββ−−−−εεεε====σσσσ :L ,           (1)

     

where α replaces the superscripts I, f or m. L stands for elastic stiffness tensor, whereas ββββ are the 
Coefficients of Moisture Expansion (CME) and ∆C the moisture content. 
According to Hill [4], macroscopic stresses and strains can be determined through the volume 

average of the microscopic stresses and strains:  
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In a previous work [5], the authors achieved to obtain the following relation for the macroscopic 

elastic properties (Eq. 3) and coefficient of moisture expansion (Eq. 4) of the composite, assuming 

that the fibers do not absorb water (∆Cf
=0): 
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where ρI and ρm are  respectively the composite and resin densities. RI
 is the reaction tensor, 

defined by Eshelby in [2]. 

 

2.2 Microscopic mechanical states. Since the carbon fiber does not absorb water, the stress-strain 

relation (Eq. 1) rewrites:  
 

fff :L εεεε====σσσσ .      (5) 
 

In that case, Eshelby’s formalism (see [2]) lead to the following scale transition relation for the 

microscopic strains experienced by the fibers:  
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Eq. 6 enables to determine the microscopic strain in the fiber from the macroscopic strains. 

Thereafter, Eq. 5 is used in order to find the fiber stresses. The microscopic mechanical states 

experienced by the matrix are thereafter deduced from Hill volume averages (Eq. 2). 
 

3. Towards analytical expressions of the microscopic hygro-mechanical states  
 

3.1 Closed-forms solution of Morris’ tensor for fiber morphology. The self-consistent 

framework is based on the mechanical treatment of the interactions between ellipsoidal 

heterogeneous inclusions and the embedding homogeneous equivalent medium. The average 

macroscopic elastic properties L
I 
of the composite are related to the morphology assumed for 

elementary inclusions, through Morris’ tensor E
I
. Actually, the reaction tensor R

I
 introduced in Eq. 

3 writes: 

11
: 

−−








−= IIII

EELR       (7)

Originally, spherical inclusions only were considered by Morris [6]. For ellipsoidal shaped 

inclusions Asaro and Barnett [7] and Kocks et al. [8] have established the following relations for 

numerical calculation of each ijkl subscripted component of Morris’ tensor: 
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Some analytical forms for Morris’ tensor are available in the literature; the interested reader can for 

instance refer to [8-10]. Nevertheless, these forms were established considering either spherical, 

disc-shaped of fiber-shaped inclusions embedded in an ideally isotropic macroscopic medium, that 

is incompatible with the strong elastic anisotropy exhibited by fiber-reinforced composites at 
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macroscopic scale. In the case of fiber-reinforced composites, a transversely isotropic macroscopic 

elastic behaviour being coherent with fiber shape is actually expected (and predicted by the 

numerical computations). This is compatible with the following form of K tensor:
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where 1 2 3

1 2 3

sinθ cosφ sinθ sinφ cosθ
ξ ,ξ ,ξ

a a a
= = = . Assuming that the longitudinal (subscripted 1) axis 

is parallel to fiber axis, one obtains the following conditions for the semi-lengths of the 

microstructure representative ellipsoid: a1→∞, a2=a3. 
The determination of Morris’ tensor requires the determination of the inverse of K tensor that is 

involved in the calculation of γ . Due to the listed above conditions over the dimensions a1, a2 and 
a3 of the considered fiber-shaped inclusions, drastic simplifications of Morris’ tensor occur: 
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3.2 Analytical solution for the pseudo-macroscopic mechanical states. In fact, the epoxy matrix 

is usually isotropic, so that three components only have to be considered for its elastic constants: 
m

44

m

12

m

11 L and L ,L . One moisture expansion coefficient is sufficient to describe the hygroscopic 

behaviour of the matrix: m

11β . 

In the case of the carbon fibers, a transverse isotropy is generally observed. Thus, the corresponding 

elasticity constants depend on the following components: f f f f f f

11 12 22 23 44 55L , L , L , L , L , and L .  Moreover, 

since the carbon fiber does not absorb water, its CME f f

11 22β  and β  will not be involved in the 

mechanical states determination. Introducing these additional assumptions in Eqs. 2, 5-6, and taking 

into account the form (Eq. 11) obtained for Morris’ tensor, the following general expression is 

found for the strain tensors experienced by the matrix: 
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The corresponding analytical form for the microscopic stress tensor in the matrix comes from Eq. 1: 
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The local mechanical states in the fiber are provided by Hill’s average laws (Eq 2.). 
 

4. Comparison between the analytical and the numerical self-consistent models 
 

4.1 Introduction. Thin laminated composite pipes, with thickness 4 mm, initially dry then exposed 

to an ambient fluid, made up of T300/5208 carbon-epoxy plies are considered for the determination 

of both macroscopic stresses and moisture content as a function of time and space. Table 1 presents 

the elastic properties considered for the T300 carbon fiber, N5208 epoxy matrix and the effective 

stiffness deduced from the self-consistent approach for a fiber volume fraction of 60% in the 

composite ply. The coefficients of moisture expansion obtained through the same approach are :  

035.0I
11 =β and 026.1I

22 =β ( 6.0m
11 =β ). 

 

 E1 [GPa] E2, E3 [GPa] ν12, ν13 G23 [GPa] G12 [GPa] 

T300 fibers  230 15 0.2 7 15 

N 5208 epoxy matrix 4.5 4.5 0.4 1.6 1.6 

T300/5208 composite 139.6 9.8 0.28 3.5 6.4 

Table 1: Microscopic and macroscopic mechanical properties 
 

4.2 Results – checking of the analytical model.  
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 Figure 1. Concentration profiles in T300/5208 

Figure 1 shows the time-dependent 

concentration profiles, resulting from 

the application of a boundary 

concentration c0, as a function of the 

normalized radial distance from the 

inner radius rdim. At the beginning of 

the diffusion process important 

concentration gradients occur near 

the external surfaces. The permanent 

concentration (noticed perm in the 

caption) holds with a constant value 

because of the symmetrical 

hygroscopic loading. 

( )

{ }

m m m m m I I I I I I

1 11 11 12 11 12 22 22 23

m I m I

2 12 12 11

2I I m m I I m m I I

22 22 11 12 22 23 11 12 22 23
m I

3 222 2I I m m I I

22 23 11 12 22 23

I I m m I

22 22 11 12 22
m

4

N  β  (L 2L ∆C β L β L L ∆C

N L -L ε

L L 5L -L +3L L 3L L 4L L
N  ε

3L -L L -L L L

L L L -5L -L
N

) ( ( ))

( ) ( )

( )( )

( )

= + − + +

=

− + + +
=

+ −

=
{ }2I m m I I

23 11 12 22 23
I

332 2I I m m I I

22 23 11 12 22 23

m m m I I

1 11 12 22 23

L L 3L 4L 3L
ε

3L -L L -L L L

D L L L L

( )

( )( )











 + + + −

 + −

 = + + −

where, (13) 

4



The macroscopic mechanical states were calculated for two types of composites structures: a uni-

directionnaly reinforced cylinder, and a [55°/-55°]S laminated cylinder. Starting with the 

macroscopic stresses deduced from continuum mechanics, the local stresses in both the fiber and 

matrix were calculated either with the new analytical forms or the fully numerical model. The 

comparison between the two approaches is plotted on figure 2 which shows the obtained results for 

the central ply of a uni-directionnal composite whereas both the inner and central ply are considered 

in the case of the [55/-55]S laminate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AS4  50_ 1_1 ∆∆∆∆C m / ∆∆∆∆C I  = 2

-400

-200

0

200

1 2 3 4 5 6 7 8

cas

σσ σσ
1
1

1
1

1
1

1
1

composite (CMF) matrix (numerical) fiber (numerical)

matrix (analytical) fiber (analytical)

 

Figure 2. Local stresses in T300/5208 composite for the central ply, in the case of a) the uni-

directionaly reinforced composite and b) the [+55°/-55°]S symmetric laminate, whereas case c) 

depicts the stresses for the inner ply of a [+55°/-55°]S symmetric laminate.  

CMF stands for Continuum Mechanics Formalisms. 
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The graphs of figure 2 demonstrates the very good agreement between the numerical approach and 

the corresponding closed-forms solutions. The slight differences appearing are due to the small 

deviations on the components of Morris’ tensor calculated using the two approaches. 

 

4.3 Interpretation of the simulations. The highest level of macroscopic tensile stress is reached 

for the uni-directional composite, in the transverse direction and in the central ply of the structure 

(50 MPa, cf. figure 2). The transverse stresses exceed probably the macroscopic tensile strength in 

this direction. The choice of a [+55°/-55°]S laminated allows to reduce the macroscopic stress in the 

transverse direction where the upper level fall down to 25 MPa. Nevertheless, a high shear stress 

rises along the time in the fibers of the central ply of such a structure (35 MPa), and the matrix 

experiences strong compressive stresses that can reach -185 MPa in the studied example. 

Moreover, the figure 2 shows that the micromechanical model always predict a very high 

compressive stress in the matrix of the inner ply whatever the laminate studied (the macroscopic 

stress is negligible in the normal direction because thin structures are considered). These local 

stresses could help to explain damage occurrence in the surface of composite structures submitted to 

such hygroscopic conditions. 

 

5. Conclusions and perspectives 

In the present work, a rigorous fully analytical treatment of the classical Kröner and Eshelby Self-

Consistent model including morphology effects was achieved. Especially, the determination of 

Morris’ tensor was performed in a satisfactory agreement with the transverse macroscopic elastic 

anisotropy expected for the fiber shape that should be taken into account in order to satisfactory 

represent the specific microstructure of carbon-fiber reinforced composites. The new closed-form 

solutions obtained for the components of Morris’ tensor were introduced in the classical hygro-

elastic scale transition relation in order to express analytically the internal strains and stresses in 

both the fiber and the resin of a ply submitted to a hygro-elastic load. The closed-form solution 

demonstrated in the present work was compared to the fully numerical self-consistent model for 

various geometrical arrangements of the fibers: uni-directional or laminated composites.  

A very good agreement is obtained between the two models for any component of the local stress 

tensors. It was also demonstrated that continuum mechanics and micromechanical models give 

complementary information about the occurrence of a possible damage during the loading of the 

structure. 

In further work, the effects of a cyclical hygrothermal load on both the local and macroscopic 

mechanical states of carbon-fiber reinforced composites will be investigated. 
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