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Abstract: In this work we analyze the possibilities of 
applying model reduction in the advanced simulation of 
materials and processes. The use of such strategies allows 
impressive computing time savings in the numerical 
simulations of complex models without degrading the 
solution accuracy. For this purpose we apply proper 
generalized decompositions of multidimensional models 
that can be associated to usual models in computational 
mechanics.  
Key words: Proper Generalized Decomposition, Model 
reduction, Multidimensional models, Curse of 
dimensionality, Shape oprimization, Multi-scale modelling 

1. INTRODUCTION

The fine description of the mechanics and structure of 
materials at the micro, nano and sub-nanometric 
scales introduces some specific challenges related to 
the impressive number of degrees of freedom 
required or to the highly dimensional spaces in which 
those models are defined. Moreover, usual models 
encountered in computational physics and mechanics 
can be transformed in multi-dimensional models 
allowing for very general solutions as we describe 
later.  Despite the fact that spectacular progresses 
have been accomplished in the context of 
computational mechanics in the last decade, the 
efficient treatment of those multi-dimensional models 
needs further developments. 
The brute force approach cannot be considered as a 
possibility for treating this kind of models. We can 
understand the catastrophe of dimension by assuming 
a model defined in a hyper-cube Ω  of dimension D:

] [,
D

L LΩ = − . Now, if we define a grid to discretize

the model, as it is usually performed in the vast 
majority of numerical methods (finite differences, 
finite elements, finite volumes, spectral methods 
etc.), consisting of M nodes on each direction, the 
total number of nodes will be DM . If we assume that 
for example 10M =  (an extremely coarse
description) and 80D =  (much lower than the usual
dimensions required in quantum or statistical 
mechanics) the number of nodes in Ω  reaches the

astronomical value of  1080 that represents the 
presumed number of elementary particles in the 
universe! 
We come back to the practical interest of multi-
dimensional models later.  In what follows in the 
present section we are revisiting a technique able to 
circumvent the curse of dimensionality issue. 

1.1 Multidimensional solvers based on the Proper 
Generalized Decomposition – PGD - 

  
We start writing the polynomial approximation of a 

generic multi-dimensional function ( )1 2, , , Du x x x⋯

in the whole domain as: 

( ) ( ) ( ) ( )1 1
1 1 1

k Di N i N
i i i

D D k k
i i k

u X x X x X x
== =

= = =

≈ =∑ ∑∏x ⋯  (1) 

The coordinate ix  is not necessarily one-

dimensional, but in any case it is defined in a space of 
moderate dimensions (1D, 2D or 3D), i.e. i ix ∈Ω ,

,  3id
i ïdΩ ⊂ ℜ ≤ . The model results then defined in

the whole domain 1
1

Dd d
D

+ +Ω = Ω × ×Ω ⊂ ℜ ⋯

⋯ . 

One of this coordinates could be the time involved in 
transient models. 
It is also well known that several model solutions can 
be approximated by a finite, and sometimes quite 
reduced number of functional products. Expression 
(1) involves N M D× ×  degrees of freedom instead

of the DM  required in mesh-based discretization 
techniques.  
In what follows we are describing a new advanced 
technique that combines a separated representation 
and an adaptation procedure able to build up 
gradually each product of functions involved in (1) 
until reaching the convergence. It has some 
resemblances with the functional approximation used 
within the LATIN framework, the radial 
approximation making use of a space-time separated 
representation (see [6] and the references therein) as 
well as with the ones employed in the post-Hartree-
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Fock methods [4]. This technique has been 
successfully applied in a variety of linear, non linear, 
stationary and transient problems [1] [2] [5] [7]. In 
what follows we are revisiting the main ideas of such 
decomposition technique. For the sake of simplicity 
we are considering a simple multi-dimensional 
diffusion problem in D dimensions: 

( ) ( ) ] [
( )

2
1,  , , 0,

0

DT
Du f x x L

u

∇ = = ∈Ω =


∈∂Ω =

x x

x

⋯

 (2) 

where the general form of the right term is given by 

( ) ( ) ( ) ( )1 1
1 1 1

k Di m i m
i i i

D D k k
i i k

f F x F x F x
== =

= = =

≈ =∑ ∑∏x ⋯  (3) 

Such a decomposition can be performed by using 
singular value decomposition.   
The iteration scheme used to build up the solution (1) 
proceeds performing an enrichment of the 
approximation basis at each iteration. Thus, knowing 
the approximation at iteration the n: 

( ) ( ) ( ) ( )1 1
1 1 1

k Di n i n
n i i i

D D k k
i i k

u X x X x X x
== =

= = =

= =∑ ∑∏x ⋯ (4)

the approximation basis could be enriched by adding 

a new product of functions ( )1

1

k D
n
k k

k

X x
=

+

=
∏

( ) ( ) ( )1 1

1

k D
n n n

k k
k

u u X x
=

+ +

=

= +∏x x                         (5)

that needs for the determination of the D involved 

functions ( )1n
k kX x+ . For this purpose the trial 

function: 

( ) ( ) ( )
1 1 1

k D k Di n
i
k k k k

i k k

u X x R x
= ==

= = =

= +∑∏ ∏x  (6) 

is injected in the weak formulation, where 

( ) ( )1n
k k k kR x X x+≡  are the unknown fields of the

non linear system obtained, whose size is D M× .
The associated test functions are taken, again in the 
Galerkin’s framework, as: 

 ( ) ( ) ( )* *

1 1

j D k D

j j k k
j k

k j

u R x R x
= =

= =
≠

 
 =
 
 
 

∑ ∏x  (7) 

Now, as soon as the functions ( )k kR x  have been 

determined, the searched functions ( )1n
k kX x+  are

obtained by identifying these functions with the 

converged ( )k kR x  functions. 

This algorithm has been successfully used to solve 
models involving one hundred dimensions needing 
about ~10300 degrees of freedom if one proceeds in 
the finite element framework. The construction of the 
separated solution only needed of around 20 minutes 
using Matlab on a standard personal computer!. The 
separate representation considered in (1) only needs 
approximations defined in spaces of moderate 

dimensions id  and then integrations in such moderate 

dimensional spaces because the integral of a product 
of functions in a hyper-domain can be written as the 
product of the integrals defined in the domains Ω .i

 
1.2 Illustrating the Proper Generalized 

Decomposition construction 
 
In what follows we are illustrating the construction of 
the Proper Generalized Decomposition by 
considering a quite simple problem, the parametric 
heat transfer equation: 

0
u

k u f
t

∂ − ∆ − =
∂

  (8) 

where ( , , )t k I∈Ω× × ℑx  and for the sake of
simplicity the source term is assumed constant, 
i.e. f cte= . Because the conductivity is considered
unknown, it is assumed as a new coordinate defined 
in the interval ℑ . Thus, instead of solving the
thermal model for different values of the conductivity 
parameter we prefer introducing it as a new 
coordinate. The price to be paid is the increase of the 
model dimensionality; however, as the complexity of 
the PGD scales linearly with the space dimension the 
consideration of the conductivity as a new coordinate 
allows for faster and cheaper solutions.  
The solution of Eq. (8) is searched under the form:   

( ) ( ) ( ) ( )
1

, ,
i N

i i i
i

u t k X T t K k
=

=
≈ ⋅ ⋅∑x x  (9) 

In what follows we are assuming that the 
approximation at iteration n  is already done: 

( ) ( ) ( ) ( )
1

, ,
i n

n
i i i

i

u t k X T t K k
=

=
= ⋅ ⋅∑x x  (10) 

and at present iteration we look for the next 

functional product ( ) ( ) ( )1 1 1n n nX T t K k+ + +⋅ ⋅x that 

for alleviating the notation will be denoted by 

( ) ( ) ( )R S t W k⋅ ⋅x . Prior to solve the resulting non

linear model related to the calculation of these three 
functions a model linearization is compulsory. The 
simplest choice consists in using an alternating 
directions fixed point algorithm. It proceeds by 

assuming  ( )S t  and ( )W k  given at the previous

iteration of the non-linear solver and then computing 

( )R x . From the just updated ( )R x  and ( )W k  we

can update ( )S t , and finally from the just computed

( )R x  and ( )S t  we compute ( )W k . The procedure

continues until reaching convergence. The converged 

functions ( )R x , ( )S t  and ( )W k  allow defining

the searched functions: ( ) ( )1nX R+ =x x ,

( ) ( )1nT t S t+ =  and ( ) ( )1nK k W k+ = .

We are illustrating each one of the just referred steps: 

2



I. Computing  ( )R x  from ( )S t  and ( )W k :

We consider the global weak form of Eq. (8): 

*    0
I

u
u k u f d dtdk

tΩ× ×ℑ

∂ − ∆ − = ∂ 
∫ x   (11) 

where the trial and test functions write respectively: 

( ) ( ) ( ) ( )

( ) ( ) ( )
1

, ,
i n

i i i
i

u t k X T t K k

R S t W k

=

=
= ⋅ ⋅ +

+ ⋅ ⋅

∑x x

x

 (12) 

and 

( ) ( ) ( ) ( )* *, ,u t k R S t W k= ⋅ ⋅x x  (13) 

Introducing (12) and (13) into (11) it results 

*

* ( )

   

   

I

n

I

S
R S W R W k R S W d dt dk

t

R S W d dt dk

Ω× ×ℑ

Ω× ×ℑ

∂ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅∆ ⋅ ⋅ = ∂ 

= − ⋅ ⋅ ⋅ℜ

∫

∫

x

x

    

 (14) 

with ( )

1 1

i n i n
n i

i i i i i
i i

T
X K k X T K f

t

= =

= =

∂ℜ = ⋅ ⋅ − ⋅∆ ⋅ ⋅ −
∂∑ ∑ . 

Now, being known all the functions involving the 
time and the parametric coordinate, we can integrate 
Eq. (14) in their respective domains I × ℑ .
Integrating in I × ℑ  and taking into account the
notation 

2 2 2
1 1 1

2
2 2 2

3 3 3

4 4 4

5 5 5

 

   

  

   

I

I

I

i i ii
i i

I

i i i
i i i

I

w W dk s S dt r R d

dS
w kW dk s S dt r R R d

dt

w W dk s S dt r R d

dT
w W K dk s S dt r R X d

dt

w kW K dk s S T dt r R X d

ℑ Ω

ℑ Ω

ℑ Ω

ℑ Ω

ℑ Ω

 = = =
 
 
 = = ⋅ = ⋅∆
 
 

= = = 
 
 
 = ⋅ = ⋅ = ⋅∆
 
 

= ⋅ = ⋅ = ⋅ 
 

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

x

x

x

x

x

  (15) 

Eq. (14) reduces to: 

( )*
1 2 2 1

*
4 4 5 5 3 3

1 1

  

  
i n i n

i i i i
i i

i i

R w s R w s R d

R w s X w s X w s f d

Ω

= =

= =Ω

⋅ ⋅ ⋅ − ⋅ ⋅ ∆ =

 = − ⋅ ⋅ ⋅ − ⋅ ⋅ ∆ − ⋅ ⋅ 
 

∫

∑ ∑∫

x

x

       (16) 
Eq. (16) defines an elliptic steady state boundary 
value problem that can be solved by using any 
discretization technique operating on the model weak 
form (finite elements, finite volumes …). Another 
possibility consists in coming back to the strong form 
of Eq. (16): 

1 2 2 1

4 4 5 5 3 3
1 1

i n i n
i i i i

i i
i i

w s R w s R

w s X w s X w s f
= =

= =

⋅ ⋅ − ⋅ ⋅ ∆ =

 = − ⋅ ⋅ − ⋅ ⋅ ∆ − ⋅ ⋅ 
 
∑ ∑

(17) 

that could be solved by using any collocation 
technique (finite differences, SPH …). 

II. Computing  ( )S t  from  ( )R x and ( )W k :

In the present case the test function writes: 

( ) ( ) ( ) ( )* *, ,u t k S t R W k= ⋅ ⋅x x  (18) 

Now, the weak form reads 

*

* (n)

   

   

I

I

S
S R W R W k R S W d dt dk

t

S R W d dt dk

Ω× ×ℑ

Ω× ×ℑ

∂ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ∆ ⋅ ⋅ = ∂ 

= − ⋅ ⋅ ⋅ℜ

∫

∫

x

x

 (19) 
that integrated in the domain  Ω× ℑ  and taking into
account the notation (15) results: 

*
1 1 2 2

*
4 5 5 4 3 3

1 1

 

 

I

i n i n
i i i ii

i
i iI

dS
S w r w r S dt

dt

dT
S w r w r T w r f dt

dt

= =

= =

 ⋅ ⋅ ⋅ − ⋅ ⋅ = 
 

 = − ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ 
 

∫

∑ ∑∫
       (20) 

Eq. (20) represents the weak form of the ODE 
defining the time evolution of the field S that can be 
solved by using any stabilized discretization 
technique (SU, Discontinuous Galerkin, …). The 
strong form of Eq. (20) reads: 

1 1 2 2

4 5 5 4 3 3
1 1

i n i n
i i i ii

i
i i

dS
w r w r S

dt

dT
w r w r T w r f

dt

= =

= =

⋅ ⋅ − ⋅ ⋅ =

 = − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ 
 
∑ ∑

 (21) 

than can be solved by using backward finite 
differences, or higher order Runge-Kutta schemes, 
among many other possibilities. 

III. Computing ( )W k  from  ( )R x and ( )S t :

In the present case the test function writes: 

( ) ( ) ( ) ( )* *, ,u t k W t R S k= ⋅ ⋅x x  (22) 

Now, the weak form reads 

*

* (n)

   

   

I

I

S
W R S R W k R S W d dt dk

t

W R S d dt dk

Ω× ×ℑ

Ω× ×ℑ

∂ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅∆ ⋅ ⋅ = ∂ 

= − ⋅ ⋅ ⋅ℜ

∫

∫

x

x

       (23) 
that integrated in  IΩ×  and taking into account the
notation (15) results: 

( )*
1 2 2 1

*
5 4 4 5 3 3

1 1

 

 
i n i n

i i i i
i i

i i

W r s W r s W dk

W r s K r s K r s f dk

ℑ

= =

= =ℑ

⋅ ⋅ ⋅ − ⋅ ⋅ =

 = − ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ 
 

∫

∑ ∑∫
 (24) 
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Eq. (24) does not involve any differential operator. 
The strong form of Eq. (24) reads: 

( )

( )
1 2 2 1

5 4 4 5 3 3
1

i n
i i i i

i
i

r s r s W

r s r s K r s f
=

=

⋅ − ⋅ ⋅ =

 = − ⋅ − ⋅ ⋅ − ⋅ ⋅ 
 
∑

 (25) 

that represents an algebraic equation. Thus, the 
introduction of parameters as additional model 
coordinates has not a noticeable effect in the 
computational cost. 
There are other minimization strategies more robust 
and exhibiting faster convergence for building-up the 
PGD (see [10]). 

3. APPLICATIONS

In this section we are analyzing different applications 
of the proper generalized decomposition in 
computational mechanics, and in particular in the 
advanced simulation of material and processes, 
through some academinc examples. 

3.1 Parametric models 
  
We consider the 1D heat equation defined by:  

( , ); ,t x

u u
k f t x t x

t x x

∂ ∂ ∂ − = ∈Ω ∈Ω ∂ ∂ ∂ 
 (26) 

If k is constant, this equation can be solved for every 
value of k using the separated representation 
previously illustrated without further difficulties. 
Now, we are focusing on a more complicated and 
realistic problem. In general, for homogenous 
materials the thermal conductivity depends on 
temperature, following a linear dependence: 
k au b= +                                                          (27)
If we introduce this expression into Eq. (26) the 
resulting heat equation writes: 

22 2

2 2

u u u u
b au a f

t x x x

∂ ∂ ∂ ∂ − − − = ∂ ∂ ∂ ∂ 
 (28) 

We want to solve this equation for any value of a and 
b. We can easily understand that the computed
solution allows efficient optimization and inverse 
identification strategies. For that purpose the 
following separated representation approximation is 
considered: 

1

( , , , ) ( ) ( ) ( ) ( )
N

i i i i
i

u t x a b T t X x A a B b
=

≈ ⋅ ⋅ ⋅∑  (29) 

The numerical solution was carried out for [ ]0,1t ∈ ,

[ ]1,1x∈ − , [ ]1,1a∈ − , [ ]1,5b∈  being the initial

condition 10( 0, ) 1u t x x= = − , the temperature
vanishing at both boundaries. In this example, 500 
nodes were employed for discretizing each of the 4 
coordinates. A mesh would have involved 5004 
degrees of freedom, but using the PGD this 
impressive number reduces to the order of 2000. The 

solution was performed in few minutes using Matlab 
on a personal laptop. Fig. 1 depicts the solution at 
point 0x =  at the final time 1t =  as a function of
both parameters a  and b. 
The non linearity was accounted by assuming the 
conductivity given at previous iteration, i.e. 

nk au b= + , where

1

( , , , ) ( ) ( ) ( ) ( )
n

n
i i i i

i

u t x a b T t X x A a B b
=

= ⋅ ⋅ ⋅∑  (30) 

Other linearizations were analyzed and discussed in 
[3] and [8]. 

Fig. 1. Temperature at point 0x =  at the final time 1t =  as a

function of both parameters a  and b .

Now, we come back to the non-linear thermal model 
(28), with 1a =  and 1b = , but we are focusing on its
steady solution for a source term given by 

( )21f xβ= − − , [ ]0,1β ∈ . Now, the solution is

searched from the finite sum decomposition: 

1

( , ) ( ) ( )
N

i i
i

u x X x Bβ β
=

≈ ⋅∑  (31) 

The computed solution is depicted in figure 2 where 
we can notice, as expected, that the solution vanishes 
everywhere when 0β = .

0

0.5

1 -1
-0.5

0
0.5

1
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Fig. 2. Steady state temperature field ( , )u x β .

Finally, we are considering the same problem, the 
steady state solution of a thermal model (non-linear) 
in which the heat source is punctual and can be 
applied everywhere in the domain. The thermal 
model is then defined as follows: 
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( )u
k f x

x x

∂ ∂  = ∂ ∂ 
 (32) 

where the source term writes in the present case: 

( )( ) 'f x x xβ δ= ⋅ −  (33) 

being ()δ  the Dirac’s mass and 'x  the point in

which the thermal load of intensity β  applies. As we
are interested in solving the model (32) for any 
position of the thermal load 'x  and any value of the 
intensity β , we introduce the load location and the
load intensity as new coordinates, searching the 
solution in the form: 

( )
1

( , ', ) ( ) ' ( )
N

i i i
i

u x x X x S x Bβ β
=

≈ ⋅ ⋅∑  (34) 

By applying the procedure described in the previous 
section one could determine easily the functions 

( )iX x  by solving a second order elliptic problem, 

then function ( ')iS x  by solving an algebraic equation 

(there are not derivatives in that coordinate in the 
thermal model model) and finally function ( )iB β
solving another algebraic equation. 
The strategy here described allows an off-line pre-
calculus and very fast post-processing required in 
many branches of computational sciences with real-
time simulation purposes. 

3.2 Models defined in evolving domains 

The main issue in treating models defined in evolving 
domains lies in the fact that x belongs to a domain 

that is evolving in time, i.e. ( )t∈Ωx . Obviously, in

that case we cannot apply the procedure described 
previously, but the deepest difficulty lies in the fact 
that the space coordinate is not independent of the 
time coordinate. 
The simplest alternative for circumventing this 
difficulty consists in defining the mapping between 

the initial space coordinates  ( )0t∈Ω =X  and the

present ones ( )t∈Ωx . This mapping writes:

( ),t=x x X . Now, the model given by

( )( ), ,x t u t =xL � F  (where ( ),x tL � denotes a

differential operator involving the present coordinates 

x  and t ) is redefined by considering  ( ),tX  as new

coordinates (now both being independent): 

( )( )* *
X,t ,u t =XL � F  and solved by using the natural

decomposition: 

( )
1

( , ) ( )
N

i i
i

u t X T t
=

≈ ⋅∑X X  (35) 

We are at present analyzing this approach that 
suggests fully Lagrangian formulation in thermo-
mechanical problems. As the procedure described in 

section 1.2 does not enforce the balance equations at 
any particular time, fully Lagrangian formulations 

could run as soon as the mapping ( ),t=x x X  is well

defined even in very large geometrical 
transformations.  
In what follows we are illustrating this procedure. For 
this purpose we consider the filling process of a 1D 
porous domain by an incompressible fluid. The flow 
in porous media is usually modelled by the Darcy’s 
law that establishes the proportionality between the 
flow velocity and the gradient of pressures. In the 1D 
case that equation writes: 

k dp
v

dxη
= −  (36) 

where v  is the flow velocity, k  is the porous 
medium permeability, η  is the fluid viscosity
(assumed constant) and p  represents the pressure 
field. In what follows we assume without loss of 
generality  1.k η =  Introducing Eq. (36) into the
mass balance equation of an incompressible fluid that 
in the 1D case writes 

0
dv

dx
=   (37) 

it results: 
2

2
0

d p

dx
= in ( )f tΩ  (38) 

where ( )f tΩ  represents the domain occupied by the

fluid at time t, ] [( ) 0,f tt LΩ = . We assume that

] [0( 0) 0,f t LΩ = = . If the injection process is

performed at constant flow rate ( )a , then the

boundary conditions write in the case here 
considered: 

0 0x x

k dp dp
a a

dx dxη = =

− = ⇒ = −  (39) 

and 

( ) 0tp x L= =  (40) 

where 0tL L a t= + ⋅ .

The coordinate’s transformation writes: 

0

1
a t

x X
L

 ⋅= ⋅ + 
 

 (41) 

where [ ]00,X L∈  and [ ]0, tx L∈ . Now, instead of

solving the problem (38) in ( )f tΩ , we are solving

this problem in the reference domain 

] [0( 0) 0,f t LΩ = = . Applying the coordinates

transformation (41), equation (38) results: 
222 2

0
2 2

0

0
Ld p dX d p

dX dx dX L a t

   = =   + ⋅   
  (42) 
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which is defined in ( 0)f tΩ = .

The boundary conditions become: 

0

0 0X

Ldp
a

dX L a t=

 
= − + ⋅ 

 (43) 

and 

( )0 0p X L= =                                                 (44)

One could try to solve Eq. (43) for each time, by 
considering the time t as a model parameter. 
Obviously as in the present case the resulting 
problem is two-dimensional it could be solved using 
any standard discretization technique (finite elements, 
…), however, in more complex scenarios the physical 
space will contain more coordinates (2D or 3D) and 
the coordinates transformation will imply many 
parameters. Thus, the resulting general parametric 
problem will be multi-dimensional and the use of the 
separated representation described in the previous 
section should be mandatory. 
Taking into account Eqs. (43) and (44), the solution 
of Eq. (42) results: 

( ) ( ) ( )0 0
0

,
a

p X t a L a t L a t X
L

= ⋅ + ⋅ − ⋅ + ⋅ ⋅  (46) 

in [ ] [ ]0 max0, 0,L T× , that represents a separated

representation: 

( )
2

1

( , ) ( )i i
i

p X t X X T t
=

= ⋅∑  (47) 

with 

( ) ( )
( )

( ) ( )

1

1 0

2

2 0
0

( ) 1X X

T t a L a t

X X X

a
T t L a t

L

=
 = ⋅ + ⋅


=

 = − ⋅ + ⋅


  (48) 

We can notice that the injection pressure iP  goes up 

in time in order to keep the solution slope constant 
(constant flow rate): 

( ) ( )00,iP p X t a L a t= = = ⋅ + ⋅  (49) 

3.3 Multi-scale in time

Consider the simple model 

( ) ( ) ( )2 22 cos 2 cos sin
du

t t t t t
dt

ω ω ω ω= −  (50)

with ] ]0,10t I∈ =  and zero initial condition. The

exact solution writes ( )2 2cosexu t tω= . When the

frequency increases, the time step must be reduced in 
order to capture the load evolution. Fig. 3 compares 
for a frequency 10ω = the computed solution by
using a time step of  0.001t∆ = (high resolution
curve) and 0.5t∆ = (low resolution curve).

0 1 2 3 4 5 6 7 8 9 10
0
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20

30

40

50

60

70

80

90

100

Fig. 3. Solution of model (50) with two different sampling times. 

For accounting with the two time scales involved in 
the model (that we consider separated) we introduce 
two different times, both assumed independent: 

T t I= ∈  and [ ]0,2tτ ω π= ∈ . Thus, we postulate

( ),u T τ and Eq. (50) becomes:

( )

( ) ( ) ( )2 2

,

 2 cos 2 cos sin

du T u T u u u

dt T t t T

T T

τ τ ω
τ τ

τ ω τ τ

∂ ∂ ∂ ∂ ∂ ∂= ⋅ + ⋅ = + =
∂ ∂ ∂ ∂ ∂ ∂

= −
 (51) 

whose solution is searched by assuming the 
decomposition:  

( )
1

( , ) ( )
N

i i
i

u T F T Gτ τ
=

≈ ⋅∑  (52) 

Obviously, in more complex multi-scale models 
involving different scales in space 1 2( , , )x x ⋯  and 

time 1 2( , , )t t ⋯  we should write: 

1 2 1 2( , , , , , )u t t x x⋯ ⋯   (53) 

and in that case a separated representation seems 
compulsory.  
In the present case the decomposition involves a 
single product of functions: 

( ) ( )2 2( , ) ( ) cosu T F T G Tτ τ τ= ⋅ = ⋅                 (54)

that correspond with the exact solution, both depicted 
in Fig. 4. In that figure we depict also the 
reconstructed solution ( , )u T τ .
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Fig. 4. Functions ( )F T (top) and ( )G τ (middle) associated

with the decomposition of ( , )u T τ in (51) and well as the

reconstructed solution ( , )u T τ (bottom).

 
3.4 Heterogeneous materials 

In this section we are focusing in the thermal 
models defined in heterogeneous materials. 
Imagine a composite material involving a matrix 
and a fibrous reinforcement. A typical 
representative volume showing the microstructure 
heterogeneity is depicted in figure 5. 

Fig. 5. Microstructure of a composite material 

Now, in order to apply the PGD one should perform a 
separated representation of the thermal conductivity, 
allowing for an efficient thermal simulation, i.e. 

( )
1

( ) ( )
P

i i
x y

i

k K x K y
=

≈ ⋅∑x  (55) 

This separated representation can be performed by 
applying the SVD (singular value decomposition) to 
the matrix containing as entries the image pixels.  
However, because the irregular distribution of the 
inclusions the number of sums in (55) becomes very 
high. Different possibilities exist to alleviate this 
representation some of them are being analyzed at 
present. A first possibility lies in considering only a 
reduced number of the modes of the SVD. The 
computational cost is significantly reduced and 
sometimes the precision is not too much degraded. 
Figure 6 depicts the image reconstruction for 
different number of sums in (55). 

Fig. 6. Reconstructed microstructure for 23P =  (left) and

46P =  in (55).

Another possibility lies in the substitution of each 
cercle by a square parallel to the coordinate axes, 
whose area equals the one of the associated circle. 
Eq. (56) represents a generic rectangle: 

[ ] [ ], ,a b a bx x y y∈ ×x  (56) 

Now, we define the characteristic function: 

( ),

0

1

0
a b

if s a

s if a s b

if s b

χ
<

= ≤ ≤
 >

 (57) 

Uisng this notation, the square defined in (56) can be 
represented in a separated form by: 

( ) ( ), ,a b a bx x y yx yχ χ× .

Obviously, if the representative volume contains P 
inclusions, each one represented by a square, the 
separated representation (55) will contain P sums. 
Obviously, all these approaches imply the solution of 
a thermal model for each representative volume (as 
soon as the microstrucvture evolve, the thermal 
conductivity is modified and then a new solution of 
the thermal model is required). If we consider a 
stochastic nature of the microstructure many 
realizations of the microstructure must be solved. 
One possibility for alleviating this task consists of 
considering the representative volume composed of a 
certain number of cells related to a grid of the 
representative volume as depicted in figure 7. Now, 
rather than solving a thermal model for each possible 
microstructure (represented by the different values of 
the thermal conductivity in each cell), we are 
introducing the thermal conductivity of each cell as 
an extra coordinate. In the example depiected in Fig. 
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7 the model will be defined in a space of dimension 
27 (the x and y space coordinates and the 5 5×  cells
thermal conductivities). 

Fig. 7. Cellular microstructure of the representative volume. 

Thus, the solution is searched under the form: 

( )
1,1 5,5

1,1 1,1 5,5 5,5
1

( , , , , )

( ) ( ) ( )
N

i i
i i

i

u x y k k

X x Y y K k K k
=

≈

≈ ⋅ ⋅∑

⋯

⋯

 (58) 

Thus, the termal field for any possible microstructure 
only needs the solution of only one multidimensional 
problem, solution that can be performed efficiently 
by applying the PGD. As soon as the solution (58) is 
computed, the thermal field for any microstructure 
realization is obtained by substituting the known 
conductivities of each cell in Eq. (58). Thus, the 
thermal field related to the microstructure shown in 
Fig. 7 is depicted in Fig. 8 (a simple boundary 
condition 1,1 5,5( , , , )u k k x∈∂Ω =x ⋯  was enforced) 

Fig. 8. Thermal field associated with the microstructure depicted 
in Fig. 7. 

4. CONCLUSIONS

This paper explores some possibilities related to the 
use of Proper Generalized Decomposition in the 
advanced simulation of materials and processes. This 
novel discretization technique allows the efficient 
solution of highly multidimensional models by 
circumventing the redoubtable curse of 
dimensionality that mesh based discretization 
techniques suffer.  
As soon as an efficient solver for multidimensional 
models is avalaible, many models of computational 

mechanics can be rewritten in higher dimensional 
spaces. Thus one could for example compute the 
thermal field for any value of the thermal 
conductivity (as illustrated in this paper for 
homogeneous and heterogenous materials) 
simplifying inverse identification of optimization; 
compute the solution for any geometry for addressing 
evolving domains or shape optimization; or 
addressing multi-scale models in space or time 
encountered in many manufacturing processes, as for 
example the ones involving ultrasons, microwaves or 
localization. 
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