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Abstract: The mechanical behavior of polycrystalline metals can be successfully modeled by macroscopic 
theories, such as Von Mises plasticity. On the other hand, numerous studies can be performed on the atomic 
scale, either by atomistic or dislocation dynamics models. The proposed model attempts to bridge those 
two scales by deriving constitutive relations between slip strains, dislocation densities and resolved shear 
stresses on crystallographic planes, from mechanisms of deformation playing at the level of the disloca­
tion line. The resulting "mesoscopic" hardening relations are controlled by dislocation self energies and 
junctions strengths. Temperature and strain rate dependence result from the presence of thermally activated 
mechanisms such as Peierls barriers or pair annihilation by cross slip. A set of material parameters is iden­
tified for Tantalum by fitting the numerical stress strain curves from these tests with experimental results 
gathered in the literature. These parameters prove to be in very good agreement with the values which can 
be derived from molecular dynamics computations. 

1 INTRODUCTION 

The present paper is concerned with the development of a micromechanical model of the hardening, rate­
sensitivity and thermal softening of b.c.c. crystals. We place primary emphasis on the derivation of closed­
form analytical expressions describing the macroscopic behavior of the crystals amenable to implementa­
tion as constitutive relations within a standard finite-element code. In developing the model, we follow the 
well-established paradigm of micromechanical modeling, consisting of: the identification of the dominant 
or rate-limiting 'unit' processes operating at the microscale; the identification of the macroscopic forces 
driving the unit processes; the analysis of the response of the unit processes to the macroscopic driving 
forces; and the determination of the average or macrocospic effect of the combined operation of all the 
micromechanical unit processes. We show in this article that the meticulous application of this paradigm 
renders truly predictive models of the mechanical behavior of complex systems. In particular we predict 
the hardening of Ta single crystal and its dependency for a wide range of temperatures and strain rates. 
The feat of this approach is that predictions from these atomistically informed models recover most of the 
macroscopic characteristic features of the available experimental data, without a priori knowledge of such 
experimental tests. This approach then provides a procedure to forecast the mechanical behavior of material 
in extreme conditions where experimental data is simply not available or very difficult to collect. 

In formulating the present model we specifically consider the following unit processes: double-kink 
formation and thermally activated motion of kinks; the close-range interactions between primary and forest 
dislocations, and the subsequent formation of jogs; the percolation motion of dislocations through a random 
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Figure 1: Schematic of the double-kink mechanism. 

array of forest dislocations introducing short-range obstacles of different strengths; dislocation multiplica­
tion due to breeding by double cross-slip; and dislocation pair annihilation. We believe that this forms an 
'irreducible' set of unit processes, in that each of these processes accounts for-and is needed for matching­
salient and clearly recognizable features of the experimental record. We validate the micromechanical 
model by recourse to detailed comparisons with the uniaxial tension tests on Ta single crystals of Mitchell 
and Spitzig [1]. The model is found to capture salient features of the behavior of Ta crystals. 

2 UNIT MECHANISMS 

In this section, we introduce the set of controlling unit processes which have been identified for describ­
ing the mechanical response of high-purity b.c.c. single crystals, in particular for Tantalum. A detailed 
description of the model, including comparison with experimental data is given in [2]. 

2.1 Dislocation Mobility: Double-Kink Formation and Thermally Activated Motion of Kinks 

ln b.c.c. crystals, the core of screw dislocation segments relaxes into low-energy non-planar configurations. 
This introduces deep valleys into the Peierls energy function aligned with the Burgers vector directions 
and possessing the periodicity of the lattice. At low temperatures, the dislocations tend to adopt low­
energy configurations and, consequently, the dislocation population predominantly consists of long screw 
segments. In order to move a screw segment normal to itself, the dislocation core must first be constricted , 
which requires a substantial supply of energy. Thus, the energy barrier for the motion of screw segments, 
and the attendant Peierls stress, may be expected to be large, and the energy barrier for the motion of 
edge segments to be comparatively smaller. This suggests that the rate-limiting mechanism for dislocation 
motion is the thermally activated motion of kinks along screw segments ([3, 4, 5)). 

At sufficiently high temperatures and under the application of a resolved shear stress T > 0, a double­
kink may be nucleated with the assistance of thermal activation (e.g., [6, 7, 8)), and the subsequent motion 
of the kinks causes the screw segment to effectively move forward, Fig. I. Under this conditions the 
following expression for the effective temperature and strain-rate dependent Peierls Tp is obtained: 

To . ( "y flEk;nk) Tp = ,6Ekinkasmh "rtnk e-

where the effective Peierls stress is given by 

Ekink 
To = bLkink[p

(1) 

(2) 
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Figure 2: Bow-out mechanism for a dislocation segment bypassing an obstacle pair 

and the reference strain is defined as 

(3) 

In the preceeding equations, bis the Burgers vector, pis the dislocation density, {3 = 1/kBT, kB is Boltz­
mann's constant, Tis the absolute temperature, and vv is the attempt frequency which may be identified 
with the Debye frequency to a first approximation. Also, lp is the distance between two consecutive Peierls 
valleys. For b.c.c. crystals, lp = J2/3a if the slip plane is {110}, lp = v"2a, if the slip plane is {112}, and 
lp = V8f3a if the slip plane is {123}, where a is the cubic lattice size [9]. Finally, Ekink is the energy of 
formation of a kink-pair and £kink is the length of an incipient double kink. The formation energy Ekink and 
the length £kink, which cannot be reliably estimated from elasticity since the energy is composed mostly of 
core region, can, however, be accurately computed by recourse to atomistic models. Modeling of this first 
unit process renders the first 2 material properties amenable of atomistic calculations. 

2.2 Dislocation Interactions: Obctacle-Pair Strength and Obstacle Strength 

2.2.1 Obstacle-Pair Strength 

We begin by treating the case of infinitely strong obstacles. In this case, pairs of obstacles pin down 
dislocation segments, which require a certain threshold resolved shear stress s in order to overcome the 
obstacle pair. The lowest-energy configuration of unstressed dislocation segments spanning an obstacle 
pair is a step of the form shown as the thin line in Fig. 2. Under these conditions, the bow-out mechanism 
by which a dislocation segment bypasses an obstacle pair may be expected to result in the configuration 
shown in Fig. 2 (bold line). If the edge-segment length is le, a displacement dae of the dislocation requires 
a supply of energy equal to 2uscrew dae + bT;ge ledae in order to overcome the Peierls resistance T;ge and to 
extend the screw segments. The corresponding energy release is bTledae. Similar contributions result from 
a displacement da, of the screw-segment of length l,. Retaining dominant terms the obstacle-pair strength 
is 

2uec1ge 8 = 7screw + __ p bl. 
(4) 

The obstacle-pair strength can be therefore estimated by quantifying Tp, l, and uedge. An expression for
the Peierls stress Tp is given in Eq. (1), the distance between obstacles along the screw direction l, is
estimated by statistics assuming a random obstacle distribution and the core energy per unit length in the 
edge direction Uedge can be obtained by atomistic calculations. 

2.2.2 Obstacle Strength 

For purposes of the present theory, we specifically concern ourselves with short-range interactions between 
dislocations which can be idealized as point defects. For simplicity, we consider the case in which each 
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Figure 3: Schematic of energy variation as a function of a reaction coordinate during dislocation intersection 
and crossing. 

intersecting dislocation acquires a jog. The energy of a pair of crossing dislocations is schematically shown 
in Fig. 3 as a function of some convenient reaction coordinate, such as the distance between the dislocations. 
The interaction may be repulsive, resulting in an energy barrier, or attractive, resulting in a binding energy, 
Fig. 3. In the spirit of an equilibrium theory, here we consider only the final reaction product, corresponding 
to a pair of jogged dislocations at infinite distance from each other, and neglect the intermediate states 
along the reaction path. In addition, we deduce the strength of the obstacles directly from the energy supply 
required to attain the final state, i. e. the jog-formation energy. Based on energy and mobility considerations 
already discussed, we may expect the preponderance of forest dislocations to be of screw character, and the 
mobile dislocation segments to be predominantly of edge character. We therefore restrict our analysis to 
intersections between screw and edge segments. The geometry of the crossing process is schematically 
shown in Fig. 4(a). Each dislocation acquires a jog equal to the Burgers vector of the remaining dislocation. 
The energy expended in the formation of the jogs may be estimated as 

EJogs ,.._, 
. { bUscrew [1 - r cos gafJ] a(J buscrew [2r -cos(ef3a) - rcoseafJ] 

ifbOI =bfJ 

otherwise 
(5) 

where r = Uedge ;uscrew is the ratio of screw to edge dislocation line energies. This ratio, when computed 
by atomistic calculations [10], renders a value of r = 1.77 for Ta. A derivation entirely analogous to 
that leading to Eq. (1) yields the following expression for the strength of an obstacle in the slip system a 
produced by a forest segment in the system f3 

saf3 = 8�(3 asinh (-ya ef3E:3) f3E;og i'() 

where the strength at zero temperature and the reference strain rate are given by 

and 

(6) 

(7) 

The lengths za and I)unct describe the geometry of the junction as illustrated in Fig. 4(b). These values, 
which have been estimated to be of the order of few b in the present case, can also be obtained by atomistic
models. 

2.3 Dislocation Evolution: Multiplication and Attrition 

Processes resulting in changes in dislocation density include production by fixed sources, such as Frank­
Read sources, breeding by double cross slip and pair annihilation (see [11] for a review). Although the 
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(a) formation of jogs (b) dislocation line overcoming a junction 

Figure 4: Schematic of jog formation during dislocation intersection 

operation of fixed Frank-Read sources is quickly eclipsed by production due to cross slip at finite tempera­
tures, it is an important mechanisms at low temperatures. The double cross-slip, fixed Frank-Read sources 
and pair annihilation mechanisms are next considered in tum. 

2.3.l Dislocation Multiplication: Fixed Frank-Reed and Breeding by Cross Glide 

The rate of dislocation multiplication in a given slip system lt produced by fixed Frank-Reed sources and 
by breeding by cross glide is written as 

(8) 

where >.0 is a constant associated with the fixed Frank-Read production; this parameter is rather topological 
than material dependent. 

2.3.2 Attrition: Pair Annihilation 

The rate of dislocation attrition due to pair annihilation may finally be estimated as: 

bf/'- = -Kp°';.,('" (9) 

where K is the effective annihilation distance. This is the maximum distance at which two screw segments 
with opposite direction and forced to move with a velocity v = 1/bp will annihilate. This distance can 
be estimated by simply equating the time required for trapping and escaping. Trapping is governed by the 
elastic interaction forces (attraction) while escaping by the applied strain rate. Then, 

where 

1 1 1 
-=-+---,.---===:,.-
K Kc Ko(A+JA2+I) 

and 

(IO) 

(11) 

are respectively a factor depending on the strain rate and temperature and a reference slip-strain rate, while 
Kc is the cut-off value corresponding the effective screening distance. It follows that the critical pair­
annihilation distance K decreases with increasing strain rate and decreasing temperature. The rate of anni­
hilation is then modulated by the nucleation energy of a jog Eiog which can be calculated from atomistic 
simulations. 
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Table 1: Material parameters for Tantalum 

Parameter Fitted set Atomistic set Units 
Ekink 0.70 0.725 [eV] 

£kink/b 13 17 
uectge I µb2 (*) 0.2 0.216 
Uedge ;uscrew 1.77 1.77 

l/b 5 5 
J)unct/b 20 20 

Ecross 0.67 0.725 [eV] 
Lcros• /b 13 17 

AFR 2.3 4.5** 
Kc/b 1250 500** 

* µ = �C44 +!(Cu - C12). 
•• Not computed by atomistics.

3 COMPARISON WITH EXPERIMENT 

We proceed to validate the theory against the uniaxial tests on Ta single crystals of Mitchell and Spitzig [l]. 
In these tests, 99.97%-pure Ta specimens were loaded in tension along the [213] crystallographic axis, at 
various combinations of temperature and strain rate. In particular we considered temperatures ranging from 
296 K to 573 K, and strain rates ranging from 10-1 s-1 to 10-5 s-1. The numerical procedure employed 
for the integration of the constitutive equations has been described elsewhere [ 12]. The constitutive update 
is fully implicit, with the active systems determined iteratively so as to minimize an incremental work 
function. All stress-strain curves are reported in terms of nominal stress and engineering strain. Two 
different sets of material properties were used for the numerical simulations. The first set was obtained by 
fitting the simulation results to the experimental results, using a simple trial and error procedure. Table 1 
identifies the subset of parameters which are also amenable to direct calculation by atomistic based methods. 
The table lists the parameter values obtained by these methods, as described in [13], in parallel with the 
yalues obtained by the fitting approach. Thus, in the second set of properties which was used for numerical 
simulations, atomistic-based values replace fit-based values, when available. This is the case for the edge 
and screw dislocation self-energies, as well as the kink-pair formation energy and length. Clearly, those 
two sets don't differ by much, which strongly support the validity of the advertised multiscale paradigm. 
For the two parameters linked to dislocation density evolution, atomistic simulations were not yet available 
at time of writing, and the values listed here were obtained by fitting. For a complete list of parameters for 
the model, the reader should refer to [2]. 

Figs. 5 show the predicted and measured stress-strain curves for a [213] Ta crystal over a range of 
temperatures and strain rates. One can compare, from top to bottom: the experimental results, the results 
obtained after fitting the parameters, and the results obtained with atomistic-based parameters. It is evident 
from these figures that the model, with both sets of parameters, captures salient features of the behavior of 
Ta crystals such as: the dependence of the initial yield point on temperature and strain rate; the presence of 
a marked stage I of easy glide, specially at low temperature and high strain rates; the sharp onset of stage 
II hardening and its tendency to shift towards lower strains, and eventually disappear, as the temperature 
increases or the strain rate increases; the parabolic stage II hardening at low strain rates or high temperatures; 
the stage II softening at high strain rates or low temperatures; the trend towards saturation at high strains; 
and the temperature and strain-rate dependence of the saturation stress. Thus, the predictive approach based 
on atomistic methods clearly shows its capacity to produce results matching the experimental evidence. 
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(a) Experimental data of Mitchell & Spitzig [l] 
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(b) Predictions of the model with fitted parameters 
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( c) Predictions of the model with atomistic parameters 

Figure 5: Temperature and strain-rate dependence of stress-strain curves for [213] Ta single crystal.
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4 SUMMARY AND CONCLUSIONS 

We have developed a micromechanical model of the hardening, rate-sensitivity and thermal softening of 
b.c.c. crystals. The model is predicated upon the consideration of an 'irreducible' set of unit processes, 
consisting of: double-kink formation and thermally activated motion of kinks; the close-range interactions 
between primary and forest dislocation, leading to the formation of jogs; the percolation motion of disloca­
tions through a random array of forest dislocations introducing short-range obstacles of different strengths; 
dislocation multiplication due to breeding by double cross-slip; and dislocation pair-annihilation. Each of 
these processes accounts for-and is needed for matching-salient and clearly recognizable features of the ex­
perimental record. In particular, on the basis of detailed comparisons with the experimental data of Mitchell 
and Spitzig [l], the model is found to capture salient features of of the behavior of Ta crystals. 
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