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Non-planar 3D crack growth by the extended �nite element
and level sets—Part I: Mechanical model

N. Mo�es†, A. Gravouil‡ and T. Belytschko∗;§

Department of Mechanical Engineering; Northwestern University; 2145 Sheridan Road,

Evanston; IL 60208; U.S.A.

A methodology for solving three-dimensional crack problems with geometries that are independent of
the mesh is described. The method is based on the extended �nite element method, in which the crack
discontinuity is introduced as a Heaviside step function via a partition of unity. In addition, branch
functions are introduced for all elements containing the crack front. The branch functions include
asymptotic near-tip �elds that improve the accuracy of the method. The crack geometry is described
by two signed distance functions, which in turn can be de�ned by nodal values. Consequently, no
explicit representation of the crack is needed. Examples for three-dimensional elastostatic problems are
given and compared to analytic and benchmark solutions. The method is readily extendable to inelastic
fracture problems. 

KEY WORDS: fracture; cracks; discontinuous approximation; �nite elements; level sets

1. INTRODUCTION

Three-dimensional fracture analysis of engineering problem by standard �nite element methods
is still quite di�cult because of the need to construct a mesh which conforms to both the
crack surfaces and the surfaces of the component. If the crack surface is not aligned with
the element boundaries, the displacement discontinuity and the traction conditions on the
crack surface cannot be treated by standard �nite element methods. Furthermore, for standard
elements, the mesh must be designed so that it is substantially more re�ned around the crack
than in the remainder of the model. The di�culties are further ampli�ed when considering
the growth of cracks, because then the model must be remeshed in the vicinity of the crack.
In addition to this, it must be borne in mind that initial cracks in many locations of the
component must be considered for a complete engineering analysis.
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This paper and a companion paper present further developments of the extended �nite
element method (X-FEM) for modelling cracks and crack growth. The extended �nite element
method alleviates much of the burden associated with mesh generation for objects with cracks
by not requiring the �nite elements to conform to the crack surface. Moreover, it provides
a convenient way for incorporating near-tip asymptotic �elds, so that good accuracy can be
obtained for elastic fracture with relatively coarse meshes around the crack.
The essential idea in X-FEM is to use a displacement �eld approximation that can model an

arbitrary discontinuity and the near-tip asymptotic crack �elds. As a consequence it is often not
necessary to modify the mesh to consider a speci�c crack; at most, moderate re�nement must
be introduced around the crack to achieve engineering accuracy in elastic fracture mechanics.
The methodology was �rst presented in References [1–3]. It was shown that discontinuous

functions can be used to enrich �nite element approximations via the partition of unity concept
introduced by Melenk and Babu�ska [4]. The resulting approximation can treat cracks that are
arbitrarily aligned in the �nite element mesh with great accuracy. The concept was generalized
in References [5; 6] which described the application of the concept to arbitrary discontinuities.
Sukumar et al. [7] illustrated the potential of combining the extended �nite element method
with level sets by solving several problems involving inclusions and holes. In Reference [8]
the extended �nite element methodology was combined with a level set method to provide a
general method for growing cracks. All of the preceding papers dealt with two-dimensional
problems.
The �rst application of the extended �nite element method to three-dimensional cracks was

by Sukumar et al. [9], who solved several planar crack mode I problems and showed that the
method compared well with analytical and benchmark solutions. Subsequently, Sukumar et al.
[10] coupled the method with the fast marching method to solve several planar crack growth
problems in three dimensions.
In this paper, the methodology is extended and modi�ed so that it can handle arbitrary

cracks in three dimensions. A key development that facilitates treatment of cracks in three
dimensions is the description of crack geometry in terms of two signed distance functions.
The displacement �eld is also described in terms of these signed distance functions. This
enables us to construct a near-tip asymptotic �eld with a discontinuity that conforms to the
crack even when it is curved or kinked near a tip. Furthermore, it eliminates the need for
a surface model of the crack. As a consequence, no explicit representation of the crack is
needed and the crack is entirely described by nodal data. Although the method described here
will be for an elastic fracture, it is not limited to linear problems and can easily be extended
to non-linear problems.
We cannot list references to all of the competing methods, but we list some recent papers

in the following. The remeshing approach appears to be the most advanced for problems of an
industrial type; recent accounts are given by Carter et al. [11] and Neto et al. [12]. Methods
which rely on boundary element formulations combined with �nite elements are given in
References [13–15]. Duarte et al. [16] used the partition of unity concept with the visibility
criterion to develop methods for dynamic three-dimensional crack growth. Three-dimensional
dynamic crack growth by the element-free Galerkin method has been reported by Krysl and
Belytschko [17]. The crack surface was represented by a set of triangular elements in 3D,
which would be very awkward in a �nite element method. The use of �nite elements with
embedded discontinuities also makes it possible to grow cracks in 2D without remeshing, see
References [18; 19] for recent works on the topic.
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The methodology for treating arbitrary three-dimensional cracks and their evolution by
X-FEM are described in this and a companion paper. This paper focuses on the description
of cracks in three dimensions in terms of level sets, the computation of the elastic solution
and the stress intensity factors (SIFs), whereas the companion paper deals with the update of
the level sets needed to model crack growth.
The outline of the paper is as follows. In Section 2, the methods for de�ning the crack

geometry and the displacement �elds are described. The governing equations are given in
Section 3 as well as some implementation aspects. The SIF computations along the crack
front are presented in Section 4. Section 5 reports some example calculations.

2. CRACK AND DISPLACEMENT FIELD DESCRIPTION

We consider a body 
 with an outer surface Q and interior crack surfaces Qcr. The crack can
be treated as a single surface or as two surfaces: Q+

cr and Q−

cr . In the latter case, the initial
crack surfaces are considered coincident and the outward normals to the surface of the crack
are denoted by n+ and n−, respectively.
Stolarska et al. [8] described a crack geometry in 2D by two signed distance functions.

We also use two signed distance functions to describe a crack in 3D as shown in Figure 1.
Note that the de�nition of the two level set functions is only needed in a neighbourhood of
the crack. The signed distance function �(x) de�nes the surface of the crack. It is given by

�(x)= min
�x∈Qext

cr

‖x − �x‖sign(n+ · ( �x − x)) (1)

where x=[x; y; z] and sign(·) is the sign function

sign(x)=

{

+1 if x¿0

−1 if x¡0
(2)

Figure 1. The two iso-zero level sets de�ning
the crack location.

Figure 2. A node I whose support is completely
and partially cut by the crack; the support is
the volume of the elements connected to node I

as shown.
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We also need a smooth extension of the crack surface Qcr, denoted by Qext
cr , which includes

the entire crack surface, i.e. Qcr ⊂Qext
cr . The distance function (1) gives the shortest distance

of any point x to the extension of the crack surface Qext
cr . This corresponds to the orthogonal

projection of x on Qext
cr .

Since the crack surface Qcr is a bounded surface with a crack front, it is also necessary
to de�ne the crack front. This is accomplished by using a second signed distance function,
 (x), which is approximately orthogonal to �(x) so that ∇� · ∇ ∼ 0. The intersection of
the surfaces  (x)=0 and �(x)=0 gives the crack front; we de�ne the sign of  so that
�(x)=0,  (x)¡0 gives the crack surface Qcr.

The signed distance functions in this paper are approximated by the same shape functions
as the displacement �eld. Therefore, in the computations the signed distance functions are
given by

�=
∑

I

NI (x)�I (3)

ψ =
∑

I

NI (x) I (4)

where NI are the �nite element shape functions and �I and  I are the nodal values of the
distance function. This enables the crack shape to be described entirely in terms of nodal
values. Of course, this is not necessary nor always most convenient. In some cases, it is
easier to work with the functions themselves.
Since the shape functions are C 0, the representation of the crack surface and crack front is

also C 0. In the studies reported here, four-node tetrahedra were used so the crack surface and
crack front are piecewise linear. The method can be extended to higher order shape functions.
The displacement �eld u(x) for the body is decomposed into the continuous and discon-

tinuous parts by

u= ucont + udis (5)

where ucont is continuous in 
, whereas udis may have several surfaces of discontinuity in 
.
The locations of the discontinuities in udis are assumed to coincide with Qcr.
A standard �nite element approximation is used for ucont, i.e.

ucont =
∑

I∈N

NI (x)uI (6)

where N is the set of all nodes in the mesh, NI are the classical C 0 shape functions and uI
are displacement nodal degrees of freedom.
For the purpose of constructing the discontinuous �eld, the nodes are subdivided into three

sets:

• I ∈Ncut: the set of nodes whose support (union of the elements connected to the node)
are completely cut into two, i.e. bisected by the crack surface Qcr. An example of such
a node is shown in Figure 2.

• I ∈Nbranch: the set of nodes whose support are partially cut by the crack surface Qcr, see
Figure 2 for an example of such a node.

• I ∈N−Ncut −Ncut: the remaining nodes.
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The discontinuous displacement �elds are given as follows:

udis=
∑

I∈Ncut

NI (x)H (�(x))aI +
∑

I∈Nbranch

∑

�

NI (x)B�(�(x);  (x))aI� (7)

In the above, H (·) if the Heaviside step function, B�(: ; :) are branch functions, and aI and
aI� are additional degrees of freedom for the displacement �eld. The branch functions are
constructed in terms of the level set functions

[B�]=

[√
r sin

�

2
;
√
r cos

�

2
;
√
r sin

�

2
sin �;

√
r cos

�

2
sin �

]

(8)

where

r=
√

�2 +  2; �= tan−1

(

�
)

(9)

Note that the branch functions have been expressed in terms of the level set functions. By
expressing the branch functions B� in terms of the level set functions, it is guaranteed that
the discontinuity always corresponds to �=0 and  ¡0, i.e. to the surface of the crack. The
resulting �eld will not contain the exact basis of the asymptotic near �eld, but it is more
important to construct the discontinuity in the correct place than to match the exact near-tip
asymptotic �eld.
Only the �rst of the functions in Equation (8) is discontinuous across �=0. The others

were added to improve the accuracy in elastic fracture problems. The above functions span
the near-tip asymptotic solution for an elastic crack in two dimensions. In this study and
previous studies [9] we have also found this basis to be quite accurate for three-dimensional
cracks, although we have only considered smooth crack fronts.
This technique of adding asymptotic solutions through the a partition of unity in �nite

elements can be considered an asymptotic matching technique. The displacement �elds in
the other elements provide the far �eld, whereas the elements with the branch functions
(8) provide the near �eld. The �nite element procedure then matches these �elds so that
equilibrium is approximately satis�ed.

3. GOVERNING EQUATIONS AND IMPLEMENTATION ASPECTS

We recall the equations of elastostatics under the assumptions of small strains and small
displacements. We assume that the crack faces are traction-free although this is not an intrinsic
limitation of the method. The outer boundary Q of the domain 
 is decomposed into Qt on
which tractions �t are imposed and Qu on which displacements �u are imposed. The Cauchy
stress tensor �eld � must satisfy the equilibrium conditions

∇ · �=0 on 
; � · n= �t on Qt (10)

� · n+ =0 on Q+
cr ; � · n−=0 on Q−

cr (11)
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The kinematic equations involve the strain–displacement relationship and the displacement
boundary condition. Under the assumptions of small strains and displacements, they are

U= 1
2
(∇u+ (∇u)t) ≡ U(u) on 
; u= �u on Qu

The constitutive law is linear in the examples solved here, so

�=C : U on 
 (12)

where C is Hooke’s tensor.
The strong form of the equilibrium equations and associated boundary condition is equiv-

alent to the following weak form [1]: �nd u∈U such that
∫




U(u) :C : U(v) dx=

∫

Qt

�t · v dQt ∀v∈U0 (13)

where U is the set of kinematically admissible displacement �elds:

U= {u∈V | u= �u on Qu u discontinuous on Qcr} (14)

and U0 is the set of kinematically admissible displacement �elds for zero prescribed displace-
ments:

U0= {v∈V | v= 0 on Qu v discontinuous on Qcr} (15)

The exact mathematical nature of the space V is related to the regularity of the solution. It
is important to note that U and U0 allows discontinuous displacement �elds across Qcr. The
introduction of the discrete �nite displacement �eld (5)–(7) into the weak form (13) yields
the linear system of equations. The displacement �elds given in the previous section are used
for both u and v. Explicit forms of the sti�ness matrix can be found in Reference [9].
In the elements cut by the crack, the displacement �eld is discontinuous and some spe-

cial care is needed when performing the integration appearing in Equation (13). We use
a technique introduced in Reference [2] for 2D and in Reference [9] for 3D which consists
of separately integrating on each side of the crack using a decomposition of the elements
into sub-tetrahedrons. For the elements enriched by the branch function, the displacement
�elds involve non-polynomial functions (the square root and trigonometric functions). We
use a 15-point integration rule on these elements (or sub-tetrahedrons if the element is cut by
the crack). A single Gauss point is used in all other four-node tetrahedral elements.
In Section 2, we have de�ned the nodes that are enriched by the Heaviside function as

the set of nodes whose support is completely cut by the crack. A direct use of this criterion
may lead to an ill-conditioned sti�ness matrix. Consider Figure 3(a) which illustrates a crack
cutting across �nite elements. Nodes a and b are enriched since their support is completely
cut by the crack whereas nodes c and d are not enriched since their support is not cut by the
crack. In Figure 3(b), a direct application of the support criterion leads to the enrichment of
the nodes c and d. The regular and enriched shape functions at these nodes will only di�er
in the very thin band of width �, leading to ill-conditioning of the system matrix because
of near-linear dependence of the resulting basis functions. We therefore enrich a node only
if the volume of the subdomains generated by a cut exceeds a tolerance. This criterion was
introduced in Reference [2].
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Figure 3. E�ects of cracks near edges: (a) crack aligned with a mesh. The nodes a and b are enriched
and the nodes c and d are not enriched; and (b) crack almost aligned with a mesh. The nodes c and

d should not be enriched to avoid ill-conditioning.

Another strategy that we shall adopt in this paper is to avoid the situation depicted in
Figure 3(b). Before deciding whether a node is enriched, we slightly modify the level set
functions as follows. If the level set changes sign on an edge, we determine where it vanishes.
If it vanishes very close to one of the nodes of the edge, we set the level set to be zero at
that node.
More precisely, an edge with nodes at xa and xb is a line given by

x=(1− r)xa + rxb; r ∈ [0; 1] (16)

Let fa and fb be the level set function values at the two nodes. If the level set f changes sign
along the edge, it vanishes at r0=fa=(fa−fb). If r0¡tol we set the level set function to zero
at node a or if 1−r0¡tol, we set the level set function to zero at node b. A tolerance of 10−2

is used in the numerical examples. This procedure avoids the situation shown in Figure 3(b)
and the geometrical decomposition of the element cut by the crack (for integration purpose)
into sub-tetrahedra then does not require any tolerance parameters.
In our implementation, we use a mesh database called Algorithm Oriented Mesh Database

(AOMD) [20; 21]. This database is very exible and considerably simpli�es operations like
�nding the set of nodes whose supports are cut by the crack.

4. STRESS INTENSITY FACTOR COMPUTATION

A domain integral is used to compute the energy release rate at any sample point on the
front and a so-called interaction integral is used to separately compute the three stress inten-
sity factors. A general discussion of crack-tip contour integrals and their associated domain
integral representations is given in Reference [22]. The speci�c interaction integral we use
was introduced in Reference [23] for planar cracks with curved fronts and in Reference [24]
for non-planar cracks. It involves the use of auxiliary �elds corresponding to the crack-tip
�elds in plane strain and anti-plane motion. The use of domain energy integrals in the �nite
element framework provides high accuracy while keeping the implementation rather simple
as shown in Reference [25].
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Figure 4. Notation for the J -domain integral
computation.

Figure 5. Local axis on the front obtained
from the level set crack description through

formula (17).

Consider a point p located on the crack front as shown in Figure 4 for which we would
like to compute the stress intensity factors K1; K2 and K3. A volume V is constructed around
the point of interest p. It intercepts the arc C of the crack front and consists of the crack
surfaces Q+

cr ; Q−

cr and the three surfaces Q0; Q1; Q2.
Using the level set crack representation, we de�ne at any point inside the domain V a local

basis (e1; e2; e3). The gradient of the level sets are good candidates for such a basis and were
already used by Sukumar et al. [10] to de�ne the local basis on the crack front. However,
since the level sets are linear over each element, their gradients are discontinuous from element
to element. We de�ne the vector basis (e1; e2; e3) by a smoothed gradient of the level set. Let
x by an arbitrary point inside the element e whose nodes are in the set Ne. The basis vectors
at x are de�ned by

e1=
∑

I∈Ne

NI (x)∇ |I ; e2=
∑

i∈Ne

NI (x)∇�|I ; e3= e1 × e2 (17)

where the nodal gradient at node I; ∇ · |I , is the average of the gradients of the element
connected to node I . Figure 5 shows the local basis vectors for a point located on the front.
All vectors and tensors are expressed in this varying system of co-ordinates (17) similar

to corotational co-ordinates [26]. For instance, the Eshelby tensor is given by

P̂ij =w�ij − �̂kjûk; i (18)

where w= 1
2
�kl�kl is the elastic energy density and a superposed hat refers to components in

the local (e1; e2; e3) basis.
In the domain V , we de�ne a virtual velocity �eld q as

q= �e1; �(p)=1 and �(x)=0 for x∈Q0 ∪Q1 ∪Q2 (19)

where � is a scalar �eld taking a value of 1 at p and 0 on Q0 ∪Q1 ∪Q2. The q �eld is tangent
to the crack faces on the crack and on the front, see Figure 6(b).
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Figure 6. (a) A virtual velocity �eld with �xed orientation; and (b) respecting the crack geometry.

The J -domain integral is given by

J =

∫

Q+
cr ∪Q−

cr

q̂iP̂ijn̂j dQ−
∫

V

q̂i; jP̂ij dV (20)

where n denotes the outward normal to the domain V . In the following, we drop the super-
posed hats but note that all computations are made in local basis. If the crack faces are free
of tractions, the crack surface integral vanishes, so

J =−
∫

V

qi; jPij (21)

The boundary term on the crack faces vanishes by construction, the virtual velocity q is
tangent to the crack faces (njwqj =0) and the crack surfaces are free of tractions (�ijnj =0).
Note that our choice for the q �eld is original. Usually, see for instance [24], the orientation

of the virtual crack extension vector q is �xed over the entire domain V . In that case, the
crack surface integral in Equation (20) may not be dropped. The ability of the level set crack
representation to provide a good local system of co-ordinates should be noted.
The J -domain integral (20) measures the strength of the singularity around the arc C. More

precisely, it is the power released if the crack front were to advance under the virtual crack
extension velocity q (whose magnitude is �):

J =

∫

C

�G dC (22)

where G is the energy release rate:

G=
(1− �2)

E
(K2

1 + K2
2 ) +

1

2�
K2
3 (23)

In order to extract the three modes, we use the interaction integral concept which may be
summarized as follows. The J -domain integral (20) is a function of the stress, strain and
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displacement �elds around the crack front C, namely J = J (�; U; u). If we add to the exact
�elds the auxiliary �elds, (�aux; Uaux; uaux), we obtain

J (�+ �aux; U+ Uaux; u+ uaux)= J (�; U; u) + J (�aux; Uaux; uaux) + I (24)

where the interaction integral I is given by

I =

∫

Q+
cr ∪Q−

cr

qiP
aux
ij nj dQ−

∫

V

qi; jP
aux
ij dV −

∫

V

qiP
aux
ij; j dV (25)

and

Paux
ij = 1

2
�kl�

aux
kl �ij +

1
2
�aux
kl �kl�ij − �aux

kj uk; i − �kju
aux
k; i (26)

To be precise, the expression for J used in Equation (24) is not given by Equation (20)
but by

J =

∫

Q+
cr ∪Q−

cr

qiPijnj dQ−
∫

V

(qiPij); j dV (27)

The latter has the advantage of being domain independent, and so is I , even though the
auxiliary �elds do not satisfy the governing equations. Indeed, the auxiliary �elds correspond
to the plane strain and anti-plane crack-tip �elds and thus will not satisfy the governing
equation for a non-planar or even for a plane crack with a curved front. That is they cannot
at the same time satisfy equilibrium, compatibility and Hooke’s law. We shall follow Gosz
and Moran [24] and enforce the constitutive law, i.e. auxiliary strains are given in terms
of auxiliary stresses through Hooke’s law and not in terms of displacement gradients. The
interaction integral is then

I = −
∫

V

qi; j(�kl�
aux
kl �ij − �aux

kj uk; i − �kju
aux
k; i ) dV−

∫

V

qi(�
aux
kl; i �kl�ij − �klu

aux
k; li − �aux

kl;l uk; i) dV

(28)

Again, the crack surface integral are eliminated by assuming traction-free crack faces and using
the fact that the auxiliary stress �elds are expressed in the level set co-ordinates. Therefore,
�aux
ij nj =0, even though the crack is not necessarily planar.
The interaction integral is given by

I =

∫

C

�Gaux dC (29)

where

Gaux =
2(1− �2)

E
(K1K

aux
1 + K2K

aux
2 ) +

1

�
K3K

aux
3 (30)

Here, in Equation (30), K aux
1 ; K aux

2 and K aux
3 are the stress intensity factors associated with the

auxiliary �elds and K1; K2 and K3 are the stress intensity factors associated with the actual
�elds. The process of evaluating the mixed-mode stress intensity factors involves making
a judicious choice of the auxiliary stress intensity factors, and then evaluating the interaction
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Figure 7. The domain used to extract the stress intensity factors at a point p.

integral (28). For example, substituting K aux
1 =1, and K aux

2 =K aux
3 =0 into Equations (29)

and (30) yields

I =
2(1− �2)

E

∫

C

�K1 dC (31)

from which Gosz et al. [23] deduce the approximate expression for K1

K1=
E

2(1− �2)

I
∫

C
� dC

=
E

(1− �2)

I

meas(C)
(32)

Similarly, we can compute the energy release rate by

G=
E

(1− �2)

J

meas(C)
(33)

In the construction of the domain V and the � scalar �eld, we follow Sukumar et al. [9].
The domain V is a parallelipiped as shown in Figure 7. It is decomposed into a number of
cells (2× 2× 2 in this paper) over which integration is performed. We use 6× 6× 6 quadrature
rule in each integration cell. When the crack front is close to the surface of the body, some
integration points may be located outside the body. They are discarded from the integration
procedure.
Finally, we need to discuss how the crack front is built from two level set functions �

and  . We assume that the mesh is composed of tetrahedral elements. If hexahedra or prisms
are present, we suggest breaking them into tetrahedra (for the level set representation only,
the displacement �eld may still use the hexahedral- or prism-based interpolation).

11



Figure 8. (a) The iso-zero level set inside a tetrahedron is either a triangle; and (b) a quadrilateral.

We loop over the elements in the mesh (or more precisely the narrow band). If � changes
sign on an element, we �nd the iso-zero location of the level set inside this element. It is
either a triangle or a quadrilateral as shown in Figure 8. If it is a quadrilateral, it is split
into two triangles. The union of these triangles form a surface mesh. To each node of this
surface mesh we assign the value of the  level set. The location of the crack front is then
the iso-zero  level set on the surface mesh and consists of a set of segments.

5. NUMERICAL EXPERIMENTS

The stress intensity factors along the crack front are of primary importance in determining the
orientation and magnitude of the crack front velocity. The companion paper [27] will describe
how this information is used to model fatigue crack growth.
In this section, we examine how accurately we can compute the SIFs along the crack front

using X-FEM and the level set representation of the crack described in the previous sections.
Two benchmark problems are considered: a lens-shaped crack and an inclined elliptical crack.
Finally, a mechanical part containing a semi-circular crack is analysed.

5.1. A lens-shaped crack

The geometry of the lens-shaped crack is shown in Figure 9. The crack geometry can be
characterized by the radius R and the angle �. Martynenko and Ulitko [28] determined the
analytical solution for this crack in an in�nite solid subjected to a uniform stress �eld. Gosz
and Moran [24] used this reference solution as a benchmark. The crack is embedded in a
cube with sides 2h; we set h so that boundary e�ects are small. In the present example,
the geometric parameters were chosen such that h=R=5 and �=�=4. Young’s modulus and
Poisson’s ratio were taken to be E=68:9 GPa and �=0:22.
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Figure 9. The problem of a lens-shaped crack in a cube subjected to hydrostatic tension.

For this crack geometry and material parameters, the analytical stress intensity factors are
given in Reference [24]:

K ref
1 =0:877

2

�
�
√
�a; K ref

2 =0:235
2

�
�
√
�a (34)

where a=R cos(�) and � is the magnitude of the hydrostatic tensile loading.
The computational model is an unstructured tetrahedral mesh re�ned so that element size

in the vicinity of the crack is about 4 per cent of elements near the boundary. The character-
istic element size close to the front is R=20. The number of degrees of freedom is 145 000.
The stress intensity factors are computed at 10 points along the crack front. The box size for
the stress intensity computation is r1= r2=R=4, r3= r1=2, see Figure 7. Figure 10 compares
the stress intensity factors computed to the analytical stress intensity factors. Maximum errors
are about 2 per cent for K1 and 10 per cent for K2. To put this in perspective, Gosz and
Moran [24] used a mesh matching the crack surface in which the characteristic length of the
smallest elements near the tip is R=500 (against R=20 in our computation). They achieved
somewhat better accuracy with a maximum error of 0.3 per cent in K1 and 5 per cent in K2.

5.2. An inclined elliptical crack

The second problem is an inclined elliptical crack under tension. This problem was considered
as a benchmark by Singh et al. [29]. In contrast to the previous problem, this crack geometry
has a varying curvature along the crack front leading to varying stress intensity factors. The
analytical solution of an elliptical crack embedded in an in�nite domain was determined by
Kassir and Sih [30].
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Figure 10. The computed stress intensity factors (K1 = ∗; K2 =+) compared to the exact stress intensity
factors (solid lines). The exact and computed stress intensity factors were normalized by (2=�)�

√
�a.

The ratio between the energy release rate G computed by the domain integral (33) and by Equation
(23) is as shown. The abscissa indicates the location on the front in degrees (the crack front is circular).

In the computations, the crack is placed in a cube of width h under tension along the Z-axis,
see Figure 11. The major ellipse axis of length a is along X and the minor axis of length
b= a=2 is the bisector of the XY quadrant, i.e. the crack is inclined at 45◦ with respect to
the loading. The dimensions are chosen so that boundary e�ects are small h=a=10. Poisson’s
ratio is 0:3 and Young’s modulus 1.
Figure 13 shows a comparison of the exact and numerical stress intensity factors. The

abscissa is the angle � (in degrees) de�ned in Figure 12.
The number of degrees of freedom in the system was 130 000 and the characteristic element

size along the front was only a=10. The results are, however, quite accurate.

5.3. Industrial part

To show the applicability of the method to more complicated shapes, we consider the me-
chanical part shown in Figure 14 taken from the gmsh mesher web page [31]. The loading
is shown in Figure 15 and consists of an applied pressure of 2MPa on two opposite sectors
of the inner surface of the hole. The crack is semi-circular with a radius of 0.03, and its
centre is located on the part mid-plane as shown in Figure 15. The mesh used is shown in
Figure 16. It does not conform to the crack and has been re�ned in the crack area. The rigid
modes of the part are removed by setting to zero the appropriate displacement components at
three di�erent points. Young’s modulus is 200MPa and Poisson’s ratio is 0.3.
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Figure 11. The problem of an inclined elliptical
crack under tension.

Figure 12. De�nition of the angular position for
an elliptical crack.

Figure 13. The exact (solid lines) and computed (symbols) stress intensity factors
for the elliptical crack problem.

The stress intensity factors are computed at the mid-point of each segment on the front
following the strategy described in Section 4. The box size for the stress intensity computation
is r1= r2=2l, r3= r1=2; where l is the characteristic size of the elements near the point where
the stress intensity factors are evaluated.
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Figure 14. Face and side view of a mechanical part (Maltese cross).

Figure 15. Zoom on the part: face and side view to show the location of the
semi-circular crack and the loading.

Due to the symmetry in the problem (the crack plane is a plane of symmetry), the crack
is in mode I and indeed the numerical modes II and III stress intensity factors are at least 50
times smaller than the mode I stress intensity factor. The energy release rate along the crack
front is shown in Figure 17.

16



Figure 16. The mesh used for the analysis of the
mechanical part: 161 925 tetrahedral elements.

Figure 17. Energy release rate along the
semi-circular crack front, shown as the magni-

tude of the vector normal to the front.

6. CONCLUSIONS

A method has been developed for the analysis of arbitrary cracks in three-dimensional
bodies. The method combines the extended �nite element method, which constructs arbi-
trary discontinuities through a discontinuous partition of unity with level set methods. The
two methodologies are tightly integrated: the discontinuous partition of unity approximation
is formulated in terms of the level sets. The advantage of the method is that the element
topology need not conform to the surfaces of the cracks. The crack can cut any element ar-
bitrarily and the crack front can pass through an element. For elasto-static fracture problems,
the near-tip asymptotic �elds have been embedded so that good accuracy is achieved with
coarse meshes.
A method for stress intensity factor calculation has been developed that takes advantage

of bene�cial properties of variables in the level set co-ordinates. This streamlines the stress
intensity factor computation and allows it to account for the curvature of the crack surface
near the crack front.
In contrast to remeshing methods, the crack can be altered or grown by simply changing

the level sets. This facilitates engineering analysis, where a thorough analysis of a structure
requires consideration of many possible cracks. Ultimately, it is likely that design will entail
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Figure 18. Coordinate system for the de�nition of the auxiliary �elds.

antioptimization of the component: �nding the location of a crack of given size (i.e. one not
detectable by non-destructive evaluation) that minimizes the design load. Such engineering
approaches will require highly automated methods for simulating crack growth that do not
entail remeshing.

APPENDIX A: THE AUXILIARY FIELDS

The auxiliary stresses are

�aux
11 =

1√
2�r

{

K aux
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2

[
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2
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2
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whereas the auxiliary displacement �elds are

uaux1 =
1
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r

2�
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2
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where �=E=2(1 + �) and �=3− 4�. See Figure 18 for the nomenclature.
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