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Numerical analysis of rubber balloons

E. Verron *, G. Marckmann

Laboratoire de Mécanique et Matériaux, Division Structures, Ecole Centrale de Nantes, BP 92101,
44321 Nantes cedex 3, France

Abstract

The present paper deals with the inflation of two connected rubber balloons. This problem
is known to exhibit instabilities and complex equilibrium paths. In some cases, the balloons
inflate asymmetrically and equilibrium states with unequal radii take place. In this work, bal-
loons are considered axisymmetric and discretized using an efficient B-spline discretization.
The non-linear finite element procedure is associated with a stability and post-bifurcation
analysis in order to determine singular points and to switch onto secondary equilibrium
branches. The case of Mooney—Rivlin membranes is thoroughly investigated and the branching
diagrams obtained are discussed in regards with the material parameters.

Keywords: Membrane inflation; Rubber balloons; Stability; Equilibrium paths

1. Introduction

The inflation of two connected rubber balloons was first examined by Miller [1].
He describes the simple experiment that consists of blowing two rubber balloons
fixed on the ends of a T tube. Its motivation was to demonstrate that the balloons
behave as soap bubbles for which the smaller blows up the larger one until the latter
disappears [2,3]. He did not observe what he was expecting, but he did not describe
what phenomenon he observed. Later Weinhaus and Barker [4] considered this prob-
lem and explained the difference between the soap bubbles and the balloons by
invoking their highly different constitutive behaviours. They proposed a realistic
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solution by employing the neo-Hookean strain energy function for the balloons. They
demonstrated that the final states of the two balloons often occur with unequal and
non-zero radii if the amount of gas injected is sufficiently large. In a more recent
paper, Read [5] used the generalised Hooke’s law to model the behaviour of rubber
under large strains and a similar analytical procedure to solve the problem. Miiller
and co-workers [6,7] considered the Mooney—Rivlin hyperelastic constitutive equ-
ation for rubber. They investigated the possible equilibria of the two balloons by
modelling the thermodynamics of the global system, including the balloons and the
inflating gas. They highlighted that even if some equilibria are involved with different
radii, large strains equilibria with equal radii can take place for large amounts of
inflating gas.

The present paper deals with the problem of interconnected toy balloons with the
use of numerical methods. The system of two balloons is supposed to be initially
and to remain axisymmetric during the inflation. The material obeys the Mooney—
Rivlin strain energy and the influence of the material parameters is discussed in
order to recover the different solutions mentioned above. In Section 2, the governing
equations for the inflation of axially symmetric hyperelastic membrane and the stress-
strain relationships are briefly recalled. The present approach is highly based on the
work of Green and Adkins who first derived the equations of inflated membranes
[8]. More bibliographical references on this subject can be found in Khayat et al.
[9]. In order to solve these non-linear equations, the membrane is interpolated by
B-spline finite elements and the corresponding discretized system is established in
Section 3. In the same section, the numerical procedure is presented. The emphasise
is laid on the treatment of singular points that is needed to explore the whole branch-
ing diagram, said to investigate bifurcating solutions in which unequal radii states
take place. Section 4 is devoted to the numerical results. The behaviour of a single
balloon is briefly recalled. The influence of the material parameters on the solution
is highlighted. Then, the problem of connected balloons is thoroughly examined.
The different equilibrium paths are computed depending on material parameters.
Final remarks are given in Section 5.

2. Inflation of axially symmetric hyperelastic membranes
2.1. Kinematics

Consider a thin membrane which mid-surface is described by cylindrical co-ordi-
nates (ry,8,2y) in the undeformed stress-free state and (r,6,2) in the deformed loaded
state. The membrane is assumed z-axially symmetric, so that the position of a mem-
brane particle can be described using only the arc-length co-ordinate s in both unde-
formed and deformed configurations. Thus, in each 6,-constant plane, we have:

ro=r1(8) 5 7 = 2(s) (1)

and:
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In these equations, s varies from 0 to /,, the initial length of the membrane cross-
section. Moreover, the undeformed and deformed membrane thickness, respectively
hy and h, are both functions of s. In the present work, the initial thickness is con-
sidered uniform along the cross-section.

Some basic kinematics relations are now recalled. In axially symmetric inflation
problems, the principal directions of stretch are known at each particle of the mem-
brane. They are meridian (indexed 1), circumferential (indexed 2) and normal
(indexed 3) to the cross-section. The corresponding principal stretches are given by:

r'?+ 72 r h
ll—,/m,lz—g,%—% (3)

where the notation—'stands for the differentiation with respect to s. Note that due
to the material incompressibility, these stretches are related by:

AdoAs =1 “4)

In the context of membrane inflation, this relation is used to calculate the deformed
thickness with the use of the two in-plane stretches A, and A,:
hy
5

h:

2.2. Constitutive equation

Non-linear elastic rubber-like materials are classically modelled by hyperelastic
constitutive equations. Thus, the material behaviour is represented by a strain energy
function per unit of volume, denoted w. The Cauchy stresses are then defined as the
partial derivatives of the strain energy with respect to stretches [10]:

o, = Aw—q i=123 (6)

where w; stands for the differentiation of w with respect to A; and g represents the
hydrostatic pressure that ensures the incompressibility assumption. Due to this arbi-
trary parameter, only stress differences are explicitly defined. In the case of mem-
branes, this difficulty is overcome by considering that the structure remains under
plane stress conditions, said o; = 0. Thus, the two in-plane Cauchy stresses are
given by:

oL =Aw 5 0=l @)

where w is written as a function of A,, A, and 1/(A 4, ).

As the present paper only focuses on qualitative results, the Mooney—Rivlin consti-
tutive model is adopted [11,12]. This model is one of the simplest rubber models
and it will simplify the following discussion. It is defined by two material constants,
C and ¢, and the corresponding strain energy function is given by:



w= (A7 + A3 + A77A45°=3) + a(di? + 437 + AA3-3)] (8)
Using Eqgs (7) and (8), the in-plane Cauchy stresses are expressed as:

o, = 2C<M_/I%IA§)(1 + oAd)
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Remark: some results of membrane inflation obtained with more sophisticated consti-
tutive equations are reported by Verron and Marckmann [13].

2.3. Governing equations

The strain energy of the membrane ¥ is obtained by integrating the strain energy
function w in the undeformed volume V:

]
W= f J J wdV, = f “dmwrobyds (10)
Vo 0

Let p be the uniform inflating pressure difference across the deformed membrane.
Considering that the loading device controls this pressure, the work of the pressure
force, T, is the product of the pressure per the volume variation between the deformed
and the undeformed configurations:

1

0
I'=p(V="V) = j pu(r*Z =137 o)ds (1)
0
The total potential energy of the system (membrane and inflating fluid), E, yields:
E=W-T (12)

Applying the principle of stationary potential energy, the first variation of Eq. (12)
must be equal to zero:

SE=8W-8T=0 (13)

The first variation of IV necessitates the calculation of the variation w. Taking
directly into account the incompressibility equation (Eq. (4)), this variation yields to:

ow = w0, + mOA, (14)

So, incorporating stress definition Eq. (7) into Eq. (14), the first variation of the
strain energy of the membrane can be written as:

1
SW= J °2n<ﬁa,11 + ﬁéxz)rohods (15)
1 2

0

Moreover, after integrating by parts, the first variation of 7 reduces to:
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In the present paper, only closed membranes are studied, i.e. n(0) = 0 = (), so the
second right hand-side term of Eq. (16) is null.
Finally the principle of stationary potential energy leads to:

b o, o, ‘o
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3. Numerical formulations

As shown before, the axisymmetric inflation of hyperelastic membranes involves
highly non-linear equations because of large strains and material behaviour. So, a
numerical method must be employed to solve the problem. The finite element method
is chosen. It consists of discretizing the membrane position and displacement fields,
and in deriving the corresponding system of non-linear equations, which must be
solved iteratively.

In this section, our finite element approach is presented. As the interpolation
method and the resolution scheme were detailed elsewhere [14], the emphasis is laid
on the stability analysis of the solution.

3.1. Discretization method and resolution scheme

Note x,(s), u(s) and du(s) the position, displacement and variation of displacement
vectors of a material particle of arc-length co-ordinate s defined by:

T R

where u, and u, are respectively the displacements in the radial and axial directions,
and Ou, and Ou, are their corresponding variations.
Consider an isoparametric finite element approximation:

Xo(s) = N(s5)X, ; u(s) = N(s)U ; odu(s) = N(s)oU (19)

In these relations, N(s) stands for the shape function matrix and X,, U and 6U are
the nodal positions, displacements and displacement variations vectors, respectively.
Classically, these interpolation formulas are considered in each finite element, said
nodal vectors contain the positions or displacements of the nodes of the concerning
element. Moreover, in the context of axisymmetric membranes, two nodes finite
elements are classically adopted and the shape functions are linear [15,16].

Here, we use a spline interpolation for which every function is interpolated by
cubic B-splines. Consequently, nodal vectors contain the parameters of the splines
that can be related to more classical nodal variables vectors by constant transform-



ation matrices. Verron and Marckmann extensively studied this spline element [14]
and details on B-spline formulations can be found in [17]. One of the major advan-
tages of this interpolation method is its smoothness property. So, the number of
nodes necessary to obtain a satisfying solution is highly reduced in comparison with
classical finite elements, even for very large strains. Moreover, the tangential bound-
ary condition for nodes that lie on the symmetry axis can be directly incorporated
in the model [13].

Noting that the position of a particle in the deformed configuration and its variation
counterpart are immediately obtained by:

x(s) = xo(s) + u(s) ; 0Ox(s) = du(s) (20)

and incorporating Eq. (19) into the variational form of the problem (Eq. (17)), the
governing equations are reduced to a discrete system of non-linear equations:

Fin(U)=Fex(U,p) = 0 @n

in which the nodal vector of internal forces F;,, corresponds to the first left-hand
side term in Eq. (17) and only depends on the nodal displacement vector U, and the
nodal vector of external forces F., corresponds two the second left-hand side term
in Eq. (17) and is a function of both the loading pressure p and the displaced con-
figuration U, because the pressure force is a follower force. This system being highly
non-linear, it requires an efficient solving algorithm.

Firstly, it has to be noted that loading curves of inflated membranes (in terms of
p) exhibit limit points: some parts of the equilibrium path correspond to decreasing
pressure values as demonstrated by Beatty [18]. Then, a continuation method is
adopted to overcome this difficulty. So, Eq. (21) is augmented with a scalar arc-
length equation:

[AUP—da? = 0 (22)

where AU stands for the nodal displacement increment between two equilibrium
points in the path and da is the prescribed (user-defined) arc-length.

Secondly, the enlarged system Eqs (21) and (22) must be solved by an incremental-
iterative scheme, due to non-linearities. Here, we adopt the classical Newton—Raph-
son algorithm. Consider an equilibrium point defined by U, and p,, the equilibrium
nodal displacement vector and inflating pressure. The problem consists in determin-
ing the next equilibrium point on the path, i.e. the increments of nodal displacement
AU and pressure Ap that satisfy:

{Fint(Ue + AU)_Fext(Ue + AU:pe + AP) = 0 (23)

IAUP—d22 = 0

As the system is solved iteratively, the computation of the tangent operator ®
is needed:



1
K - _Fext
@ = p (24)

2AU 0

where K is the structural tangent matrix of the discretized system, i.e. the derivative
of Eq. (21) with respect to U and AU stands for the previous displacement increment
in the iterative scheme.

Note that the previous developments do not refer to the interpolation method
adopted and remain valid for every shape function. The explicit formulas of nodal
vector forces and tangential operators are proposed by Shi and Moita [19] in the
case of the classical linear two-nodes element and by Verron and Marckmann [14]
in the case of the spline model.

3.2. Stability and post-critical analysis

As mentioned previously, equilibrium paths of inflated membranes exhibit singular
points, i.e. equilibrium points in which the structural behaviour may change suddenly.
Two major types of singular points can be defined: limit points in which the slope
of the loading curve changes and bifurcation points in which a new equilibrium path
occurs. In the previous paragraph, we described the continuation method that is used
to overcome limit points. Nevertheless, this method does not permit us to study
singular points. In the present paragraph, the stability and post-critical analysis
adopted is detailed.

3.2.1. Stability of an equilibrium point

First, before examining the special treatment of singular points, we mention that
the stability of an equilibrium point can be simply stated by examining the determi-
nant of the structural tangent matrix K:

® [f detK > 0 then the equilibrium point is stable,
e [f detK < 0 then it is unstable.

3.2.2. Treatment of singular points

Following Seydel [20], the analysis of singular points can be divided in four steps:
detecting the occurrence of the singular point, isolating it, determining its nature
(limit or bifurcation point) and finally, in the case of a bifurcation point, switching
(if desired) onto a secondary branch.

3.2.3. Detection of singular points

In order to detect the occurrence of a singular point, a criterion must be defined.
The most natural criterion is the sign change of the determinant of K. But, as shown
by Seydel [20], this criterion is not reliable because K is singular in the neighbour-



hood of a singular point and the computation of its determinant may fail. Shi and
Moita [19] adopted the change of the number of negative pivots INEGP of K. Sokol
and Witkowski [21] proposed to calculate a normalised determinant of K, det,.,,
by normalising the determinant with respect to the initial determinant and to consider
the following function:

+ |detyorm| if INEGP = m
fS) = { . (25)
—|detyom| if INEGP # m
where S can be seen as an arc-length co-ordinate on the equilibrium curve and m
stands for the number of negative pivots for the previously computed equilibrium
point. Using this function, a singular point corresponds with fS) = 0. In the same
paper, authors considered that the most reliable method of detection consists in
observing the eigenvalues of K but that this method is computer time consuming.
Here, due to the spline interpolation that highly reduces the relevant number of
degrees of freedom, we calculate explicitly the eigenvalues of K and propose the
following criterion function g

25 { + 0., if INEGw = n 26)
— W, if INEGo # n

where ®,,;, represents the lowest absolute value of the eigenvalues of K, INEG® is
the number of negative eigenvalues of K for the present equilibrium state and n
stands for this number at the previously computed equilibrium state. Consider an
equilibrium state indexed 1 and defined by its arc-length co-ordinate on the path
S, and its number of negative eigenvalues n,. Let a second point, indexed 2 and
defined by S, and n,, be computed. Then, one or more singular points lie between
these two equilibrium points if g(5;)g(S,) < 0.

3.2.3.1. Isolation of the singular point In order to localise the singular point in
the inflating path, we simply use a dichotomy method that consists in determining
the previous arc-length co-ordinate S, such as |g(S,)] < € where € is the pre-
scribed precision.

3.2.3.2. Nature of the singular point Consider now that the singular point is iso-
lated, said its position in the path is well known and the corresponding null eigen-
value is identified. Let Z,,;, denotes the eigenvector associated with this eigenvalue.
Then, the nature of the point is simply obtained by examining the scalar product
between the eigenvector and the external force [22]:

® [f Zpin-Fexe # 0, this is a limit point,
® [f Zin-Fexe = 0, this is a bifurcation point.

3.2.3.3. Branch-switching In the case of a bifurcation point, a secondary branch
connected to the primary path occurs at this point. In order to follow this secondary
branch, only one new equilibrium point on this branch is needed, and then the calcu-



lation continues on the branch. To switch onto the secondary branch, we adopt the
eigen-mode injection method proposed for example by Wagner and Wriggers [23]
and successfully used by Shi and Moita [19] for rubberlike membranes. The classical
forward Euler predictor is replaced by a prediction in the direction of Z,,;,:

AUpredietion = da Zmin (27)

where z,,;, is the normalised counterpart of Z,,;,. The scale factor da is used in order
to directly satisfy Eq. (22) in the arc-length method.

4. Results and discussion
4.1. Single balloon

Before examining the case of two connected balloons, the case of a single rubber
balloon is recalled. The inflation of a spherical rubber-like membrane was thoroughly
studied in the past, both under static [18] and dynamic [24] loading conditions.

Consider a Mooney—Rivlin spherical balloon whose undeformed uniform radius
and thickness are respectively R, and h,. As shown by Haughton [25], the balloon
remains spherical-shaped during the inflation process. The material parameters are
denoted C and ¢, and the inflating pressure is P. Due to the spherical symmetry,
the problem reduces to a one-dimensional equilibrium equation that relates the uni-
form deformed radius R and the pressure P:

P= RO[R (R 1—1—05RO (28)
Introducing non-dimensional pressure and radius variables, p and A:
PR, R
P=4cn  F TR (29)

Eq. (28) reduces to:

1 1
p= (I—F)(l + OC;LZ) (30)

where o is the unique relevant parameter.

As shown elsewhere [24], three possible behaviours can be highlighted depending
on the values of a: o = 0.0, 0.0 < o < o, and o > o, where o is a critical value
of the material parameter approximately equal to 0.214. Here, these three behaviours
are illustrated by three specific values of ¢, said 0.0, 0.1 and 0.25. The corresponding
inflation curves (non-dimensional pressure versus non-dimensional radius) are
presented in Fig. 1.

First, no curve exhibits bifurcation points. As mentioned above, non-spherical
deformed configurations never occur for the Mooney—Rivlin strain energy function.
In the neo-Hookean case (o = 0.0), the path exhibits one limit point that separates
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Fig. 1. Inflation of a single spherical balloon for three values of o: (—) stable branches, (-*) unstable
branches.

one stable branch that corresponds with increasing pressure values and one unstable
branch that corresponds with decreasing pressure values. This second branch tends
asymptotically to zero as the balloon expands to infinity. For o = 0.1, the path admits
three branches limited by two limit points. Then, the two stable branches are connec-
ted by one unstable branch of decreasing pressure values. Finally, for o = 0.25, the
pressure always increases as the balloon expands and no limit point exists. Note that
in the critical case of @ = 0, the two limit points exhibited for 0.0 < a < o,
coalesce.

4.2. Two connected balloons

Consider now two identical spherical balloons connected together. Thus, two
spheres of initial radius and thickness R, and h, compose the system, and the internal
pressure is equal inside them. Let the material parameter o being equal to 0.1 for
both balloons in order to qualitatively describe the phenomenon. In regards with the
previous paragraph, such a system may produce remarkable configurations due to
the different possible values of the inflating pressure. Fig. 2 illustrates this purpose.
In this figure, inflation curves corresponding with the two connected balloons are
shown. Non-dimensional radii are denoted A, and A, for the first and the second
membranes, respectively. Consider that the balloon [ is in the state A defined in the
left hand-side plot of Fig. 2. The balloon II can afford three different configurations
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Fig. 2. Possible equilibria of two connected balloons: (a) balloon Z (b) balloon II; (—) stable branches,
(+*) unstable branches.

B, C and D, as shown in the right hand-side plot of Fig. 2. Therefore, it becomes
obvious that the inflation curve of the present system is highly different from the
inflation curve of a unique sphere: there are different equilibrium paths and then
some bifurcation points for the global system.

In order to establish the inflation paths, we consider the system of two connected
spheres meshed with 39 nodes. For numerical convenience, the undeformed radii of
both spheres are set to 1.0, and the initial thickness is 0.01. As mentioned above,
only non-dimensional variables A, A;; and p are considered, and the only relevant
parameter is a. The interpolated membranes are presented in Fig. 3. The following
boundary conditions are adopted: the middle node is fixed and both extreme nodes
must remain in the symmetry axis. The three different values of o considered in the
previous paragraph are examined. In each case, two branching diagrams will be
drawn: the first one (indexed (a)) is the 2D plot that shows the possible equilibrium
points in the (A A)-diagram and the second one (indexed (b)) is the 3D plot where
equilibrium states are drawn into the (A5 A, p)-diagram.

Let first examine the case of the neo-Hookean material, i.e. o = 0.0. The corre-
sponding branching diagrams are presented in Fig. 4. At the beginning of the inflation
process, the two balloons inflate similarly until they reach the point a, in the branch-
ing diagrams 4(a) and (b). This first part of the path is obviously stable and corre-
sponds to the stable increasing pressure branch previously observed for a single
balloon in Fig. 1. For the single balloon, the state a, is a limit point. In the present
case, two singular points coincide in a,: a limit point that corresponds to the change
of pressure slope and a bifurcating point that defines the possibility to switch onto
secondary branches where A; # A, Numerically, the position of the two coincident
singular points is isolated and the two corresponding eigenvectors are computed in
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Fig. 4. Equilibrium diagrams for o = 0: (a) 2D representation, (b) 3D representation; (—) stable
branches, (-+) unstable branches.



order to determine their respective natures. Then, for the bifurcating point, it is poss-
ible to switch onto a secondary branch. Here, the primary path is the branch where
the two radii remains equal, this path is easily explored without switching. The sec-
ondary paths are the two asymmetric paths in which one of the balloon expands as
the other reduces and finally disappears, i.e. one radius tends to infinity and the other
one tends asymptotically to zero as the total volume of fluid in the system increases.
These secondary paths are also unstable. Note that the numerical method furnishes
only one of the two asymmetric branches, the other one can be computed by changing
the sign of the corresponding eigenvector for the prediction in the branch-switching
algorithm (see Section 3). Finally, we have to determine if the balloon follows the
symmetric or the asymmetric path when the fluid is continuously injected inside the
system, i.e. what is the more “stable” of these two unstable configurations? The
simplest method to answer this question consists in adding an initial default in the
structure and in examining which branch the system follows. Thus, a new simulation
is performed assuming that the initial radius of the balloon /I is equal to 1.001. It
is observed that the system follows the asymmetric path in which the balloon [
inflates the balloon /I and tends to disappear as the total volume of fluid increases.
These results are similar to those derived analytically by Weinhaus and Barker [4]
with the same constitutive equation, and by Read [5] that uses the generalised
Hooke’s law for finite strains.

Consider now the more interesting case in which o = 0.1. The corresponding
diagrams are presented in Fig. 5. As shown previously, the single balloon inflation
curve has two stable branches, one at small strains and one at large strains. That is
the reason why the equilibrium 2D map in Fig. 5(a) exhibits two solid lines (stable
paths) with A; = A, The first one is located between the initial unloaded state and
the first singular point a,, that corresponds to the first limit point of the o = 0.1
curve in Fig. 1. It represents the behaviour of the system at relatively small strains,

(@) (b)

6

B
[}

]

Fig. 5. Equilibrium diagrams for o = 0.1: (a) 2D representation, (b) 3D representation; (—) stable
branches, (-+) unstable branches.



i.e. for a small amount of fluid inside the system. The second stable branch goes
from the point b, (the second limit point of the or = 0.1 curve in Fig. 1) to infinity
and defines the behaviour of the balloons under large strains, i.e. for a large amount
of fluid in the system. These two parts of the equilibrium diagram are obviously
stable because they correspond to ascending pressure situations (see Fig. 5(b)).
Points a, and b, are detected and isolated during the simulation. They have the same
status as the point a, described in the previous paragraph: two different singular
points (one limit point and one bifurcating point) coincide at them. Using the switch-
ing procedure, it is possible to explore secondary paths. First, the symmetric dotted
path (A;=A) between a, and b, is the primary path: it is obtained without switching
in a,. Then, as the amount of fluid increases, the two balloons inflate similarly and
follow the loading curve of the single balloon (Fig. 1), said two stable branches and
one unstable branch. Second, if the switching procedure is activated in a;, one of
the two asymmetric branches is followed, said for example A; < A, Then, as the
simulation continues, the system follows the entire closed loop passing through b,
and it ever remains on the loop. It does not find the symmetric path again. Moreover,
it is easily shown that the asymmetric path is more stable than the symmetric one
using an imperfect system. The present results are in agreement with the results
obtained analytically by Dreyer et al. [6] and Miiller [7]. The only difference con-
cerns the stability status of the closed loop: here, we show that two parts of it (the
parts with decreasing pressure values) are unstable when only one part of it was said
to be unstable in the cited references.

Finally, the case o = 0.25 is obvious. It was shown in Section 4.1 that the pressure
inside a single balloon always increases as it expands and that the equilibrium curve
is always stable. Thus, the system of two balloons remains stable whatever the
amount of fluid inside it and the branching diagram is reduced to one path of equal
radii, as shown in Fig. 6(a) and (b). Both membranes follow the path of the single
balloon shown in Fig. 1.

5. Concluding remarks

In this paper, the problem of the inflation of connected rubber balloons is solved
using both a finite element analysis and a bifurcating procedure for singular points.
The influence of material parameters, especially one of the two Mooney—Rivlin con-
stants, on the response of the system is demonstrated and thermodynamical results
proposed in the bibliography are recovered.

The present work leaves some issues of importance unanswered. One of these is
the use of more complex hyperelastic constitutive equations, such as the Ogden’s
model [10], for the modeling of the rubber behaviour. It was shown by Haughton
[25] that an Ogden single balloon exhibits bifurcating non-spherical states. This
phenomenon was confirmed experimentally by Alexander [26]. So, the behaviour of
two connected spheres will be more complicated than in the present case; and the
branching diagrams will exhibit more bifurcating branches. This problem will be
examined in further works.
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