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A simplified computational technique based on a refined global local method is applied to the failure
analysis of concrete structures. The technique distinguishes the scale of the structure, modelled with large
size finite elements, from the scale at which material non-linearity occurs due to progressive cracking and
macro-crack propagation. The finite element solution is split into two parts: a linear elastic analysis on a
coarse mesh over the entire structure and a non-linear analysis over a small part of the structure where a
dense finite element grid is employed. In the non-linear calculation, a non-local damage model is
implemented. These two computations are coupled with the help of an iterative scheme. The size and
location of the region where a non-linear analysis is performed, is adapted to follow the development of the
damage zone. Numerical examples of mode I fracture of concrete specimens with straight and curved
cracks are presented.
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1. INTRODUCTION

The prediction of cracking and the evaluation of the long term safety of large concrete structures
require a sound and robust computational method of assessment. On top of the difficulties
involved in the description of the inception and propagation of cracks at the material level and
the implementation of adequate numerical algorithms for solving non-linear problems, another
issue is to be able to deal with finite element models which contain a large number of degrees of
freedom. In the case of large size structures, such as cooling towers or containment vessels, there
is a balance to achieve between two extremes: On one side practical numerical models are made
of finite elements with a relatively large size (e.g. elements of the order of 1 m in the industrial
example presented recently by Badel and et al. [1]). On the other side, non-linear constitutive
relations which describe progressive cracking, e.g. based on plasticity or damage mechanics,
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require finite elements which are rather small in order to achieve a good accuracy. One needs to
describe material non-linearity which remains concentrated in very small regions of the
structure, where cracking occurs. As an example, the accuracy of the discretization of damage
zones (or fracture process zones) in the case of non-local damage models is directly related to the
internal length entering in the constitutive relations. With the integral non-local damage model
and with a linear interpolation of the displacement field, experience shows that a reasonable
accuracy can be achieved when the finite element size is lower than one third of the internal
length [2, 3], which means that the width of the fracture process zone is of the order of six finite
elements roughly. The magnitude of the internal length is a few centimetres, say 50 mm
typically. Hence, the maximum size of the finite elements in the fracture process zone should be
about 17 mm if linear elements are used. One can easily figure that for very large structures, this
requirement calls for mesh optimization between large regions of the structure, which stay in the
elastic regime with small strain gradients, and small zones where stress concentration and/or
progressive failure occur.

There are several ways to optimize the interpolation of the displacement field. h or p-mesh
adaptations are a possibility and there are many of such proposals in the literature (see e.g.
References [4–6]). It requires a robust error indicator, a mesh generator capable of creating an
optimized grid, and efficient projection techniques of the discrete variables from one mesh to
another, if meshes are to be changed in the course of the computation.

For a very large structure (such as a dam for instance), one may also consider that the fracture
process occurs in such a small region that it can be viewed as a displacement or strain
discontinuity. Many proposals followed this idea, including the strong discontinuity approach
initiated by Simo et al. [7] and finite elements with embedded discontinuities [8–10]. These
techniques require crack (or discontinuity) inception and propagation criteria. In some cases,
adaptive meshing may be required too because accurate descriptions of crack initiation and
crack propagation can be quite demanding in term of finite element fineness. One drawback of
such discrete models is the lack of direct relationship between local constitutive relations and the
mechanical response of embedded discontinuities. With local constitutive relations, inception of
damage, its localization into a narrow zone and the propagation of a macroscopic crack are the
result of the structural analysis. A relationship between continuum damage modelling and
fracture energy can be derived [11] but it remains difficult to derive the direction of propagation
of a crack from such a continuum analysis. As a consequence embedded discontinuity
approaches, in their various forms, leave aside some benefits of continuum descriptions.

The extended finite element approach is another possibility developed initially in the context
of linear elastic fracture mechanics. Application for cohesive crack growth was performed
recently by Moes et al. [12]. Further developments of this method are necessary before it can
correctly predict crack growth paths in cohesive material (e.g. in concrete). The difficulty in X-
FEM is that one has to decide a priori on the proper displacement enhancement in the region
where damage occurs. In some cases, the shape of the added displacement field may be derived
from strain localization analysis [13] and it is strain and damage dependent. Still, the
enhancement is an approximation which does not consider distributed cracking, and thus
requires a reasonably fine mesh for capturing distributed damage without the enhanced
displacement fields.

It might be more attractive to combine continuum structural descriptions at different scales
into a single analysis. The larger (global) scale aims at capturing the overall structural response
with the help of a linear analysis, while the small (local) scale is enriched with a non-linear
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material response that captures progressive damage and localization consistently. This
contribution investigates this last possibility. Among the various multiple scale analyses
techniques, a classical global–local method is implemented for this purpose. Attention is given
to the adaptation of the region where the small scale computation is performed as the damage
zone propagates. This two level method of analysis is illustrated in the case of a straight crack
propagating in a concrete plate. A second example is provided in order to show that the method
can handle curved crack propagation, which is very demanding in terms of mesh fineness even
when laboratory size specimens are considered.

2. MULTI-SCALE ANALYSES OF LARGE STRUCTURES

Over the years, a series of developments has been made for improving the efficiency of finite
element applications to large engineering problems. The simplest possible technique is the
uncoupled method which is widely used in engineering applications.

Global–local methods originated with Mote in 1971 [14] where finite element interpolants
were enriched with special functions. Early global–local structural schemes [15–18], focused on
the Rayleigh–Ritz method combined to the conventional finite element method over the entire
region of a structure, or to a local enhancement of the finite element description. Similar
contributions included the zooming method proposed by Hirai et al. [19, 20] and other authors
[21]. These methods usually involve refined meshes for the local regions containing stress
concentrations. Multiple scale finite element analyses have become more and more popular since
then. They can be classified into three different approaches: the superposition techniques,
multiple scale expansion methods, and domain decomposition techniques.

In the superposition technique, independently modelled structures (global and local meshes)
are considered. The method hinges on the hierarchical decomposition of the solution space into
global and local effects, and on the enforcement of solutions compatibility by prescribing
homogeneous boundary conditions at the global local interface. Among these is the composite
grid method (see e.g. References [22–24]) which provides a robust technique whose convergence
properties have been evaluated. The critical issues in the superposition method is the selection of
this global local interface. A rigorous mathematical analysis aimed at quantifying the ‘pollution’
effects of the localized phenomena on the global behaviour, and subsequently identifying the
optimal location of the interface has been carried out by Babuska et al. [25], and Fish and
Markolefas [26]. In Reference [26], an adaptive strategy has been devised to construct an
optimal discretization of the local and global solutions so that the local and global phenomena
of interest are resolved within the user specified accuracy.

Multiple scale expansion techniques are homogenization methods were field variables are
developed into asymptotic series and solved at each scale. They have been mainly implemented
in the field of composite materials where damage originates at a very small scale level, which is
not tractable within a single structure discretization. Some of these methods result into a non-
local formulation of damage that is similar to what will be used in the examples presented in this
paper [27] or may combine asymptotic expansions with global–local techniques [28]. A third,
smaller, scale level in which the composite microstructure is explicitly discretized, may also be
implemented in order to provide a more realistic description of local failure processes [29].

In domain decomposition techniques, the structure is divided into several sub-domains
connected to each other with interface elements (see for instance References [30–32]). Hence, the
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discretization in each sub-domain is independent and can be decided depending on the type of
material response expected (linear or non-linear) or on the state of stress. Such a technique has
been also applied to hierarchical modelling of heterogeneous solids with a control of the quality
of the numerical homogenization [33].

The above multi-scale methods provide quite robust computational tools. For the
applications considered in this paper (large size concrete structures subjected to damage and
cracking), the composite grid or domain decomposition methods seem for instance well suited.
As the damage zones evolve, however, the domain in which the non-linear analysis is performed
needs to be adapted. A step by step definition of the interface elements between local and global
grids or sub-domains must be implemented.

In this contribution, we would like to focus on such a strategy for capturing a damage and
cracked zone in a structure in the course of loading, i.e. on the adaptation of the size and
location of the region where the non-linear computation is performed. We are going to select a
simple zoom technique, the classical refined global–local method, due to Noor [16] and Mao and
Sun [34] which avoids interface elements between the local and global region and the inherent
adaptation of such a discretization. It is a first step enhancement of the uncoupled zoom method
often used in industrial applications. This simplification is made at the price of a less robust
multiple scale approach, in term of convergence properties especially. It should be emphasized
that the foregoing strategy could be implemented similarly in more sophisticated multi-scale
schemes.

3. ZOOM TECHNIQUE

3.1. Principle and damage zone tracking

For the sake of illustration, consider the case of mode I crack propagation in plate (Figure 1(a)).
The analysis and the decomposition of the problem into smaller sub-problems are performed as
follows:

* In the first step, a linear analysis is performed on the coarse mesh (large scale).
Approximate solutions of the displacements and stress fields are calculated. This is the
initial solution.

* In the second step, the large finite elements, which should contain the fracture process zone
and the crack tip, are taken for consideration. They are replaced with a refined mesh
(Figure 1(b)), where the material follows a non-linear constitutive relation which captures
the material degradation. Along the boundary of this mesh, the displacements obtained
from the first step (or the global analysis) are enforced as boundary conditions. This
computation forms the local solution.

* Because of the non-linear response of the local solution, the resulting forces acting at the
external boundaries in the local solution are different from the forces acting along the edges
ABCD of the large element in the initial solution. The corresponding reactions on the
boundaries ABCD are applied as external forces in the global analysis, and a new global
displacement field is obtained. At this stage, which is the third step, the large element
ABCD has been removed from the mesh in the global, elastic, solution.

* Steps 2 and 3 are iterated until the forces at the external boundary of the local solution
have stabilised from one iteration to the next one.
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Several remarks should be made prior to dealing with crack propagation tracking:

* The use of the displacement field of the global analysis as a boundary condition for the
local region is the simplest possibility. The enforcement of nodal forces (or distributed
forces along the edge of element ABCD) might also have been chosen.

* The efficiency of this method relies on: (1) the detection of the inception of non-linear
material response in the global solution; (2) a simple rule for tracking the evolution of the

Figure 1. (a) Global coarse mesh; (b) local refined region; and (c) zoom as a patch of finite elements.
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zones where a local solution with a fine mesh is needed; and (3) the capacity to describe the
response of totally cracked elements in the case of friction or crack closure.

As far as the first item is considered, the location of the zones where a non-linear response
may occur is often controlled by the geometry of the structure and by the boundary conditions.
A reasonably accurate elastic analysis is often sufficient for the purpose of detecting where
cracking may initiate for instance. The inception of localized cracking in the local solution may
be triggered via a small notch if necessary (Figure 1(b)). It avoids unrealistic results where
damage is uniformly spread over all the elements in the local solution or cases where damage is
concentrated in the corners of the zoom due to spurious boundary effects.

For totally cracked elements, the issue of crack closure and friction between crack faces is
outside the scope of the present paper. It corresponds to the final stage of material degradation
locally. One may think to replace the crack with an interface element. Another possibility is to
keep the cracked element in the zoom instead of removing it and to rely on the local constitutive
response inside this region in order to capture crack closure or sliding. Consequently, the size of
the zoom region is bound to increase in the course of the development of the damage region.
In the examples of Section 4, the stiffness of elements containing a through crack will be set close
to zero.

Attention is focused on item 2, i.e. a simple method of tracking the evolution of damage (or
plastic) zones including crack tips in the fracture process zone. Let us assume that convergence is
achieved at a given load step. We check first for broken elements and look for the elements
which contain the tips of the damage zones at the scale of the global analysis. A broken element
contains a through crack, a band made of local elements where the material strength has been
exhausted completely. It corresponds to the cases where the material is entirely damaged,
according to a damage model, or has reached a critical strain in elasto-plasticity.
The new patch of global elements (or zoom) for the next load step is constructed as shown in
Figure 1(c). The local solution is preferably made of a patch of several large finite elements in
order to avoid boundary effects which may appear when such a zone is very close to the
boundary of the element in the global solution considered for zooming. For a straight crack
running parallel to the patch boundaries, the patch is made of the large finite element which
contains the damage zone and the crack tip, and the element sitting next to it in the propagation
direction observed during the previous loading step. If the tip of the fracture process zone is
located in element 2 on Figure 1(a), the local solution is formed with a patch made of elements 2
and 3. When element 2 is entirely cracked the patch is changed to element 3 and 4 and the
stiffness of element 2 is set close to zero. Note that according to this scheme, the patch should
never be entirely cracked after convergence. The size of the load steps should be controlled in
order to avoid such cases.

When the crack or damage zones are not straight or propagate in an arbitrary direction, the
patch is made of three large finite elements as shown in Figure 1(c). It is made of the element
which contains the damage zone and the crack tip and the surrounding elements in the direction
of propagation of the damage zone.

This process assumes that damage is located into small regions compared to the element size
in the global solution. In particular, this method fails when the damage zone extends over
several large finite elements without any crack. The patch of elements in the local solution ought
to be enlarged (or the mesh in the global solution might be modified) so as to encompass in the
local regions of the structure al the zones where material non-linearity occurs.
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3.2. Formulation of the zoom technique

Consider a two-dimensional solid denoted O: This solid is split into two parts: one has a linear
elastic behaviour and is denoted OG; it is discretized with a relatively coarse mesh. The second
part gathers the regions of the structure where material non-linearity occurs. It is denoted as OL

and it is discretized with a fine mesh. These regions may be plastic zones or in the present
application damaged and cracked zones. The two zones are separated by the boundary GL; and
O ¼ OG [ OL; OG \ OL ¼ GL:

The equilibrium equations of the complete system O are expressed as

duT
Z
O
BTs dO ¼ duTF ð1Þ

where du is the variation of nodal displacement vector and F is the nodal force vector applied at
the boundary of the solid O: The stress and displacement fields for this problem can be solved by
superposition of the solutions of two problems (Figure 2). The first part of Equation (1) may be
written as

duTG

Z
O
BTs dO ¼ duTG

Z
OG

BTDeB � uG dOG þ duTG

Z
OL

BTsL dOL ð2Þ

where duG refers now to the variation of the nodal displacements uG discretized with the coarse
mesh in OG; De is the elastic stiffness of the material in this region, and sL is stress vector defined
in the region OL: It is the solution of the following problem:Z

OL

BT
LsL dO ¼

Z
GL

NT
LpL dS with sL ¼ DnlBLuL ð3Þ

uL is the resulting displacement vector from the local fine mesh analysis, NL and BL are the shape
function and its derivative according to the fine mesh respectively, and Dnl is the constitutive
stiffness matrix of the material in this region. In Equation (3), pL denotes the surface traction
along GL (Figure 2).

We need now to define the boundary conditions in the two subproblems, the global and the
local ones (Equations (2) and (3)). For the local one, pertaining to region of non-linear
behaviour (Equation (3)), displacements are applied along the external boundary GL: These

+ =

σ σ

Ω ΩG 

ΩL

{PG}

{pL}

L Γ 

Figure 2. Superposition scheme.
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displacements denoted as uL are the projections of the displacements computed in the first
subproblem (Equation (2)):

uLðx; yÞ ¼ NdG ð4Þ

where N is the interpolation function in the global solution and dG is the vector of the
generalized displacements at element nodes at the large scale. For the global problem (Equation
(2)) the region OL is substituted with equivalent applied forces. The forces denoted as PG in
Figure 2 equilibrate the projection of the surface traction pL according to the interpolation of
the coarse mesh:

PG þ
Z
GL

NTpL dS ¼ 0 ð5Þ

Substitution of (5) and (3) into (2) yieldsZ
OG

BTsG dOG ¼ ½F þ PG� ð6Þ

The computation, and more specifically the iterative scheme between the global and local
solutions, is carried out as follows:

1. An initial solution is obtained on the entire structure O assuming that the material is elastic
and where OL is replaced with large finite elements.

2. A local solution in OL is obtained according to Equation (3) with the boundary conditions
Equation (4).

3. The new pressure PG derived from the local solution and Equation (5) is applied as external
forces in the global analysis performed now on OG:

4. Steps 2 and 3 are iterated until the variation of the interface traction between two iterations
becomes small enough. The convergence criterion is

jjP iþ1
G � P i

Gjj
jjP i

Gjj
4e ð7Þ

in which i is the iteration number and e is a given small tolerance; e ¼ 0:0005 is used in
computations and usually few iterations were needed.

It should be underlined that it cannot be proved that this simple iterative procedure converges
in all instances and some more appropriate schemes such as those recalled in Section 2 might be
preferred for a better robustness. Still, it possesses the advantage of being very simple to
implement and quite versatile, since it dos not depend on the constitutive relations implemented
or on the local and global displacement field discretizations. Convergence will be checked
numerically in one of the two examples carried out next.

4. EXAMPLES

Before presenting the illustrative examples, it is necessary to recall briefly the type of constitutive
relations which have been implemented for the local FE analysis. We have chosen to use a scalar
non-local damage model [3]. It should be emphasized that any non-linear constitutive relation
could be implemented as well, provided that it is capable of describing failure and strain
softening consistently. The zoom technique presented in Section 3 has been implemented in the
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finite element package CAST3M. Two examples are presented. The first one deals with the
wedge splitting test in the case of mode I cracking. The second example is the single-edge
notched concrete specimen. Results of this method are compared with those performed with a
global fine mesh, considered to be a reference solution.

4.1. Non-local damage model

In the reversible (elastic) domain, the stress–strain relation reads:

s ¼ ð1� dÞDe : e ð8Þ

where e is the strain tensor, and De is the elastic stiffness of the material, in the absence of
damage. It will be assumed in the following that the material is initially isotropic. d is the
damage scalar variable which varies between 0 and 1. In the non-local version of this model, the
growth of damage is controlled by the average x� of an equivalent strain x defined as

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i¼1
ðheiiþÞ

2

r
ð9Þ

where ei are the principal strains and hiþ is the Macauley bracket. The average (non-local)
equivalent strain is

x�¼
1

VrðxÞ

Z
O
cðx� sÞxðsÞ ds with VrðxÞ ¼

Z
O
cðx� sÞ dsð10Þ

where O is the volume of the structure, VrðxÞ is the representative volume at point x; and cðx� sÞ
is the weight function [35]. The loading function is f ðx�; kÞ ¼ x�� k; where k is the hardening–
softening variable. The contour f ðx�;kÞ ¼ 0 defines the domain of reversible behaviour and the
growth of damage is defined with classical Kuhn–Tucker conditions. The damage evolution laws
are those defined by Mazars [36]. In particular, the tensile damage growth is

dt ¼ 1�
k0ð1� AtÞ

k
�

At

expðBtðk� k0ÞÞ
ð11Þ

Constants At; Bt are model parameters. Overall, the constitutive relation has seven model
parameters (in addition to the two elastic constants) whose range of variation is provided in
Reference [3], for standard concrete.

4.2. Wedge splitting test

A plane stress model of the wedge splitting test is considered first (Figure 3). The horizontal
displacements at nodes 1 and 2 are controlled, they are opposite and their absolute value is
equal. First a reference fine mesh analysis is performed (Figure 3). A very dense mesh is
generated in the fracture process zone, where crack propagation occurs. The interpolation of the
displacements in the finite elements is linear. The model parameters are given in Table I. The rest
of structure, outside the fracture process zone which is discretized with small rectangular
elements, behaves elastically. In order to avoid some possible mesh bias, the finite element size in
the process zone is small enough compared to the internal length given in Table I (at least one
third of the internal length).

The zoom technique uses two finite element models. The global analysis (first step) employs a
global coarse mesh as shown in Figure 4(a). The size of the finite element compared to the
internal length is h ¼ 5lc (larger that the FPZ width). The local analysis (second step) is
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7 m 

(F,u)(F,u)

dense mesh in the cross of the crack  
with a non-linear damage modelmesh for the rest of structure

with an elastic behaviour 

1 2

7 m 

Figure 3. Wedge splitting test: finite element mesh for the reference analysis.

Table I. Material properties in the wedge splitting test.

Concrete:
Young’s modulus E 32 000 MPa
Poisson’s ratio n 0:2
Tensile strength ft 3:2 MPa
Compressive strength fc 35 MPa

Other model parameters:
k0 1� 10 4

Ac 1:4 Bc 1500
At 1:0 Bt 10 000
b 1:06 lc 20 cm

Figure 4. Zoom technique on the wedge splitting test: (a) global coarse mesh; and (b) local fine mesh.
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performed on a local region covered by a patch of 2 coarse elements since it is expected that the
crack is aligned with the mesh (Figure 1(c)). The refined mesh consists of 165 quadrilaterals in
every coarse element (Figure 4(b)). The element response in the local analysis follows the non-
local damage model (with the same parameters as in the reference solution). It should be noted
that the mesh density in the local analysis has been kept the same as in the fracture process zone
of the reference solution in order to assess the accuracy of the zoom technique itself,
independently from possible mesh effects. The global solution should provide a solution that is
as close as possible to the elastic response of the plate. This is required in order to approximate
the initial stiffness of the structure with a good accuracy for instance. This is the reason why we
refined the mesh near the points where the displacements are applied.

Figure 5 shows the plot of the applied load versus the crack mouth opening displacement
(CMOD). We have plotted in the same figure the results obtained from the zoom technique
(dashed curve) and the reference solution. A good agreement is observed between them. The
reference solution looks slightly more brittle in the lower half of the softening regime.

The distribution of damage at different steps of calculation is plotted in Figure 6. Only the
region made of the patch of two elements numbered in Figure 4 is shown. Again, a good
agreement between the two calculations is observed. The damage zone propagates slightly faster
in the reference solution than in the zoom technique, which is consistent with a more brittle
response on Figure 5. Concerning the CPU time, it is divided by a factor higher than two with
the zoom technique compared to the reference solution.

4.3. Numerical study of convergence

Although the convergence of the present two level approach cannot be proved in a general
context, it is still feasible to examine convergence properties numerically. For this purpose, the
previous example is considered and we are looking for two characteristics: what should be the
minimum size of the zoom and what is the rate of convergence of the local–global iterative
approach. Note that separate convergence of the global and local iterative schemes alone is
already established: for the global calculation, it is rather obvious since it falls in the category of
elastic analyses with small deformations. Convergence of the local (non-linear) calculation has
been proved numerically on many instances (see e.g. References [3, 35]). The constitutive

0
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2000

0 0.15 0.3 0.45 0.6 0.75 0.9

reference analysis
zoom technique
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Figure 5. Zoom technique on the wedge splitting test: load vs CMOD response.
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properties are the same as those in Table I, except for the internal length which is 22 cm (which
will provide slightly different results compared to those in the previous section).

In order to investigate the influence of the size of the zoom, we consider a regular mesh for the
wedge splitting test with an element size that is of the order of the internal length (1:5lc as shown
in Figure 7(a)). The sizes of the zoom are patches of elements of the same height but with four
gradually increasing width: 1, 3 and 5 times the size of coarse elements. This width is measured
in a direction that is perpendicular to the direction of propagation of the fracture process zone.
In the zoom, each element of the global mesh is subdivided into a regular grid of 5� 5 elements,
whose size is much smaller than the internal length in order to avoid discretization errors in the
zoom as much as possible since the size of the finite element is less than one third the internal
length. Figure 7(b) shows the patches of 1, 3 and 5 elements respectively. Figure 8 shows the
load vs CMOD responses obtained for the different patches of elements and the corresponding
damage zones. It is observed in Figure 8(a) that the peak load in particular, increases slowly as
the size of the zoom increases. Recall that the material at the global scale is linear elastic.
Material non-linearity is confined to occur in the zoom. If the zoom is not wide enough, the
fracture process zone will remain confined within a region that is too small. As a consequence,
the damage zone for the smallest patch is very different from the ones obtained with wider
patches that are quasi-identical (Figure 8(b)). This constraint produces a concentration of the
non-linear response in a small region and results into a smaller peak load, as if the internal
length was decreasing. As the fracture process zone propagates and completely cracked large
elements are removed, the influence of this constraint becomes smaller and the computed curves
become similar. Convergence on the load vs CMOD curve can be considered to be achieved
when the zoom encompasses 5 elements at the macro-scale. Note that for a proper description of
the damage zone, a sufficient width of the zoom is three elements. A ratio of this order has been
used in the previous section.
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Figure 6. Damage evolution in the wedge splitting test: (a) reference analysis; and (b) zoom technique.
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Figure 7. Wedge splitting test: convergence study.
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Figure 8. Convergence on the load vs CMOD curves (a) and of the damage zones (b).
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Figure 9 shows the evolution of the residual error defined in Equation (7) as a function of the
iteration number. This is the relative norm of the applied forces in the global analyses from one
iteration to the next one. Patches of width 3 and 5 elements have been considered. The point at
which this error is computed corresponds to a CMOD ¼ 6:5 mm: It is observed that the error
decreases rapidly. The rate of convergence (opposite of the slope of the curve) is decreasing
however with the residual error. Nevertheless an acceptable value (less that 0.05%) is reached
within a limited number of iterations. Oscillations are less pronounced as the size of the patch of
elements in the local calculation increases and the average rate of convergence increases. This
result shows that with a sufficiently large local zone, the method can be expected to provide a
reasonably accurate approximate solution, at least better that the uncoupled technique.

4.4. Single-edge notched specimen

The second example is a single-edge notched concrete beam subjected to an anti-symmetric four
point loading. The anti-symmetric loading results in a curved crack path in the experiments
performed on a smaller specimen by Schlangen [37]. The crack starts from the right corner of the
notch and ends to the right of the lower right load platen.

The geometry and loading conditions are given in Figure 10(a). The notch depth in the centre
of the beam is 40 cm and the notch width is 5 cm: Note that the size of the specimen has been
very much enlarged compared to the original experiments. The load P is applied on the loading
apparatus so that the point load close to the notch is P1 ¼ 10=11P and the point load near the
beam end is P2 ¼ 1=11P : This loading apparatus will be considered as a rigid body in the
calculation, including the load platens.

A plane stress calculation has been performed with a linear interpolation of the
displacements. Figure 10(b) shows the finite element mesh used for the reference solution.
The model parameters are those of the wedge splitting test. An indirect displacement control
procedure has been used. The control parameter d2 defined in Figure 10(a) is the relative vertical
displacement of the neutral axis between the left support and the middle of the beam. At the
middle of the beam, the relative vertical displacement is computed as the average vertical
displacements of the two extreme (top and bottom) faces of the specimen.

For the zoom technique, the global coarse mesh (first step) is presented Figure 11(a). The size
of the finite element is the same as in the previous example. The local analysis (second step) is
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Figure 9. Evolution of the relative error with the number of iterations for the different patch sizes.
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performed on a local region covered by four coarse elements, the element which contains the tip
of the damaged zone and those around it in the direction of propagation of the damaged zone
(Figure 11(b)). Again, the mesh density in the local analysis is the same as in the reference
solution in the centre of the beam.

Figure 10. Single edge notched beam: (a) geometry and loads (dimension in cm); and (b) finite element
mesh for the reference analysis.

Figure 11. Zoom technique: (a) global coarse mesh; and (b) local fine mesh.
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Figure 12 shows the plot of the applied load vs the deformation parameter d2: The error is
slightly larger than in the previous example, but still acceptable and the gain in CPU time is
similar to that in the wedge splitting test. The evolution of damage at different steps of the
calculations (indicated in Figure 12) is shown in Figure 13. In the first stage of the fracture
process, damage is initiated at the right corner of the notch. Then, the damage zone at the notch
continues to grow and follows a path which ends to the right of the lower right load platen
eventually. We can see that the evolution of damage is slightly faster in the reference analysis
than in the zoom technique. Note also that the width of the damage zone in the reference
analysis is also slightly larger than in the zoom technique.
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Figure 12. Single edge notched beam: load vs d2 response.
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The final damage distribution is given in Figure 14. A curved damage zone is found in both
cases, which is consistent again with the experiment on a smaller specimen. The damage
distribution in Figure 14(b) results from those obtained in the successive patches of elements
composing the local solution in the zoom technique. This is the reason why the top part of the
distribution (represented in light grey) does not connect with the distribution in the bottom part.
The top patch has been removed after the crack has crossed it. This mismatch indicates also one
of the reasons why the load displacement curve according to the zoom technique softens more
severely. It is often observed in finite element solutions with non-local models that the damage
zone widens in the course of the fracture process, even after a crack has formed in its center.
Figure 14(a) shows that it occurs in the reference solution. In the zoom technique however, this
cannot occur because elements which are crossed by the crack are removed and the growth of
the damage zone inside them is stopped after their removal. Hence damage is more distributed
in the reference solution compared to the zoom technique. As a consequence the load deflection
curve softens less because the energy dissipation is spread over a larger zone in the reference
solution compared to the zoom solution.

5. CONCLUDING REMARKS

A simple strategy for technique for finite element analysis of large concrete structures with crack
and damage propagation based on an adaptive zoom has been presented. This method has been
applied to the failure analysis of concrete structures with the help of a non-local damage model.
A global solution is obtained using a coarse grid, then the detailed stress and damage
distribution near the crack (local region) are obtained iteratively by zooming on that area,
refining the model and using the displacements from the coarser model as an input for refined
mesh. The zoom comprises the element in which the tip of the damage zone is located and the

(a) (b) 

Figure 14. Final damage distribution in the single edge notched beam: (a) reference
analysis; and (b) zoom technique.
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surrounding elements. It follows the propagation of the damage zone, and thus avoids any
additional criterion for its propagation as opposed to fracture analyses.

In the presented applications, completely cracked elements are removed from the global and
local meshes but they could be kept in the local analysis in order to capture cyclic (loading–
unloading) effect or a subsequent different state of loads involving shear for instance. This
requires of course that the constitutive relations are capable of capturing such stress histories.

Compared to the internal length in the non-local model, the width of the zoom should be at
least 3–5 times the internal length. The discretization inside the zoom ought to meet the
standard requirements for non-local analyses.

The damage propagation tracking is rather general in the sense that it can be implemented
with various continuum models without changing the form of the discrete fields. It should be
emphasized that the zoom technique implemented in this contribution, however, is simple and
might present some computational weaknesses. More sophisticated multi-scale schemes might
be preferred for a better robustness as far as convergence is concerned especially.
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