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Abstract. Description of complex materials, in particular complex fluids, involves numerous
computational challenges. Today, atomistic descriptions are too expensive from the computational
point of view, motivating that this kind of analysis is restricted to extremely small systems. The next
scale introduces some simplificative hypotheses, leading to coarse grained descriptions. At this level,
Brownian dynamics simulations are usually employed. However, this level of description requires
intensive computation resources with significant unfavorable impact on the simulation performances
(CPU time). For these reasons sometimes kinetic theory descriptions are preferred. In those de-
scriptions, the molecular conformation is described from a probability distribution function (PDF)
whose evolution is governed by the Fokker-Planck equation. This approach, despite its mathematical
simplicity introduces some computational challenges. First, the distribution function is defined in
a multidimensional space, and then the associated partial differential equations must be solved in
a multidimensional domain (some times involving thousands dimensions). Secondly, the analysis of
transient models needs intensive computation, in particular when the system response under small
amplitude oscillations (of high and very high frequency) is concerned. In some of our former works
[A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, J. Non-Newtonian Fluid Mech., 139, 153-176,
2006], [A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, J. Non-Newtonian Fluid Mech., 144,
98-121, 2007] we proposed a technique based on the separated representation of the unknown field
able to circumvent the curse of dimensionality. In this paper, we are addressing the second chal-
lenging point, the one related to the transient behavior. For this purpose we propose a separated
representation of transient models leading to a non-incremental strategy, allowing impressive CPU
time savings.

1. Introduction

Some models encountered in science and engineering are sometimes defined in
multidimensional spaces (as the ones involved in quantum mechanics or kinetic the-
ory descriptions of materials, including complex fluids) that exhibit the terrific curse
of dimensionality when usual mesh-based discretization techniques are applied. Other
times, models involve transient fields that, even when they are defined in three-
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dimensional physical spaces, must be solved in large time intervals using very small
time steps.

In the first kind of models the difficulty is quite natural and the solution of
such models requires new strategies. One possibility lies in the use of sparse grids [7].
However, as argued in [1], the use of sparse grids is restricted to models with moderate
multidimensionality (up to 20). Another technique able to circumvent, or at least
alleviate, the curse of dimensionality consists of using a separated representation of
the unknown field (see [17, 5] for some mathematical results on this topic). Basically,
the separated representation of a generic function u(x1,... ,xD) (also known as finite
sums decomposition) is written as

u(x1,... ,xD)≈
i=N∑

i=1

F i
1(x1)×···×F i

D(xD). (1.1)

This kind of representation is not new, it was widely employed in the last decades
in the framework of quantum chemistry. In particular the Hartree-Fock (that involves
a single product of functions) and post-Hartree-Fock approaches (as the MCSCF
that involves a finite number of sums) made use of a separated representation of the
wavefunction.

We recently proposed a technique able to construct, in a way completely trans-
parent for the user, the separated representation of the unknown field involved in
a partial differential equation. This technique, originally described and applied to
multi-bead-spring FENE models of polymeric systems in [3], was extended to tran-
sient models of such complex fluids in [4]. Other more complex models (involving
different couplings and non-linearities) based on the reptation theory of polymeric
liquids were analyzed in [15].

We must recall that the technique that we proposed in the papers just referred is
not a universal strategy able to solve any kind of multidimensional partial differential
equation (PDE). Thus, the efficient application of the technique that we proposed in
[3] requires the separability of all the fields involved in the model. Obviously, this
separability is not always possible because some functions need a tremendous number
of sums. On the other hand, even when the field is separable (one could perform this
separation by invoking for example the SVD or the multidimensional SVD [13, 11])
the finite sums decomposition of general multidimensional functions is not realistic
because the amount of memory needed for storing the discrete form of such functions
before applying the multidimensional SVD.

In general any function can be separated by using the SVD. In 2D or 3D the
computing cost is reasonable. Certain functions accept a separated representation
consisting of a reduced number of functional products, but it is not always the case.
For example, a step moving along the x-axis cannot be written as a sum of a reduced
number of products. There are many other examples.

Another major difficulty consists in the enforcement of boundary conditions. The
simplest way to enforce non homogeneous boundary conditions (e.g. u=ug in ∂Ω)
consists in defining a function û(x), x∈Ω⊂R

D, with the requested regularity, veri-
fying the boundary conditions, i.e., û(x∈∂Ω)=ug(x∈∂Ω). Now, one could perform
the separation of û, by invoking the SVD or the multidimensional SVD, leading to

û(x1,... ,xD)≈
i=M∑

i=1

Gi
1(x1)×···×Gi

D(xD) (1.2)
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and then write

u(x1,... ,xD)≈
i=M∑

i=1

Gi
1(x1)×···×Gi

D(xD)+

i=N∑

i=1

F i
1(x1)×···×F i

D(xD), (1.3)

where the second part of the right member
∑i=N

i=1 F i
1(x1)×···×F i

D(xD) is subjected
to homogenous boundary conditions.

In high dimensions the main difficulty in applying this procedure is precisely the
separation of û that becomes unrealistic as just indicated.

Despite all these difficulties, numerous models encountered in science and en-
gineering are quite simple because the boundary conditions are simple (sometimes
homogeneous) and the fields involved in the models are separated or can be separated
easily. An introductive overview on the application of separated representations in
the multi-scale modelling of materials can be found in [10].

The present work will focus on the second kind of models described at the be-
ginning of this section. For the sake of simplicity in what follows we consider models
defined in moderate dimensions (dD, d=1,2,3, physical or conformation spaces) but
whose solutions evolve in large time intervals. In this context, if one uses standard in-
cremental time-discretizations, in the general case (models involving time-dependent
parameters, non-linear models, ...), one must solve at least a linear system at each
time step. When the time step becomes too small as a consequence of the stability re-
quirements, and the simulation time interval is large enough, the simulation becomes
inefficient. To illustrate this scenario, one could imagine the simple reaction-diffusion
model that describes the degradation of plastic materials, where the characteristic
time of the chemical reaction involved in the material degradation is of the order of
microseconds and the one related to the diffusion of chemical substances (that also
represents the material degradation characteristic time itself) is of the order of years.
In this case standard incremental techniques must be replaced by other more efficient
techniques. Other scenarios found in computational rheology will be described and
analyzed later.

In this paper we are exploring some new possibilities based on separated space-
time representations that are closely inspired from some existing and well established
strategies [4, 12]. In the next section we motivate the use of separated representations
and its connection with other more experienced techniques, as the model reduction
techniques based on the use of proper orthogonal decompositions. In section 3 we il-
lustrate the implementation of the proposed technique through some academic models
(parabolic and hyperbolic equations) where the problems related to the non-linearities
will be also addressed. In section 4 we develop a compact and unified representation
that allows to consider and easily implement different kind of models. Finally, in
section 5, we consider a transient FENE model of a complex fluid that is efficiently
solved by using the separated conformation-time representation.

In [4] we addressed the issue related to transient models. However in those cases
we only addressed some simple parabolic linear models and we never compared in-
cremental versus separated representation of such transient models. The main con-
tributions of the present work are: (i) to motivate the construction of a separated
representation of a model solution when this solution accepts a separated form by
applying a singular value decomposition; (ii) the analysis of more complex transient
models, e.g., hyperbolic models, ...; (iii) to propose different strategies for solving
non linear models; and (iv) to give some preliminary comparison between standard
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incremental techniques and ones making use of the separated representations with its
inherent non-incremental character.

2. Motivating the use of separated space-time representations

Let u(x,t) be the solution of a certain transient model (in what follows x∈Ω⊂R
d,

d=1,2,3, and t∈I ⊂R
+). We are also assuming that this field is known in a discrete

manner, that is, at some points xi (the nodes of a mesh or a grid) and at certain
times tp, where i∈ [1,... ,Nn] and p∈ [1,...P ].

Now, we introduce the notation up
i ≡u(xi,t

p) and construct the matrix Q that
contains the snapshots

Q=




u1
1 u2

1 ... uP
1

u1
2 u2

2 ... uP
2

...
...

. . .
...

u1
Nn

u2
Nn

... uP
Nn


 . (2.1)

The proper orthogonal decomposition (POD) of this discrete field consists in
solving the eigenvalue problem

(
QQT

)
φ=λφ (2.2)

that results in Nn eigenvalue-eigenvector pairs (λi,φi), i=1,... ,Nn.
When the field evolves smoothly, the magnitude of the eigenvalues decreases very

fast, a fact that reveals that the evolution of the field can be approximated from
a reduced number of modes (eigenvectors). Thus, if we define a cutoff value ǫ (ǫ=
10−8×λ1 in practice, λ1 being the highest eigenvalue) only a reduced number of
modes are retained. Let R (R<<Nn) be the number of modes retained, i.e., λi ≥
10−8×λ1,i=1,... ,R and λi <10−8×λ1, ∀i>R (the eigenvalues are assumed to be
ordered). Thus, one could write

u(x,t)≈
i=R∑

i=1

φi(x) ·Ti(t)≡
i=R∑

i=1

Xi(x) ·Ti(t), (2.3)

where for the sake of clarity the space modes φi(x) will be from now on denoted
as φi(x)≡Xi(x). Equation (2.3) represents a natural separated representation (also
known as finite sums decomposition).

These modes could be now used to solve other “similar” problems, that is, models
involving slight changes in the boundary conditions, model parameters, ... [16, 14, 18].
One other possibility is computing the reduced basis from the standard transient so-
lution within a short time interval (with respect to the whole time interval in which
the model is defined) and then solve the remaining part of the time interval by em-
ploying the reduced basis. Obviously, both strategies induce the introduction of an
error whose evaluation, control and reduction is a challenging issue.

One possibility is to construct an adaptive reduced approximation basis, which
should be the best reduced approximation basis for the treated problem. It consists
in alternating a reduction step (based on the application of the proper orthogonal
decomposition) and an enrichment stage to improve the quality of the reduced ap-
proximation basis in order to capture all the solution features. We recently proposed
an enrichment technique based on the use of some Krylov subspaces generated by the
equation residual. This technique known as “a priori” model reduction was originally
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proposed in [19], widely described in [20], and successfully applied for solving complex
fluid flows within the kinetic theory framework [2, 8] and for speeding up thermome-
chanical simulations [9]. However, some difficulties were noticed in the application of
this strategy: (i) the enrichment based on the use of the Krylov subspaces is far from
optimal in a variety of models (e.g. the wave equation); (ii) the incremental nature
of the algorithm; ...

From the previous analysis we can conclude: (i) the transient solution of numerous
models can be expressed using a very reduced number of products, each one involving
a function of time and a function of space; and (ii) the functions involved in these
functional products can be determined simultaneously by applying an appropriate
algorithm.

In what follows we are describing a possible strategy able to compute these sep-
arated functional couples. From our numerical experiments we noticed that this
technique converged in the different models analyzed at present, and that the final
decomposition is not so far to the one that results from the application of the proper
orthogonal decomposition on the model solution, that is, the number of functional
couples was quite similar, being the optimal decomposition the one performed by ap-
plying the POD. However, at present we cannot prove this empirical observation for
general models.

3. Illustrating the discretization based on separated representations

In this section we are illustrating the discretization of partial differential equations
using a separated representation of the unknown field.

Let us consider the generic partial differential equation

L(u(x,t))=f(x,t) in Ω×(0,Tmax],

with the following initial and boundary conditions
{

u(x,0)=u0 x∈Ω,
u(x,t)=uD (x,t)∈∂Ω×(0,Tmax],

(3.1)

where Ω⊂R
d,d≥1, Tmax >0. The aim of the separated representation method is

to compute N couples of functions {(Xi,Ti)}i=1,...,N such that {Xi}i=1,...,N and
{Ti}i=1,...,N are defined respectively in Ω and [0,Tmax] and the solution u of this
problem can be written in the separate form

u(x,t)≈
N∑

i=1

Ti(t) ·Xi(x). (3.2)

We will first illustrate the strategy for constructing these functional products in
the case of some academic transient problems whose exact solutions are sometimes
known: (i) the advection-diffusion equation; (ii) the wave equation; and finally (iii) a
non-linear parabolic problem.

3.1. Advection-diffusion problem. We consider the advection-diffusion
equation

∂u

∂t
−a∆u+v ·∇u=f(x,t) in Ω×(0,Tmax], (3.3)

with the following initial and boundary conditions
{

u(x,0)=u0 x∈Ω,
u(x,t)=ug (x,t)∈∂Ω×(0,Tmax],

(3.4)
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where a is the diffusion coefficient and v the velocity field. The weak formulation
yields:

Find u(x,t) verifying the boundary conditions (3.4) such that

∫ Tmax

0

∫

Ω

u⋆

(
∂u

∂t
−a∆u+v ·∇u−f(x,t)

)
dxdt=0 (3.5)

for all the functions u⋆(x,t) in an appropriate functional space.

We compute now the functions involved in the sum (3.2). We suppose that the set
of functional couples {(Xi,Ti)}i=1,...,n with 0≤n<N are already known (they have
been previously computed) and that at the present iteration we search the enrichment
couple (R(t),S(x)) by applying an alternating directions fixed point algorithm that
after convergence will constitute the next functional couple (Xn+1,Tn+1). Hence, at
the present iteration, n, we assume the separated representation

u(x,t)≈
n∑

i=1

Ti(t) ·Xi(x)+R(t) ·S(x). (3.6)

The weighting function u⋆ is then assumed as

u⋆ =S ·R⋆ +R ·S⋆. (3.7)

Introducing (3.6) and (3.7) into (3.5) results in

∫ Tmax

0

∫

Ω

(S ·R⋆ +R ·S⋆) ·
(

S · ∂R

∂t
−a∆S ·R+(v ·∇S) ·R

)
dxdt

=

∫ Tmax

0

∫

Ω

(S ·R⋆ +R ·S⋆) ·
(

f(x,t)−
n∑

i=1

Xi ·
∂Ti

∂t

+a
n∑

i=1

∆Xi ·Ti−
n∑

i=1

(v ·∇Xi) ·Ti

)
dxdt. (3.8)

We apply an alternating directions fixed point algorithm to compute the couple of
functions (R,S):

• Computing the function S(x).
First, we suppose that R is known, implying that R⋆ vanishes in (3.7). Thus,
equation (3.8) is written as

∫

Ω

S⋆ ·(αtS−aβt∆S +βt v ·∇S) dx

=

∫

Ω

S⋆ ·
(

γt(x)−
n∑

i=1

αi
tXi +a

n∑

i=1

βi
t∆Xi−

n∑

i=1

βi
t v ·∇Xi

)
dx, (3.9)
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where




αt =

∫ Tmax

0

R(t) · ∂R

∂t
(t)dt

αi
t =

∫ Tmax

0

R(t) · ∂Ti

∂t
(t)dt

βt =

∫ Tmax

0

R2(t)dt

βi
t =

∫ Tmax

0

R(t) ·Ti(t)dt

γt(x)=

∫ Tmax

0

R(t) ·f(x,t) dt; ∀x∈Ω.

(3.10)

The weak formulation (3.9) is satisfied for all S⋆, therefore we could come
back to the associated strong formulation

αtS−aβt∆S +βt v ·∇S

=γt−
n∑

i=1

αi
tXi +a

n∑

i=1

βi
t∆Xi−

n∑

i=1

βi
t v ·∇Xi, (3.11)

that one could solve by using any appropriate discretization technique for
computing the space function S(x).

• Computing the function R(t).

From the function S(x) just computed, we search R(t). In this case S⋆

vanishes in (3.7) and equation (3.8) reduces to

∫ Tmax

0

∫

Ω

(S ·R⋆) ·
(

S · ∂R

∂t
−a∆S ·R+(v ·∇S) ·R

)
dxdt

=

∫ Tmax

0

∫

Ω

(S ·R⋆) ·
(

f(x,t)−
n∑

i=1

Xi ·
∂Ti

∂t

+a

n∑

i=1

∆Xi ·Ti−
n∑

i=1

(v ·∇Xi) ·Ti

)
dxdt, (3.12)

where all the spatial functions can be integrated in Ω. Thus, by using the
following notations





αx =

∫

Ω

S(x) ·∆S(x)dx

αi
x =

∫

Ω

S(x) ·∆Xi(x)dx

βx =

∫

Ω

S2(x)dx

βi
x =

∫

Ω

S(x) ·Xi(x)dx

λx =

∫

Ω

S(x) ·(v ·∇S(x))dx

λi
x =

∫

Ω

S(x) ·(v ·∇Xi(x))dx,

γx(t)=

∫

Ω

S(x) ·f(x,t) dx; ∀t,

(3.13)
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equation (3.12) reads

∫ Tmax

0

R⋆ ·
(

βx

∂R

∂t
+(λx−aαx)R−γx(t)

+
n∑

i=1

βi
x

∂Ti

∂t
+

n∑

i=1

(λi
x−aαi

x)Ti

)
dt=0. (3.14)

As equation (3.14) holds for all S⋆, we could come back to the strong formu-
lation

βx

∂R

∂t
=(a αx−λx)R+γx(t)−

n∑

i=1

βi
x

∂Ti

∂t
+

n∑

i=1

(a αi
x−λi

x)Ti, (3.15)

which is a first order ordinary differential equation that can be solved easily
(even for extremely small time steps) from its initial condition.

These two steps must be repeated until convergence, that is, until verifying that
both functions reach a fixed point. If we denote R(q)(t) and R(q−1)(t) to be the
computed functions R(t) at the present and previous iteration respectively, and the
same for the space functions S(q)(x) and S(q−1)(x), the stoping criterion used in this
work is

e=
∥∥∥R(q)(t) ·S(q)(x)−R(q−1)(t) ·S(q−1)(x)

∥∥∥
2
<10−8, (3.16)

where 10−8 represents the square root of the machine precision.

We denote Qn+1 to be the number of iterations for solving this non-linear problem
to determine the enrichment couple of functions Xn+1(x) and Tn+1(t). After reaching
convergence we write Xn+1(x)=S(x) and Tn+1(t)=R(t). The enrichment procedure
must continue until reaching the convergence of the enrichment global procedure at
iteration N , when the separated representation of the unknown field is written as

u(x,t)≈
N∑

i=1

Xi(x) ·Ti(t). (3.17)

In all the numerical solutions computed in this work the global stopping criterion
was

• For models whose exact solution uref was known,

E =

∥∥u−uref
∥∥

2

‖uref‖2

<ǫ, (3.18)

• For models whose exact solution was not known,

E =

∥∥∥∥
∂u

∂t
−a∆u+v ·∇u−f(x,t)

∥∥∥∥
2

‖f(x,t)‖2

<ǫ, (3.19)

with ǫ=10−6 in all the simulations reported in this work.
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3.1.1. Discussion. The strategy proposed above needs for the solution about
N ×Q space and time problems (with Q=(Q1 + ···+QN )/N and N the number of
functional couples needed to approximate, up to the desired precision, the desired
solution). Thus one must compute N ×Q dD problems, d=1,2,3, whose complexity
depends on the spatial mesh considered and also N ×Q 1D problems (defined in
the time interval I) that only need the solution of an ordinary differential equation
from its initial condition. Obviously, even for extremely small time steps the solution
of these transient 1D problems does not introduce any difficulty. If instead of the

Fig. 3.1. Reference solution u(x,t)

separated representation just discussed, one performs a standard incremental solution,
P dD models, d=1,2,3, must be solved (P being the number of time steps, i.e.
P =Tmax/∆t). The time step in incremental strategies has a direct impact on the
convergence and stability of the numerical scheme.

In all the analyzed cases N and Q are of the order of tens which implies the solu-
tion of about hundred three-dimensional problems defined in Ω, instead the thousands
(or even millions) needed for solving those models using standard incremental solvers.

A first comparison between both kind of approaches (the one based on the sep-
arated representation and the one based on standard incremental strategies) is pre-
sented in section 3.1.3.

3.1.2. Numerical results. We consider the problem defined by equation (3.3)
and (3.4) where d=1, Ω=(0,1), I =(0,Tmax], Tmax =1, f =(16aπ2t+1)sin(4πx)+
4tvπcos(4πx), a=1, v =1, ∆t=10−3 and ∆x=10−3 (∆x, and ∆t being the space and
time steps respectively), whose exact solution uref = tsin(4πx) is depicted in figure
3.1.

A regular grid composed of 1001 nodes was considered on Ω. For the analyzed
model the number of time steps is not relevant because of the linear evolution of
the exact solution on time. After the first enrichment the error was 7.3 ·10−7 (see
figure 3.2). This fast convergence was expected because the model solution consists
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Fig. 3.2. Convergence analysis

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

∆x

E
rr

or

Fig. 3.3. Error versus mesh density

of a single product of a space and a time functions. The remaining error is induced
by the discretization error. It is important to note that the error associated with
the solution computed by using the separated representation is higher than the one
associated to the a discrete solution related to a fully tensorial product of the space
and time approximation bases.

The computation of other functional products do not significantly improve the
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error, because a single product of functions can represent the most features of the exact
solution. However, as a piecewise linear approximation cannot represent properly the
exact solution, a certain amount of error remains that cannot be suppressed by adding
more sums in the separated decomposition. The only way to improve the accuracy
lies in using finer meshes in space and time (in the present case as the solution is
linear in time, finer meshes in time do not contribute to improve the accuracy). figure
3.2 illustrates the just described behavior: (i) the finer is the mesh the higher is
the accuracy; and (ii) the first product reduces in some orders of magnitude the
error, but when new products are added the error reduces slowly, approaching a
horizontal asymptote. Finally, figure 3.3 depicts the evolution of the error with the
mesh density. In this case as the threshold value defined in equation (3.18) is never
reached, the iteration process is stopped as soon as the error cannot be reduced by
adding additional products of functions in the finite sums decomposition.

The first functional product was computed after 20 iterations, that is, after solving
20 problems defined in space and other 20 defined in the time interval I. Classical
approaches based on incremental algorithms need the solution of P =Tmax/∆t=1000
linear systems (one at each time step) if one considers the same time step in both
solvers. A deeper analysis will be carried out in the next section.

3.1.3. Separated representation solver versus incremental strategies.

In this section we would like to discuss the comparison between the discretiza-
tion technique based on the space-time separated representations and the standard
incremental one.

Time step 10−3 10−2 10−1 0.2 0.5

ǫ=10−5

Error 3.35 10−7 1.25 10−7 1.9 10−5 1.1 10−3 0.066
N 33 22 12 7 4
CPU 10.58 2.62 0.76 0.34 0.22

ǫ=10−3

Error 7.01 10−7 1.14 10−5 2.98 10−5 1.2 10−3 0.067
N 14 9 6 4 2
CPU 2.14 0.59 0.34 0.22 0.17

N=5

Error 2.95 10−5 1.87 10−5 9.26 10−5 1.1 10−3 0.066
N 5 5 5 5 5
CPU 0.46 0.406 0.328 0.296 0.296

Implicit FEM
Error 1.83 10−6 2.24 10−5 4.72 10−4 1.4 10−3 4.7 10−3

CPU 42.95 4.296 0.468 0.265 0.125

Table 3.1. Separated representation versus incremental strategies (the error is evaluated ac-
cording to equation (3.18) and the CPU time is given in seconds).

First we analyze problem (3.3) in Ω=(0,1)×(0,Tmax =1], with the term source
f(x,t)=1 and a null velocity v =0. Table 3.1 summarizes different simulation sce-
narios. These results do not seem very favorable to the separated representation
technique, but we must recall that in the present comparison the space problem was
one-dimensional. Obviously, the higher is the dimension of the physical space the
more the expected CPU time savings are. We can also notice that the lower the time
step, the higher the CPU time savings when using the separated representation. Ob-
viously, the separated representation strategy is especially efficient when the solution
can be represented by a reduced number of functional products. When it is not the
case the standard incremental algorithms can be faster. We illustrate this situation
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in figure 3.4 in which we compare the convergence of the purely diffusion model (a=1
and v =0) — the dashed line — and the purely advection one (a=0 and v =1) — the
continuous line. As we can notice the convergence rate is higher the the more elliptic
the problem is. When the advection character increases the separated strategy could
be more expensive that the standard one, but we must recall that in high dimensions
the only practical possibility is the use of a separated representation because its com-
plexity scales linearly with the space dimension, instead the exponential growing of
standard mesh based discretization techniques.
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10
0

Iteration

E
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Fig. 3.4. Convergence analysis: purely diffusion model (dashed line) versus purely advection
model (continuous line).

3.2. Beam equation. In this second example we consider the equation
governing the deflection of a beam subjected to an evolving load which is the solution
of an advection-diffusion problem. The beam problem, defined by

∂2u

∂t2
+a

∂4u

∂x4
=f(x,t) in Ω×I =(0,L)×(0,Tmax], (3.20)

and subjected to the following initial and boundary conditions




u(x,t)=0 (x,t)∈∂Ω×(0,Tmax]

∂u

∂x
(x,t)=0 (x,t)∈∂Ω×(0,Tmax]

u(x,0)=0 x∈Ω

∂u

∂t
(x,0)=0 x∈Ω,

(3.21)

can easily be solved by applying the procedure described in Subsection 3.1.
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Fig. 3.6. Convergence analysis for the beam bending problem

We consider the problem defined by equation (3.20) and (3.21) where Ω=(0,1),
Tmax =0.5, a=10−1, ∆t=10−3 and ∆x=1/70. The load f is the solution of an
advection-diffusion problem whose solution is illustrated at different times in figure
3.5. The choice of this function was motivated by the interest of having a smooth
function evolving in time and moving in space. The reference solution was in this case
computed by using a fine enough finite different scheme.

The evolution of the residual with the number of functional products is depicted
in figure 3.6 where the error was computed by using equation (3.18). As it can
be noticed in this figure, only 8 functional couples were needed to approximate the
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Fig. 3.8. Functions T1(t),... ,T6(t)

unknown field u(x,t) with a precision of 10−6. The six most significant spatial and
temporal functions are depicted in figures 3.7 and 3.8 respectively.

The solution procedure only required the solution of 87 space and time problems,
for the given precision, instead the 500 required when using standard incremental
algorithms, if the same time step is considered in both solution procedures.

3.3. Accounting for non-linearities. For illustrating the treatment of non
linear models we are considering the following simple nonlinear parabolic problem:





∂u

∂t
−a∆u = u2 +f(x,t) in Ω×(0,Tmax],

u(x,t) = 0 on ∂Ω×(0,Tmax],
u(x,0) = 0 in Ω,

(3.22)
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where Ω⊂R
d,d≥1, Tmax >0, and a>0 is the diffusion coefficient. To build-up the

approximated solution of (3.22) by using a separated representation, we propose two
alternatives

• An incremental linearization,

• A Newton linearization,

which we describe in sections below.

3.3.1. Incremental linearization. We look to write the solution of problem

(3.22) in the separated form u(x,t)≈
N∑

i=1

Xi(x) ·Ti(t). We suppose that at iteration

n, with n<N , the n first modes (Xi,Ti), i=1,...n, are already known and that at
present iteration we search the new enrichment functional product R(t) ·S(x) such
that the updated approximation is written as

u(x,t)≈
n∑

i=1

Xi(x) ·Ti(t)+S(x) ·R(t). (3.23)

The weak form of problem (3.22) is written as

∫ Tmax

0

∫

Ω

u⋆

(
∂u

∂t
−a∆u−u2−f(x,t)

)
dxdt=0; ∀u⋆. (3.24)

The alternating directions scheme proceeds by calculating S(x) from the tem-
poral function R(t) just computed and then updating R(t) from the just computed
S(x). The iteration procedure should continue until reaching convergence. Here, the
novelty is the treatment of the non-linear term u2. The simplest possibility consists
of computing this term at the previous iteration, that is, assuming at the present
iteration the following approximation of the non-linear term

u2≈
(

n∑

i=1

Xi(x) ·Ti(t)

)2

. (3.25)

Thus we can compute S(x) from

∫

Ω

S⋆ ·
(

αtS−aβt∆S +

n∑

i=1

αi
tXi−a

n∑

i=1

βi
t∆Xi−Φ(x)−Γ(x)

)
dx=0, (3.26)

where

Φ(x)=

∫ Tmax

0

R(t) ·
(

n∑

i=1

Xi(x) ·Ti(t)

)2

dt (3.27)

and

Γ(x)=

∫ Tmax

0

R(t) ·f(x,t)dt, (3.28)

whose strong form is written as

αtS−aβt∆S =−
n∑

i=1

αi
tXi +a

n∑

i=1

βi
t∆Xi +Φ(x)+Γ(x). (3.29)
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From this solution S(x), we can update the temporal function R(t) by solving its
associated strong form

βx

∂R

∂t
−aαxR+

n∑

i=1

βi
x

∂Ti

∂t
−a

n∑

i=1

αi
xTi−Ψ(t)−Υ(t)=0, (3.30)

where

Ψ(t)=

∫

Ω

S(x) ·
(

n∑

i=1

Xi(x) ·Ti(t)

)2

dx (3.31)

and

Υ(t)=

∫

Ω

S(x) ·f(x,t)dx. (3.32)

3.3.2. Newton linearization. From now on we denote by un the solution
computed at iteration n, i.e.,

un(x,t)=

n∑

i=1

Xi(x) ·Ti(t). (3.33)

Now, after linearization, the solution at the next iteration can be written as
un+1 =un + ũ where ũ is the solution of the problem

∂ũ

∂t
−a∆ũ−2un ũ=−

(
∂un

∂t
−a∆un−(un)2−f(x,t)

)
, (3.34)

whose weak formulation is written as

∫ Tmax

0

∫

Ω

ũ⋆

(
∂ũ

∂t
−a∆ũ−2un ũ

)
dxdt

=

∫ Tmax

0

∫

Ω

ũ⋆

(
−∂un

∂t
+a∆un +(un)2 +f(x,t))

)
dxdt, ∀ũ⋆. (3.35)

Now, we assume ũ(x,t)=R(t) ·S(x) and ũ⋆ =S ·R⋆ +R ·S⋆. To compute both
functions R(t) and S(x) we again apply the alternating directions method deeply
described in the previous sections.

3.3.3. Numerical results. We consider the problem (3.22) where d=1, Ω=
(0,1), Tmax =1, f =(16aπ2t+1)sin(4πx)− t2 sin2(4πx), ∆t=10−3, ∆x=10−3, and
a=1, whose exact solution uref = tsin(4πx), is depicted in figure 3.1.

When we applied any of the just described strategies, the convergence was reached
in 6 iterations as noticed in figure 3.9, that is, only 6 couples or functions were
needed to approximate the solution at the prescribed precision. However, this problem
deserves some additional comments. As just indicated the solution of this problem
can be written as a single product of functions. At each iteration of the non-linear
solver a new product of functions is added. Thus, as the non-linear solver converged
in 6 iterations, 6 couples of functions were computed. Obviously, after convergence, if
we apply the singular value decomposition to the computed solution (that consists of
the sum of the 6 products of functions generated by the non-linear solver) the number
of products is reduced to one.



AMMAR, NORMANDIN, DAIM, GONZÁLEZ, CUETO AND CHINESTA 687
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Fig. 3.9. Convergence analysis of the non-linear model

It is clear that in all cases, even for linear models, the separated representation
algorithm is not optimal in the sense that even if the exact solution can be written from
a certain number of functional products, the computed solution could involve a higher
number of functional products because the approximation errors and the strategy used
for computing the enrichment functions. However, in the case of non-linear models
these effects are more noticeable because the number of functional products also
depends strongly on the linearization scheme considered.

If instead of considering both linearization schemes just described, one consid-
ers the incremental linearization where the non-linear term is assumed given at the
previous iteration of the alternating directions enrichment solver, that is, replacing
equation (3.25) by

u2≈
(

n∑

i=1

Xi(x) ·Ti(t)+S(x) ·R(t)

)2

, (3.36)

where S(x) and R(t) are the just computed enrichment functions at the previous
iteration of the non-linear enrichment solver, and fixing the same level of precision
in the solution, only one product of functions results after convergence. Despite this
reduction on the number of sums in the separated representation, the computing time
is similar to the one associated to the other strategies.

4. A general framework

In this section we propose a more general form to formulate the procedure previ-
ously described by using a tensor product notation.

Let Ω be a multidimensional domain involving D coordinates x1,... ,xD and
a(Ψ⋆,Ψ) and b(Ψ∗) a bilinear and linear forms respectively defined in that multidi-
mensional domain representing the weak formulation of a partial differential equation

a(Ψ⋆(x1, x2, ... , xD),Ψ(x1, x2, ... , xD))= b(Ψ∗(x1, x2, ... , xD)), (4.1)
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whose solution is searched in the separated form

Ψ(x1, x2, ... ,xD)≈
N∑

i=1

F i
1(x1)×F i

2(x2)× ...× F i
D(xD). (4.2)

It is important to recall that these coordinates are not necessarily defined in R. In
general xi ∈Ωi ⊂R

di (Ω=Ω1×···×ΩD). Moreover, one of these coordinates could
eventually be the time.

The discrete form is written as

Ψ∗TAΨ = Ψ∗TB, (4.3)

where

A=

nA∑

j=1

A
j
1⊗A

j
2⊗ ...⊗A

j
D, (4.4)

B=

nB∑

j=1

B
j
1⊗B

j
2⊗ ...⊗B

j
D, (4.5)

and we look for a solution that is written as

Ψ=
N∑

j=1

F
j
1⊗F

j
2⊗ ...⊗F

j
D, (4.6)

where F
j
i is the discrete form of function F j

i (xi)
The enrichment stage looks for a new product of D functions, that for the sake

of clarity we denote by R1,... ,RD, that results in

Ψ=

n∑

j=1

F
j
1⊗F

j
2⊗ ...⊗F

j
D

︸ ︷︷ ︸
ΨF

+R1⊗R2⊗ ...⊗RD︸ ︷︷ ︸
ΨR

. (4.7)

Now, the alternating direction scheme, widely illustrated in the previous sections, is
used. Each iteration of this non-linear solver consists of D steps, each one updating
one of the R functions. Thus, for updating the function Rj all the other functions
R1,... ,Rj−1,Rj+1,... ,RD are assumed known. Thus, at the present step the weight-
ing function is written as

Ψ∗ = R1⊗ ...⊗Rj−1⊗R∗
j ⊗Rj+1⊗ ...⊗RD. (4.8)

The discrete form involves

Ψ∗AΨR =

nA∑

k=1




R∗T
j A

k
j Rj

D∏

h=1
h 6= j

RT
h A

k
hRh




=R∗T
j KRj , (4.9)
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Ψ∗AΨF =

n∑

i=1

nA∑

k=1




R∗T
j A

k
j F

i
j

D∏

h=1
h 6= j

RT
h A

k
hF

i
h




=R∗T
j V, (4.10)

Ψ∗B=

nB∑

k=1




R∗T
j Bk

j

D∏

h=1
h 6= j

RT
h Bk

h




=R∗T
j W, (4.11)

that leads to the linear system

KRj +V=W. (4.12)

5. Solving computational rheology models

Dilute polymers are usually modelled using dumbbell models. In what follows we
are considering one of the most used models, the FENE one, in which molecules are
represented by two beads connected by a non-linear spring of finite extension.

The kinetic theory description of this model results in an advection-diffusion equa-
tion governing the evolution of the probability distribution function (PDF) Ψ(x,t,q)
that represents the fraction of molecules that at point x, and time t have a conforma-
tion (orientation and extension) represented by vector q.

The physics related to this model can be found in numerous books (see for exam-
ple [6]). To reduce the computing time associated to its solution we proposed in [2]
the use of reduced approximations basis that were build-up making use of the proper
orthogonal decomposition. That incremental procedure allowed to spectacular com-
puting time savings. In this paper we analyze the use of separated representations to
build the reduced approximation basis in a non incremental way.

In what follows, for the sake of simplicity, we are considering homogeneous flows
(characterized by its velocity gradient ∇v) and molecules “living” in a 2D space. The
homogeneity of the flow implies that the PDF will depend only on the conformation
space — also assumed 2D — and on the time, i.e. Ψ(t,q).

The advection-diffusion equation governing the evolution of Ψ, also known as the
Fokker-Planck equation, can be written in the form

K(Ψ(t,q))+L(Ψ(t,q))=0, (5.1)

where q∈Ωq =B2D(0,
√

b) (B2D(0,
√

b) being the 2D-ball centered at the origin and

whose radius
√

b represents the maximum molecule stretching). K and L are the two
differential operators involved in the Fokker-Planck equation [6]

L(Ψ)=
∂

∂q

([
∇v ·q− 1

2
f(q)

]
Ψ

)
− 1

2

∂2Ψ

∂q2
, (5.2)

K=
∂

∂t
, (5.3)

where f(q) represents the spring constant that describes the molecule stiffness [6]:

f(q)=
q

1− q2

b

, (5.4)

with q =‖q‖2.
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5.1. Simple shear flow. First we consider the simple shear flow

∇v=

(
0 g
0 0

)
, (5.5)

where g denotes the shear rate, and we look for the solution of the Fokker-Planck
equation by assuming a separated representation of the PDF:

Ψ(t,q)≈
N∑

i=1

Fi(t) ·Gi(q). (5.6)

To build-up this approximation we must follow the iteration procedure previously
described, that at iteration n looks for the enrichment functional product R(t) ·S(q).

For applying the technique just described we consider the discrete form of all the
functions involved in the separated representation of the PDF. Thus, functions Fi(t)
(respectively Gi(q)) and R(t) (respectively S(q)) are defined using 1D (respectively
2D) finite element interpolation in their associated domains Ωt ≡I =(0,Tmax] and
Ωq =B2D(0,

√
b). We use for this purpose the vector M (respectively N) containing

the value of the shape functions associated to each space. Finally Fi (respectively
Gi) and R (respectively S) are the nodal descriptions of the associated functions.

Then, we define the following matrix

A
1
1 =
∫
Ωt

MKMT dΩt , A
1
2 =
∫
Ωq

NNT dΩq,

A
2
1 =
∫
Ωt

MMT dΩt , A
2
2 =
∫
Ωq

NLNT dΩq.
(5.7)

The former expressions contain all the needed stabilizations of advective terms,
and the tensorial problem form is then given by

B=0,

A= A
1
1⊗A

1
2 +A

2
1⊗A

2
2.

(5.8)

5.2. Small amplitude oscillatory flow. The obtention of the so called
by rheologists “linear viscoelastic data” is of great interest in rheology in order to
characterize complex fluids. Here, linear viscoelasticity means that the flow only
implies small deformations. In any case, and independently of the magnitude of
deformations that we are applying (small or large), the Fokker-Planck equation that
we are solving is always linear. In rheology the so called linear viscoelastic regime
means that the enforced kinematics is a small amplitude oscillatory flow. However,
as just indicated, one could solve the Fokker-Planck equation for any flow by using
the separated representation discretization scheme previously described.

Thus, several small amplitude oscillatory flows must be solved, each one charac-
terized by a frequency varying in a large interval of several decades. For each value
of the applied frequency, the flow kinematics is given by

∇v=

(
0 g sin(ωt)
0 0

)
, (5.9)

where g is the maximum shearing rate and ω the applied frequency. The operator
L(Ψ) can be decomposed as

L(Ψ)=L0(Ψ)+g sin(ωt)L1(Ψ), (5.10)
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where both operators L0 and L1 are time independent. Thus, we can define the new
matrices

A
1
1 =

∫

Ωt

MKMT dΩt A
1
2 =

∫

Ωq

NNT dΩq,

A
2
1 =

∫

Ωt

MMT dΩtA
2
2 =

∫

Ωq

NL0N
T dΩq,

A
3
1 =

∫

Ωt

sin(ωt)MMT dΩtA
3
2 =g

∫

Ωq

NL1N
T dΩq. (5.11)

Thus the tensorial form of the problem is given by

B=0,
A= A

1
1⊗A

1
2 +A

2
1⊗A

2
2 +A

3
1⊗A

3
2.

(5.12)

As soon as the PDF is known, the stresses can be computed by invoking Kramer’s
rule

τ (t)=

∫

Ωq

Ψ(t,q) (q⊗f(q)) dΩq. (5.13)

5.3. Results and discussion. A simple shear flow, with unit shear rate
(g =1), was applied to a quiescent FENE model whose PDF is written as Ψ0(q) [6]

Ψ0(q)=

(
1− q2

b

) b
2

2πb
2+b

, (5.14)

where again q =‖q‖2. In what follows the parameter b was set to b=10.
The separated representation of the probability distribution function Ψ(t,q) is

sought in the form:

Ψ(t,q)≈F1(t) ·G1(q)+

N∑

i=2

Fi(t) ·Gi(q), (5.15)

where
{

F1(t)=1
G1(q)=Ψ0(q)

(5.16)

in order to facilitate the enforcement of the initial condition. Thus, during the en-
richment stage Fi(t=0)=0, ∀i≥2.

Figure 5.1 proves that the initial condition was properly enforced. Obviously,
after convergence, the probability distribution function is positive everywhere, but
the different modes are not necessary strictly positive.

The separated representation allows us to compute the most significant functions
of space and time that approximate the model solution. The discrete model consists
of thousand time steps uniformly distributed over 10 periods and about 3000 nodes in
Ωq. The five most significative functions are depicted in figure 5.1, that also depicts
the PDF at t=Tmax, the first normal stress difference and the shear stress evolutions.
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Fig. 5.1. Start-up shear flow with unit shear rate

This solution is in perfect agreement to the solution computed by using any standard
incremental strategy.

The obtention of “linear viscoelasticity” data is a challenging problem when stan-
dard incremental methods are used because the flow related to numerous frequencies
must be simulated (within an interval covering several decades) and for each frequency
the transient simulation must be performed within a time interval large enough to en-
sure the response stabilization. Moreover, the higher is the frequency, the shorter the
time step must be. Figure 5.2 illustrates the separated representation, the resulting
PDF at the final time (t=Tmax), and the shear stress when ω =2.55 and g =0.1.

By knowing the input and the output (strain amplitude, shear stress amplitude,
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Fig. 5.2. Small amplitude oscillatory flow with ω =2.55 and g =0.1

and phase angle) one could compute the elastic and viscous modulus G′ and G′′

respectively (a key information for rheologists). Thus, the solution depicted in figure
5.2 (which requires an intensive computation) allows the obtention of one of the points
of the modulus versus frequency curves depicted in figure 5.3. Obviously, the curves
depicted in these figures needed the solution of the transient Fokker-Planck equation
for numerous frequencies.

The separated representation allowed a fantastic reduction of the CPU time in the
order of hundreds. Besides, the simulation using the separated representation allows
to treat one, two, three, or ten periods using almost the same number of functions
and consequently the same CPU time. However, the analysis of n-periods by using a



694 MODEL REDUCTION IN COMPUTATIONAL RHEOLOGY

10
−2

10
−1

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

ω

G’
G’’

Fig. 5.3. Real (G′) and complex (G′′) elastic modulus

standard incremental time integration scheme needs n-times the CPU time requested
to analyze a single period.

6. Conclusions

Some equations encountered in science and engineering are susceptible to treat-
ment by using a separated representation. We proposed in some of our former works
a technique able to build-up a reduced separated representation of such models, and
even if this procedure is not a universal solution strategy, at least it allows solving
numerous models which until now required enormous computational resources. Thus,
it allows to circumvent, in the cases in which it can be applied, the terrific curse of di-
mensionality associated to models defined in highly multidimensional spaces. On the
other hand, even when models are defined in spaces of moderate dimensions, some-
times transient simulations must be computed in large time intervals using extremely
small time steps because the stability constraints. In that case the separated rep-
resentation could also alleviate the computational complexity by leading to efficient
non-incremental strategies with the associated impressive computing time savings.

In this paper we illustrated the separated representation of transient models prov-
ing its potentiality for treating complex models coming from the modelling of com-
plex fluids within the kinetic theory framework that result in highly multidimensional
models whose transient solutions must be computed in large time intervals and for
numerous loadings (linear viscoelastic analysis).

It is too early to quantify the computing time savings because at present the
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codes are far from optimized. However, from the nature of the algorithm it is quite
natural expecting impressive computing time savings when the treated model ac-
cepts a separated representation. This consideration opens new questions: when does
a model accept a separated representation? These kind of questions needs further
mathematical analysis.
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