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In this paper, a new approach is proposed to address issues associated with incompressibility in the 
context of the meshfree natural element method (NEM). The NEM possesses attractive features such 
as interpolant shape functions or auto-adaptive domain of influence, which alleviates some of the most 
common difficulties in meshless methods. Nevertheless, the shape functions can only reproduce linear 
polynomials, and in contrast to moving least squares methods, it is not easy to define interpolations 
with arbitrary approximation consistency. In order to treat mechanical models involving incompressible 
media in the framework of mixed formulations, the associated functional approximations must satisfy 
the well-known inf–sup, or LBB condition. In the proposed approach, additional degrees of freedom are 
associated with some topological entities of the underlying Delaunay tessellation, i.e. edges, triangles 
and tetrahedrons. The associated shape functions are computed from the product of the NEM shape 
functions related to the original nodes. Different combinations can be used to construct new families 
of NEM approximations. As these new approximations functions are not related to any node, as they 
vanish at the nodes, from now on we refer these shape functions as bubbles. The shape functions can be 
corrected enforcing different reproducing conditions, when they are used as weights in the moving least 
square (MLS) framework. In this manner, the effects of the obtained higher approximation consistency 
can be evaluated. In this work, we restrict our attention to the 2D case, and the following constructions 
will be considered: (a) bubble functions associated with the Delaunay triangles, called b1-NEM 
and (b) bubble functions associated with the Delaunay edges, called b2-NEM. We prove that all these 
approximation schemes allow direct enforcement of essential boundary conditions. The bubble-NEM 
schemes are then used to approximate the displacements in the linear elasticity mixed formulation, 
the pressure being approximated by the standard NEM. The numerical LBB test is passed for all 
the bubble-NEM approximations, and pressure oscillations are removed in the incompressible limit.
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1. INTRODUCTION

It is well known that the solution of mechanical problems involving incompressible media
using the standard displacement-based finite element technique may yield solutions, which are
grossly in error [1]. The difficulty is that the computed displacement field needs to satisfy
the constraint of very small volumetric strains (which become zero as the condition of total
incompressibility is approached) while the pressure is of the order of the boundary tractions. The
displacement approximation space is not rich enough to accommodate this constraint without
a drastic reduction in the rate of convergence, also known as locking [1].

For the analysis of such problems, one solution is to use a mixed formulation in which
different approximation spaces are used for the displacement and pressure fields interpolation.
Although numerous mixed formulations may be developed, only those that are stable are useful
in practice [2, 3].The solvability, stability and optimality of mixed formulations are related to
a compatibility condition, the so-called LBB (or inf–sup) condition [4]. The analytical proof
whether the inf–sup condition is satisfied for a specific formulation is, however, difficult, and
this has spurred the use of a numerical inf–sup test [4–6].

Meshless methods have been developed over the past decade to circumvent some difficulties
associated with the finite element method. One of the advantages of meshfree methods over
mesh-based techniques is that they can often handle geometric changes like free surfaces or
large deformation better. Different methods can be found, such as the diffuse element method
(DEM) [7], the element-free Galerkin method (EFG) [8], the reproducing kernel particle method
[9], SPH and radial basis functions methods [10, 11], or the natural element method (NEM)
[12]. Accounting incompressibility in meshless methods is still an open topic. Until recently,
it was stated that meshfree methods are immune to locking [8, 13]. Furthermore, the EFG has
been actually proposed for treating isochoric elastoplasticity by considering the shape functions
support large enough [14]. In the context of the RKPM, a similar claim was made in the context
of large deformation of nearly incompressible hyperelastic [15] and elastoplastic materials [16].
Recently, it has been reported that meshfree methods are in fact not locking-free in the incom-
pressibility limit [17]. In a recent paper [18] this issue is clarified determining the influence
of the EFG shape functions support on the locking behaviour. The main conclusion was that
by increasing the shape functions support the looking can be attenuated, but never suppressed.
Several attempts have been proposed to avoid locking in the context of meshfree methods.
Huerta et al. [19] developed a so-called pseudo-divergence-free approximation, consisting in
using approximation functions that verify approximately the divergence-free constraint for a
given discretization in a diffuse sense. Dolbow and Belytschko [17] have proposed a mixed
displacement/pressure formulation and selective reduced integration to alleviate locking. Chen
et al. note that the use of large support size is computationally expensive and, moreover, can-
not remove pressure oscillations [20]. They proposed a pressure projection combined with a
reduced integration to remove pressure oscillations in nearly incompressible elasticity problems.
The NEM is a novel meshfree method. Its attractive features are: (a) interpolant character of
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the shape functions; (b) strict linearity of the shape functions over the boundaries;¶ and (c) the
support of the shape functions is based on the Delaunay spheres of the surrounding nodes, and
automatically adapts to the local nodal density. Properties (a) and (b) allow direct enforcement
of the essential boundary conditions and guarantees conforming approximations in presence
of interfaces [23]. Property (c) allows simple refinement strategies [24]. However, unlike the
moving least square (MLS) techniques, it is not possible to directly enrich the basis in order to
improve the reproducing conditions (approximation consistency). Sukumar [25] was the first to
propose a mixed NEM interpolation using constant piecewise shape functions for the pressure
approximation, and the standard NEM for the approximation of the displacements. González
et al. [26] proposed an enrichment of the NEM in the context of the partition of unity
paradigm [27] to construct richer approximations, in order to verify the inf–sup condition. Chen
et al. [28] proposed to use a stabilized nodal integration to avoid locking in near-incompressible
elastostatics. In this paper we propose a new approach in the context of the NEM allowing
to define stable mixed formulations for treating mechanical models involving incompressible
media. In the proposed technique, additional degrees of freedom associated with some topo-
logical entities of the underlying Delaunay tessellation, i.e. edges, triangles and tetrahedrons
are introduced. The associated bubble shape functions are computed from the product of the
NEM shape functions related to the generating nodes of the entity. Moreover, we have also
tested the use of the shape functions as weights in a MLS framework in order to enforce a
certain degree of consistency of the functional approximation (e.g. quadratic consistency). The
effect of the higher consistency will then be evaluated. The organization of this paper is as
follows. In Section 2 we review the interpolation scheme used in the displacement-based NEM.
In Section 3 we introduce the bubble-NEM approximation, focusing on two particular 2D cases
using bubble functions associated with (a) the Delaunay triangles, called b1-NEM and (b) with
the edges of the Delaunay triangles, called b2-NEM. It is proved that essential boundary condi-
tions can be enforced directly in both cases. In Section 4 we introduce a displacement/pressure
mixed formulation for the analysis of problems involving linear elasticity in the context of the
b-NEM. In Section 5 we discuss the inf–sup condition, and analyse the stability of the different
displacement/pressure discretization schemes previously introduced in the incompressible limit.

2. REVIEW OF THE NATURAL ELEMENT METHOD

2.1. Natural neighbour interpolation

We briefly touch upon the foundation of Sibson’s natural neighbour co-ordinates (shape func-
tions) that are used in the NEM. For a more in-depth discussion on the Sibson interpolant
and its application for solving second-order partial differential equations, the interested reader
can refer to References [12, 29]. The NEM interpolant is constructed on the basis of the
Voronoi diagram (see Figure 1). The Delaunay tessellation is the topological dual of the Voronoi
diagram.

¶This property is restricted to convex boundaries [12]. However, some techniques have been provided to extend
it to non-convex boundaries [21, 22].
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Figure 1. Voronoi diagram, Delaunay triangle and Delaunay circle.
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Figure 2. Construction of the Sibson shape functions.

Consider a set of nodes S = {n1, n2, . . . , nN } in �dim. The Voronoi diagram is the subdivision
of �dim into regions Ti (Voronoi cells) defined by

Ti = {x ∈ �dim : d(x, xi )<d(x, xj ) ∀j �= i} ∀i (1)

The Sibson co-ordinates of x with respect to a natural neighbour ni (see Figure 2) is defined
as the ratio of the overlap area (volume in 3D) of their Voronoi cells to the total area (volume
in 3D) of the Voronoi cell related to point x. If we consider the 2D example depicted in
Figure 2(a), we have

�1(x) = Area(afghe)

Area(abcde)
(2)

If point x coincides with the node ni , i.e. (x = xi), �i (xi ) = 1, and all other shape functions
are zero, i.e. �j (xi ) = �ij (�ij being the Kronecker delta), then the properties of positivity,
interpolation, and partition of unity are then verified [12]:

0��i (x) � 1
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�i (xj ) = �ij

n∑
i=1

�i (x) = 1 (3)

The natural neighbour shape functions also satisfy the local co-ordinate property [30], namely,

x =
n∑

i=1
�i (x)xi (4)

which combined with Equation (3), implies that the natural neighbour interpolant spans the
space of linear polynomials (linear completeness).

Sibson natural neighbour shape functions are C1 at any point except at the nodes, where
they are only C0. The C1 continuity everywhere can be obtained by using special classes of
natural neighbour shape functions [31].

The support (domain of influence) of a shape function �i is the union of the Delaunay
spheres (circumscribing the Delaunay tetrahedrons) containing the node ni . This support is
thus not radial and automatically adapts to the relative position of ni and its neighbours,
whether it is the density or the regularity of the nodal distribution.

Another important property of this interpolant is its strict linearity over the boundary of
convex domains. The proof can be found in Reference [12]. An illustration is depicted in
Figure 2(b): as the areas associated to points on the boundary become infinite, the contribution
of internal points vanish in the limit when the point approaches the convex boundary, and
the shape functions associated with nodes n1 and n2 become linear on the segment (n1–n2).
This is not true in the case of non-convex boundaries, and an appropriate treatment must
be introduced to preserve this property in non-convex domains [21, 22]. Essential boundary
conditions can thus be enforced directly, as in the finite element method. This property also
guarantees strict continuity of the approximation across material interfaces [23], which is an
issue in most meshfree methods.

Consider an interpolation scheme for a vector-valued function u(x) : � ⊂ �2 → �, in the
form

uh(x) =
n∑

i=1
�i (x)ui (5)

where ui are the nodal values of the field at the n natural neighbour nodes, and �i (x)

are the shape functions associated with each neighbour node. It is noted that Equation (5)
defines a local interpolation scheme. Thus, the trial and test functions used in the discretization
of the variational formulation describing the problems treated in this paper take the form of
Equation (5).

One of the drawbacks of the NEM is that natural neighbour shape functions can only
reproduce at best linear fields, which induces difficulties to construct mixed formulations,
where the different fields must be approximated in different approximation spaces in order to
avoid numerical locking (LBB condition [4]). In the next section, a new approach is proposed
to enrich the NEM approximation.
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3. HIERARCHICAL BUBBLE FUNCTIONS IN THE NATURAL ELEMENT METHOD

Consider an open bounded domain � ∈ �dim with boundary �, dim being the space dimension.
Assume that � is discretized by a set of nodes S. Let D(S) the simplicial complex associated
with the Delaunay tesselation of S. A simplicial complex K in �dim is a collection of simplices
(hypertetrahedra) in �dim such that

(i) every face of a simplex K is in K; and
(ii) the intersection of any two simplices of K is a face of each of them [32].
If we denote Fk the set of k-simplices (0 � k � 3), in R3 the Delaunay tessellation D(S)

will be defined as the simplicial complex defined by the tetrahedra in F3, the triangles in F2,
the edges in F1, and the vertices in F0. We denote these collections T (S), F(S), E(S) and
V (S), respectively.

In order to construct richer approximations, new shape functions can be associated with the
different k-simplices. The case 1 < k < 3 is related to the concept of hierarchical methods [33].
The concept of hierarchical bubble shape functions is a very simple way to construct richer
approximations. The extension to meshfree methods is not an easy matter in general, in the
absence of topology related to some elements. In the natural element, the underlying Delaunay
triangulation allows the use of such approach.

The key idea is to associate new shape functions to the k-simplices of the Delaunay tessel-
lation, i.e. tetrahedra T ′ ∈ T (S), triangular facets F ′ ∈ F(S) and edges connecting two nodes
in the Delaunay triangulation E′ ∈ E(S).

3.1. b-NEM approximation

A k-simplex (K-S) (vertex, edge, triangular facet or tetrahedron) is generated by K = k + 1
vertices (k = 0, 1, 2 and 3, respectively). The bubble shape function of an entity �j generated
by K vertices is computed as

�∗
j (x) =

K∏
p=1

�p(x) (6)

where �p(x) is the NEM shape function (Equation (2)) associated with node np computed at
point x.

The support (domain of influence) of a K-S generated by K vertices (nodes) in S is the
union of the Delaunay spheres containing the K nodes. It results, in 2D:

(i) if �j is a Delaunay triangle (� ∈ F(S)) (k = 2), the support of �j is composed with one
circle containing the 3 generating nodes of the triangle (see Figure 3(a)); and

(ii) if �j is an edge of a Delaunay triangle (� ∈ E(S)) (k = 1), the support of �j is composed
with the union of two circles (if �j /∈ �), or one circle if �j ∈ � (see Figure 3(b)),
containing the 2 generating nodes of �j .

We now consider the following approximation scheme:

uh(x) =
n∑

i=1
�i (x)ui +

m∑
j=1

�∗
j (x)�j (7)
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Figure 3. Supports of the bubble shape functions associated with the Delaunay k-simplex: (a) support
of a Delaunay triangle �j ni − nj − nk; and (b) support of a Delaunay edge �j ni − nj .

where n is the number of natural neighbours of point x, �i (x) is the NEM shape function
related to node ni ∈ S computed at point x, �∗

j (x) is the bubble shape function defined in
Equation (6) associated with the m influent K-S, and �j is an additional degree of freedom
(d.o.f.).

Remarks

(i) Different combinations can be chosen for enriching the approximation, i.e. using only
bubble functions associated with the edges, with the Delaunay triangles, or both. In
three dimensions, the number of possibilities is higher, as three topological entities can
be considered, i.e. edges, triangular facets and tetrahedrons. In this paper, we only focus
on the 2D case.

(ii) The evaluation of the bubble shape functions associated with the K-S is not costly as
it only requires the product of available NEM shape functions computed at point x.

(iii) The enrichment with one bubble function associated with each Delaunay triangle is
similar from the construction point of view to the MINI element [34], when one uses
the NEM shape functions instead of FEM shape functions.

(iv) Despite that the approximation scheme defined in Equation (7) is richer than standard
NEM approximation and can be used in mixed formulation, it does not satisfy any
reproducing property other than the linear consistency. A correction of these shape
functions in a MLS framework is proposed in the next section.

In this paper, two approximation schemes are investigated and compared: (a) one using
bubble functions associated with the Delaunay triangles (that we call b1-NEM); and (b) one
using bubble functions associated with the Delaunay edges (called b2-NEM).

3.2. b-NEM with reproducing properties

In this section we proceed to correct the shape functions previously constructed defining the
approximation scheme (7) within a standard MLS framework, in order to evaluate the benefits
provided by the higher approximation consistency. We briefly summarize the MLS procedure
[7, 8]. Let wi(x) some weight function either associated with a standard or a bubble-NEM
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shape function, computed at point x. Let the following approximation scheme:

uh(x) = pT(x)a(x) (8)

with pT(x) a polynomial basis, i.e. pT(x) = [1, x, y, xy] and pT(x) = [1, x, y, xy, x2, y2] for a
bilinear and quadratic basis, respectively, in 2D, and a(x) a vector of unknown coefficients. In
order to determine a(x), the functional J defined by Equation (9) has to be minimized with
respect to a(x):

J = 1

2

n∑
i=1

wi(x)[pT(xi )a(x) − ui]2 (9)

where ui are the nodal unknown associated with neighbours of point x. The minimization of
J with respect to the unknown coefficient aj (x) leads to

�J

�aj (x)
=

n∑
k=1

ak

[
n∑

i=1
wi(x)pj (xi )pk(xi )

]
−

n∑
i=1

wi(x)pj (xi )ui = 0 (10)

which leads to the linear system

A(x)a(x) = B(x)u (11)

where the matrix A(x) and B(x) are defined by

Ajk(x) =
n∑

i=1
wi(x)pj (xi )pk(xi ) (12)

Bij (x) = wi(x)pj (xi ) (13)

Substituting a(x) in Equation (8), it results

uh(x) = pT(x)A−1(x)B(x)u (14)

By identification, the new shape functions are given by

�T(x) = pT(x)A−1(x)B(x) (15)

The reproducing b-NEM shape functions are computed by setting wi(x) = {�i (x); �∗
j (x)},

�i (x) and �∗
j (x) being the shape functions defined in (2) and (6).

In the following, �(x) is a vector containing the shape functions associated with influent
nodes or K-S at point x. The properties of the resulting shape functions are discussed in
Section 3.3.

The shape functions derivatives are obtained from

��(x)

�x
= �pT(x)

�x
A−1(x)B(x) + pT(x)A−1(x)

�B(x)

�x
− pT(x)A−1(x)

�A(x)

�x
A−1B(x) (16)
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where

�Ajk(x)

�x
=

n∑
i=1

�wi(x)

�x
pj (xi )pk(xi ) (17)

�Bij (x)

�x
= �wi(x)

�x
pj (xi ) (18)

It should be noted that evaluation of (17) and (18) implies the computation of the derivatives
of the NEM shape functions. A closed form for the Sibson shape functions derivatives have
been provided by Piper [35]. Sibson shape function (related to node i and evaluated at point x)
can be written as

�i (x) = �i (x)∑n
j=1 �j (x)

(19)

We have

∇�i (x) = fi

di

(ci − x) (20)

where fi is the Lebesgue measure (length in 2D, area in 3D) of the Voronoi facet between ni

and x, di is the distance between ni and x, and ci is the vector containing the co-ordinates of
the centroid of the Voronoi facet between ni and x. If we consider the 2D case of Figure 2,
the Voronoi facet between node n1 and x is the segment a–e. The Sibson shape functions
derivatives are then expressed by

∇�i (x) = ∇�i (
∑n

j=1 �j (x)) − �i (x)(
∑n

j=1 ∇�j )

(
∑n

j=1 �j (x))2
(21)

Remark
The main difference between the reproducing-b-NEM and the b-NEM without additional repro-
ducing properties is that physical co-ordinates must be associated with each K-S shape function,
in order to evaluate the terms pj (xi ) and pk(xi ) in Equations (12) and (13). A simple solution
is to consider the K-S centroid co-ordinates.

In the following, the b1-NEM and b2-NEM schemes described in the previous section are
corrected using the MLS procedure just described. In the most unfavourable case a point x is
influenced by four shape functions in the b1-NEM (3 NEM shape functions, and 1 bubble shape
function associated with the Delaunay triangle), and being these weight functions independent,
the method is stable if the basis pT(x) contains 4 monomials. We call b1-NEM+ the enrichment
of the b1-NEM from pT(x) = {1, x, y, xy}. Following similar assumptions, b2-NEM+ results
from the enrichment of the b2-NEM using pT(x) = {1, x, y, xy, x2, y2}.

3.3. Boundary conditions

3.3.1. Essential boundary conditions. In the b-NEM, the essential boundary conditions can be
enforced directly, as in the standard NEM, due to the nullity of internal bubble functions on
the domain boundary, which we prove in the following paragraph.
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Property 1: Nullity of internal bubble functions along the boundary.

Proposition
Let �∗

i (x) an internal bubble function such as:

(a) �∗
i (x) is associated with a Delaunay triangle in �; or

(b) �∗
i (x) is associated with a Delaunay edge E′ /∈ �.

Then �∗
i (x) vanishes over the convex boundary � of the domain.

Proof
It has been shown in Reference [12] that influence of interior nodes vanishes along the convex
boundaries of the domain, due to the infinite Lebesgue measure of the second-order Voronoi
cells used in the computation of the natural neighbour shape functions (see Figure 2(b)). If we
consider a point x lying over a segment formed by two nodes, n1 and n2, of the boundary
(see Figure 4), we have

�1(x) �= 0, �2(x) �= 0, �3(x) = 0 (22)

In the context of the b1-NEM (one bubble function associated with each Delaunay triangle)
we have (see Figure 4(a)):

�∗
4(x) = �1(x)�2(x)�3(x) (23)

with �i (x) the NEM shape function associated with the node ni computed at point x. As x
reaches the boundary �, �3(x) vanishes, implying the nullity of �∗

4(x) (see Figure 5).In the
context of the b2-NEM (one bubble function associated with each Delaunay edge), we have,
x lying over � (see Figure 4(b)):

�∗
4(x) = �1(x)�2(x) �= 0, �∗

5(x) = �1(x)�3(x) = 0, �∗
6(x) = �2(x)�3(x) = 0 (24)

�

 χ4
 χ6

 χ4

 χ5

n1

n2

n3

n1 n2

n3

ΓΓ(a) (b)
ξ

η

Figure 4. Nullity of internal shape functions over convex boundaries (filled circles refer to the original
nodes and the empty ones are not real nodes, they indicate the existence of a bubble shape function

related to the geometrical entity where the circle is located).
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Figure 5. (a) Support of the bubble shape function of �j ; and (b) plot of the bubble shape
function of �j (triangle n1, n2, n3).

Remark
Property 1 is true over any kind of boundary, convex or not, if a criterion is introduced to
restrict influences between nodes over non-convex boundaries, e.g. a visibility criterion (C-NEM
approach [21]) or the �-shape formalism (�-NEM approach [22]). In the following, we assume
that such criterion is used to generalize all the results to any kind of boundary, convex or not.

Now, we prove how this property allows direct enforcement of essential boundary
conditions.

• b1-NEM
In the context of the b1-NEM, all the bubble functions vanish over the boundaries �. Due
to the Kronecker delta property and the strict linearity [12] of the NEM shape functions
over the boundaries, essential boundary conditions can be enforced directly. This is also
true for corrected shape functions (b1-NEM+).

• b2-NEM
Let x be a point lying over the boundary � (see Figure 4(b)). Due to property 1, we
have, in the context of the b2-NEM:

uh(x) = �1(x)u1 + �2(x)u2 + �1(x)�2(x)� (25)

where �i (x) is the linear shape function related to node ni ∈ �, x ∈ �, ui is the nodal
value at node ni , and � an additional degree of freedom related to the bubble shape
function. As the bubble function �1(x)�2(x) vanishes at the nodes, we have uh(xi ) = ui .
The exact values of the field uex(xi ) can thus be enforced at the nodes ni ∈ �. Using
Equation (25), the value of � is set according to

� = uex(x̄) − (�1(x̄)uex(x1) + �2(x̄)uex(x2))

�1(x̄)�2(x̄)
(26)

where x̄ is an arbitrary position along the edge n1–n2 (i.e. the middle of the edge). In
this form we can enforce exactly linear or quadratic essential boundary conditions.
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• b2-NEM+
In the context of the b2-NEM+, we firstly prove that the resulting shape functions match
exactly the 1D quadratic FE shape functions along the boundary edge n1–n2, allowing
direct imposition of the essential boundary conditions over the boundary, being exact
for linear or quadratic essential boundary conditions. For this purpose, we introduce the
following property:

Property 2: Quadratic b2-NEM+ shape function along convex boundaries.
As discussed in Section 3.1, physical co-ordinates must be associated with each K-S in

the context of the reproducing b-NEM. Let n(�j ) the centroid of an edge �j generated by
two nodes.

Proposition
The b2-NEM+ shape functions associated with the nodes nl ∈ S, nl ∈ �, and with nodes n(�j ),
�j ∈ � match the 1D quadratic Lagrange FE shape functions.

Proof
We consider, in the situation depicted in Figure 6, a point located on an edge �3 ∈ �, E′ being
generated by the nodes n1–n2. Let n(�3) the node associated with the edge �3. The position of
point � is expressed in the 1D basis (n1, �), with � = n1n2/‖n1n2‖. We set �1 = 0, �2 = 1 and
�3 = 1/2 (see Figure 6(a)). As influence of interior nodes vanish, the shape functions associated
with nodes n1 and n2 become linear. The weight functions wi(x) used to compute A(�) and
B(�) in Equations (12) and (13) are then given by

w1(�) = 1 − �, w2(�) = �, w3(�) = �(1 − �) (27)

Introducing the weight functions (27) into (12) and (13), we obtain the following closed
form for matrix A(�) and B(�), with p(�)T = [1, �, �2]:

A(�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + � − �2)
�

2
(3 − �)

�

4
(5 − �)

�

2
(3 − �)

�

4
(5 − �)

�

8
(9 − �)

�

4
(5 − �)

�

8
(9 − �)

�

16
(17 − �)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

B(�) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 − �) � �(1 − �)

0 �
�

2
(1 − �)

0 �
�

4
(1 − �)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(29)
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Figure 6. One-dimensional b2-NEM+ weight and shape functions.

Applying the standard procedure, we obtain the following closed form for A(�)−1:

A(�)−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

(1 − �)

3

(� − 1)

2

(1 − �)

3

(� − 1)

8� + 17

�(1 − �)

2(2� + 9)

�(� − 1)

2

(1 − �)

2(2� + 9)

�(� − 1)

20

�(1 − �)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(30)

It thus leads to

N(�) = pT(�)A(�)−1B(�) (31)

whose components result in

N1(�) = �1(�) = 1 − 3� + 2�2

N2(�) = �2(�) = �(2� − 1) (32)

N3(�) = �∗
3(�) = 4�(1 − �)

which precisely match the 1D Lagrange polynomial shape function of second degree:

Ni(�) = (� − �j )(� − �k)

(�i − �j )(�i − �k)
1 � i � 3, i �= j �= k (33)

by setting �1 = 0, �2 = 1, �3 = 1/2. The b2-NEM+ weight and shape function along a boundary
are depicted in Figure 6(b).

We thus have uh(xi ) = ui and uh(xj ) = �j , xj being the centroid of the Delaunay edge of
the boundary �. In this context, the additional degrees of freedom associated with the edges
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Figure 7. (a) Shape function support of ni ; (b) shape function support of �j ; (c) shape function
related to ni ; and (d) shape function related to �j .

of the boundary � can be enforced by imposing the value of the exact field uex(xj ). Some
plots of b2-NEM+ shape functions in the domain are depicted in Figure 7.

3.3.2. Natural boundary conditions. As the b1-NEM shape functions associated with the addi-
tional degrees of freedom vanish along the boundaries, and as the b2-NEM shape functions can
be expressed analytically along the boundaries as linear or quadratic polynomials, the boundary
integral related to the natural boundary conditions can be easily evaluated.
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4. PROBLEM FORMULATION

4.1. Strong form

In order to analyse the just proposed approximations, we consider the mixed displacement/
pressure formulation in linear elastostatics.

Consider an open bounded domain � ∈ �2 with boundary �, being �̄ = � ∪ � the closure
of �. Let n be the unit outwards vector defined on �. Here we consider both the compressible
and the incompressible material behaviour. Traction is prescribed on the boundary �t being
the displacement imposed in the complementary part of the boundary �u (�̄ = � ∪ �). Let �
be the Cauchy stress tensor, u the displacement field, and b the body force. The elastostatic
boundary value problem is given by

∇ · � + b = 0 in � (34)

∇ · u + p

�
= 0 in � (35)

u = ū on �u (36)

� · n = t̄ on �t (37)

where the Cauchy stress tensor � is related to the strain tensor � in isotropic linear elastostatics
from the constitutive equation:

� = − p1 + 2�� (38)

In Equation (38), � and � are the Lamé coefficients which for plane strain are defined as

� = 	E

(1 + 	)(1 − 2	)
, � = E

2(1 + 	)
(39)

where E is the Young’s modulus and 	 is the Poisson’s coefficient. The kinematical relation
between the linearized strain tensor � and the displacement vector u is

� = 1
2 (∇u + (∇u)T) (40)

4.2. Weak form

We first define the trial and test functional spaces for the displacements and the pressure
approximation. Following Hughes [36] we let u ∈ V = (H 1(�))2, �u ∈ V0 = (H 1

0 (�))2, p, �p ∈
P = L2(�), being H 1(�) and H 1

0 (�) the usual Sobolev functional spaces and L2(�) the
Lebesgue space. In the numerical implementation, finite-dimensional subspaces are used as the
trial and test spaces for the displacements and pressure. Let Vh ⊂ V and Vh

0 ⊂ V0 be the trial
and test spaces for the displacements, and Ph ⊂ P be the trial and test space for the pressure.
Since the test functions �uh and �ph are independent and arbitrary, we obtain the Hermann
variational form associated with Equations (34) and (35):
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Find (uh, ph) ∈ Vh × Ph such that

a(uh, �uh) + b(�uh, ph) =
∫

�
b · �u d� +

∫
�u

t̄ · �u d� ∀�uh ∈ Vh
0 (41)

b(uh, �ph) − 1

�
(ph, �ph) = 0 ∀�ph ∈ Ph (42)

where

a(uh, �uh) = 2�
∫

�
�(uh) : �(�uh) d� (43)

b(�uh, ph) = −
∫

�
ph∇ · �uh d� (44)

In a displacement/pressure mixed formulation for linear elasticity, the bilinear form a(uh, �u) :
V h×V0 → � is symmetric, bounded, and positive definite. Hence, for the displacement–pressure
pair (u, p) to be the unique solution in Equation (41), the bilinear forms a(uh, �u) and
b(�uh, ph) : V0 × P → � must satisfy the following conditions [4]: (i) the continuity of a(. , .)

and b(. , .), (ii) the coercivity of a(. , .) and b(. , .), and (iii) b(. , .) must satisfy the LBB
condition:

inf
ph∈P h

sup
vh∈V h

|b(uh, ph)|
‖uh‖V ‖ph‖P

� 
>0 (45)

4.3. Natural element discretization

We consider a Galerkin procedure where displacement trial and test functions are interpolated
using the same shape functions, as the same for the pressure trial and test functions. In the
following, the pressure is interpolated using the standard (Sibson) NEM shape functions, while
the displacements are interpolated using the b-NEM shape functions defined in Section 3.

4.3.1. b-NEM displacements interpolation. In the context of the b-NEM, the following approx-
imation scheme is used for the displacements interpolation:

uh(x) =
n∑

i=1
�i (x)ui +

m∑
j=1

�∗
j (x)�j , �uh(x) =

n∑
i=1

�i (x)�ui +
m∑

j=1
�∗

j (x)��j (46)

ph(x) =
n∑

i=1
�i (x)pi, �p(x) =

n∑
i=1

�i (x)�pi (47)

where �i (x) is the usual (Sibson) NEM shape function related to node ni computed at point x,
�∗

j (x) is the bubble shape function associated with the K-S �j , being �j the degree of freedom
associated with �j , n the number of neighbour nodes related to point x and m the number
of influent K-S at point x (number of K-S shape functions whose support contains x). The
strain–displacement relation for the displacement trial function can be written as

�h(x) = {B(�i ); B(�∗
i )}

[
u

�

]
(48)
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where

B(�i ) =

⎡
⎢⎢⎣

�1,X 0 �2,X 0 . . . �N,X 0

0 �1,Y 0 �2,Y . . . 0 �N,Y

�1,Y �1,X �2,Y �2,X . . . �N,Y �N,X

⎤
⎥⎥⎦ (49)

B(�∗
i ) =

⎡
⎢⎢⎣

�∗
1,X 0 �∗

2,X 0 . . . �∗
M,X 0

0 �∗
1,Y 0 �∗

2,Y . . . 0 �∗
M,Y

�∗
1,Y �∗

1,X �∗
2,Y �∗

2,X . . . �∗
M,Y �∗

M,X

⎤
⎥⎥⎦ (50)

where N are the total number of original nodes and M the number of K-S shape functions
considered.

The divergence of the displacement trial solution is given by

∇ · uh(x) = {B̃(�i ); B̃(�∗
i )}

[
ui

�

]
(51)

where

B̃(�i ) = [
�1,X �1,Y �2,X �2,Y . . . �N,X �N,Y

]
(52)

B̃(�∗
i ) = [

�∗
1,X �∗

1,Y �∗
2,X �∗

2,Y . . . �∗
M,X �∗

M,Y

]
(53)

4.3.2. b-NEM+ interpolation. In the context of the b-NEM+, the following approximation
scheme is used for the displacements interpolation:

uh(x) =
n+m∑
i=1

�i (x)ui , �uh(x) =
n+m∑
i=1

�i (x)�ui (54)

ph(x) =
n∑

i=1
�i (x)pi, �ph(x) =

n∑
i=1

�i (x)�pi (55)

where �i (x) are the corrected shape functions computed at point x using the MLS technique
described in Section 3.2, n + m the number of influent shape functions, including nodes and
K-S shape functions, ui contains both displacements associated with the nodes, and nodes that
have been associated to the K-S shape functions in the MLS procedure. Thus, it results in

�h(x) = B(�i )u (56)

The divergence of the displacement trial solution is given by

∇ · uh(x) = B̃(�i )u (57)
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4.3.3. Matrix form. On substituting the displacements and pressure trial and test functions in
Equations (41) and (42) and using the arbitrariness of displacements and pressure variations,
the following discrete system of equations is obtained [36]:[

K GT

G M

] {
u

p

}
=

{
f

0

}
(58)

where

K =
∫

�
2�B̄TB̄ d� (59)

G = −
∫

�
�T ¯̃B d� (60)

M = −1

�

∫
�

�T� d� (61)

f =
∫

�
NTb d� +

∫
�t

NT t̄ d� (62)

where {
B̄ = {B(�i ); B(�∗

i )} (b-NEM)

B̄ = B(�i ) (b-NEM+)

⎧⎨
⎩

¯̃B = {B̃(�i ); B̃(�∗
i )} (b-NEM)

¯̃B = B̃(�i ) (b-NEM+)

(63)

{
N = {�i; �∗

i } (b-NEM)

N = �i (b-NEM+)
(64)

In the above equations, u is the vector containing all the displacement degrees of freedom
and p is the vector of nodal pressures. The matrix K is symmetric positive definite, and the
matrix M is symmetric (M = 0 when 	 = 0.5) and the matrix G is the discrete divergence
operator.

4.4. The numerical inf–sup test

The numerical inf–sup test is based in the next results:

Proposition
Let Mv and Mq be the mass matrices associated to the scalar product of V h

0 and P h
0 , respec-

tively, and let �min be the smallest non-zero eigenvalue defined by the following eigenproblem:

GTMqGu = �2Mvu (65)

Then the value of 
 in Equation (45) is simply �min, and the matrix Mq and Mv defined
such as:

‖uh‖H 1 = uhT
Mvuh (66)
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‖ph‖L2 = phT
Mqph (67)

and thus read

Mq =
∫

�
�T� d� (68)

Mv =
∫

�
(B̄TB̄ + NTN) d� (69)

The proof can be found in Reference [4] or [5]. The numerical test proposed in Reference [6]
consists in testing a particular formulation by calculating 
 using meshes of increasing refine-
ment. On the basis of three or four results it can be predicted whether the inf–sup value is
probably bounded from underneath or, on the contrary, goes down to zero when the mesh is
refined. The good behaviour of this test is demonstrated on several examples of elements for
the incompressible elasticity problem in Reference [6]. In the following section this test is used
to check the behaviour of the proposed b-NEM mixed approximation schemes.

5. NUMERICAL EXAMPLES

The application of the mixed NEM to problems in small displacements and strains compressible
as well as near-incompressible 2D elastostatics, in the absence of body forces, is analysed in
the present section.

5.1. Numerical test for the inf–sup condition

In order to perform the inf–sup test a sequence of successive refined meshes is considered
(uniform distributions). The objective is to monitor the inf–sup values, 
, when h decreases. If
log 
 decreases with log h, the approximation scheme does not pass the LBB numerical test,
which requires that log 
 remains bounded by a positive constant when log h decreases.

Figure 8 shows numerical test comparing some mixed NEM approximation schemes, i.e.
b-NEM/NEM, NEM/Thiessen [25] (NEM approximation for the displacements and constant
pressure within each Voronoi cell), and the P1/P0 and P2/P1 mixed FEM approximation
schemes. The FEM computations are carried out using directly the Delaunay triangles. As
claimed in other previous works [26], the mixed NEM/Thiessen approximation scheme does
not pass the numerical inf/sup test. The mixed FEM P1/P0 also violates the LBB condition [6].
All the bubble-NEM schemes are clearly LBB compliant, being the results similar to the ones
computed by using the P2/P1 FEM, which satisfy the LBB condition.

5.2. Cantilever beam

Figure 9 depicts a cantilever beam subjected to a parabolic load on its left boundary. The
beam has length L, height D, and unit thickness. The displacement solution can be found, for
example, in Reference [37]:

u = −Py

6ĒI

[
(6L − 3x)x + (2 + 	̄)y2 − 3D2

2
(1 + 	̄)

]
(70)
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Figure 9. Geometry of the cantilever beam problem.

v = P

6ĒI
[3	̄y2(L − x) + (3L − x)x2] (71)

The stress solution results in

�11 = −P(L − x)y

I

�22 = 0 (72)

�12 =
P

(
D2

4
− y2

)
2I
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(a) (b)

Figure 10. Nodal discretization for the cantilever beam problem, 85 nodes: (a) mixed
NEM/NEM and b1-NEM/NEM; and (b) mixed b2-NEM/NEM (empty dots represent

the centroid of the Delaunay edges).

The material parameters are defined in plane strain by

Ē = E

(1 + 	)

	̄ = 	

(1 − 	2)

(73)

and the moment of inertia I related to rectangular beam cross-section with unit thickness, is:

I = D3

12
(74)

In the numerical model, the analytical displacement solution (Equations (70) and (71)) is
prescribed on the boundary �u : x = 0, −D/2 � y �D/2 (Figure 9). On the remaining part of
the boundary, exact traction is enforced. The following parameters are used in the numerical
computations: P = 1000 MPa, D = 1 mm, L = 4 mm and plane strain conditions are assumed.

The mixed natural element displacement/pressure formulation is applied to both the com-
pressible and near-incompressible cases. The numerical computations are carried out using
different nodal discretizations, namely 85, 297 and 1105 nodes. Equal nodal spacing in the
x- and y-direction is used in each of the above nodal distributions. In the case of the b2-NEM,
we consider the spacing h between a node and a contiguous edge centroid. An example in-
volving 85 nodes is shown in Figure 10. In the mixed NEM/NEM, the same set of nodes is
used for both the displacements and the pressure interpolations. In the mixed b-NEM/NEM,
the set of original nodes (black dot in Figure 10(b)) is used to discretize the pressure using
the standard NEM interpolation scheme. The bubble shape functions are computed using Equa-
tions (7) (b-NEM) or (15) (b-NEM+). A convergence study for the cantilever beam problem
is carried out, using the energy norm defined by

‖u − uh‖E(�) =
(

1

2

∫
�
(� − {−ph1 + 2��h}) : (� − �h)

)1/2

(75)

In Figure 11 the relative energy norm is plotted against the nodal spacing h on a
log–log plot. Results are presented for the NEM/NEM displacement/pressure and b1-NEM/NEM
displacements/pressure formulations. The error norm computations are carried out for five dif-
ferent values of the Poisson’s ratio: 	 = 0.4, 	 = 0.49, 	 = 0.499, 	 = 0.49999, 	 = 0.5−1 × 10−10

(quasi-incompressibility). It can be noticed that a significant loss of accuracy is obtained for
the NEM/NEM formulation in the incompressibility limit. On the other hand, the relative error
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Figure 11. Error in energy norm of mixed b1-NEM/NEM approximation
versus mixed NEM/NEM approximation.

norms, using the mixed b1-NEM/NEM are independent of the Poisson’s ratio 	. No significant
improvement is obtained by using the MLS correction (b1-NEM+).

The same study is carried out using the mixed b2-NEM/NEM interpolation scheme. Similar
results are presented in Figure 12, showing that the relative error norms using the mixed
b2-NEM/NEM are independent of the Poisson’s ratio 	, even for quasi-incompressibility
(	 = 0.5 − 1 × 10−10). As before, no appreciable improvements are attained by using the MLS
correction (b2-NEM+).

Finally, the convergence of the different mixed approximation schemes (b1-NEM/NEM,
b1-NEM+/NEM and b2-NEM/NEM) are compared in Figure 13, allowing to conclude about
the better accuracy of mixed b2-NEM/NEM approximations.

Pressure is computed along the mid-section of the beam using the mixed b1-NEM/NEM,
b2-NEM/NEM and NEM/NEM mixed approximations. In Figure 14, the variation of the
pressure p for the nodal spacing h = 1/4 is plotted for the compressible case (	= 0.4). In
Figures 15 and 16 the pressure is plotted for the near-incompressible case (	= 0.499), h = 1/4,
h = 1/16. The pressure oscillations for the NEM/NEM are fairly pronounced. On the contrary,
the b1-NEM/NEM or the b2-NEM/NEM exhibits excellent results without any oscillations.

5.3. Infinite plate with a circular hole

The classical problem of an infinite plate containing a circular hole shown in Figure 17 is
analysed when a unit traction in the x-direction is assumed far from the hole.
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The exact solution of this problem can be found in Reference [38]:

�11(r, 
) = 1 − a2

r2

{
3

2
cos(2
) + cos(4
)

}
+ 3

2

a4

r4
cos(4
) (76)

�22(r, 
) = −a2

r2

{
1

2
cos(2
) − cos(4
)

}
− 3

2

a4

r4
cos(4
) (77)

�12(r, 
) = −a2

r2

{
1

2
sin(2
) + sin(4
)

}
+ 3

2

a4

r4
sin(4
) (78)

The displacement components are then:

u(r, 
) = a

8�

[
r

a
(� + 1) cos(
) + 2

a

r
((1 + �) cos(
) + cos(3
)) − 2

a3

r3
cos(3
)

]
(79)

v(r, 
) = a

8�

[
r

a
(� − 3) sin(
) + 2

a

r
((1 − �) sin(
) + sin(3
)) − 2

a3

r3
sin(3
)

]
(80)
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Figure 14. Pressure profile along the beam mid-section (	= 0.4, h = 1/4).

where � is the shear modulus and � (Kolosov constant) is defined as

� =
⎧⎨
⎩

3 − 4	 (plane strain)

3 − 	

1 + 	
(plane stress)

(81)
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Figure 15. Pressure profile along the beam mid-section (	= 0.499, h = 1/4).
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Figure 16. Pressure profile along the beam mid-section (	= 0.499, h = 1/16).

The unbounded plate is truncated and modelled as a square with a central hole of radius
a = 0.2 mm and width 2L = 2 mm. Only one quadrant of that plate is analysed by symmetry
considerations. The nodal distribution related to a spacing h = 1/16 is depicted in Figure 18.

Displacement boundary conditions are prescribed on x = 0 and y = 0, being the traction
enforced in the remaining part of the domain boundary. Plane strain conditions are assumed.

Figure 19 compares the exact and computed pressures along 
 = 0. The computed pres-
sure is obtained by using the NEM/NEM, b1-NEM/NEM and b2-NEM/NEM mixed formu-
lations when the incompressible limit is approached (	 = 0.499). It can be noticed that the
b1-NEM/NEM and b2-NEM provide excellent results and no oscillations are observed in the
computed results. On the contrary, significant spurious oscillations appear when the mixed
NEM/NEM is used.
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Figure 17. Plate with a circular hole under tension.

(a) (b)

Figure 18. Nodal distribution corresponding to: (a) NEM/NEM and b1-NEM/NEM mixed formulations;
and (b) b2-NEM/NEM mixed approximation.

6. CONCLUSION

We present a new approach for accounting incompressibility in the context of the natural
element method (NEM), based on the definition of natural element bubbles approximation
functions. In this variant of the NEM, which we refer as b-NEM, standard natural neighbour
interpolation scheme is enriched with some bubble functions associated with the topological
entities of the Delaunay tessellation of the set of nodes (edges or triangles in 2D), com-
puted from the product of standard NEM shape functions related to the original nodes. In this
manner the computation of these new shape functions does not imply additional costly com-
putations. The mixed b-NEM/NEM approximation scheme has been tested in the context of
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Figure 19. Exact and computed pressures p along 
 = 0 for 	 = 0.499.

near-incompressible elastostatics. The numerical inf–sup test is satisfied and pressure oscillations
are removed.

We have also corrected the resulting approximation schemes (b1-NEM or b2-NEM) enforcing
some reproducing conditions (bilinear or quadratic) using the moving least square technique. In
that case, the enriched approximations are noted by b1-NEM+ and b2-NEM+. The technique
just proposed allows higher approximation consistency than standard NEM, such as quadratic
approximation for b2-NEM+. However, no significant improvement is noticed in the resolution
convergence that remains first order, probably due to numerical integration, whose analysis is
a work in progress.
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