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Modelling crack growth by level sets in the extended
finite element method

M. Stolarska’*T, D. L. Chopp', N. Moés?> and T. Belytschko?

! Department of Engineering Sciences and Applied Mathematics, Northwestern University,
FEvanston, IL 60208, U.S.A.
2 Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, U.S. A.

An algorithm which couples the level set method (LSM) with the extended finite element method
(X-FEM) to model crack growth is described. The level set method is used to represent the crack
location, including the location of crack tips. The extended finite element method is used to compute
the stress and displacement fields necessary for determining the rate of crack growth. This combined
method requires no remeshing as the crack progresses, making the algorithm very efficient. The
combination of these methods has a tremendous potential for a wide range of applications. Numerical
examples are presented to demonstrate the accuracy of the combi ned methods.
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1. INTRODUCTION

In this paper, we describe an algorithm where the level set method (LSM) is coupled with
the extended finite element method (X-FEM) [1-3] to model crack growth. The LSM is
a numerical scheme developed by Osher and Sethian [4] to model the motion of interfaces.
In the LSM the interface is represented as the zero level set of a function of one higher
dimension. The current formulation of the LSM has no provision for modelling free moving
endpoints on curves or free moving edges on surfaces. A similar level set representation was
used in Reference [5] to model the evolution of a curve segment. However, unlike the method
presented here, in Reference [5] the endpoints of the evolving curve segment remain fixed.
We present an extension of the LSM for modelling the evolution of an open curve segment
and use this extension to model the growth of a fatigue crack.
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The X-FEM algorithm enables the modelling of crack growth without remeshing. In or-
der to incorporate stress and displacement fields which are discontinuous across the crack,
the mesh in previous formulations of the finite element method had to be adapted so that
the crack coincided with the element edges. In contrast, the X-FEM algorithm allows for the
crack to pass arbitrarily through elements by incorporating enrichment functions to handle the
field discontinuities. In this manner the mesh can remain fixed throughout the evolution of
the crack.

Alternative methods which address the issue of discontinuous elements have been proposed
in References [6—9]. X-FEM differs from the first two in that there are no incompatibilities
in the displacements between elements. In Reference [9], the visibility criterion developed in
EFG [10] is used.

The LSM and X-FEM work well, offering complimentary capabilities. The level set repre-
sentation of the crack simplifies the selection of the enriched nodes, as well as the definition
of the enrichment functions. In addition to modelling the crack growth problem, the com-
bined methods were also used to model holes and material inclusions in Reference [11] and
three-dimensional planar crack growth in Reference [12]. The LSM and X-FEM, as described
in this paper, provide a simple and efficient algorithm for modelling two-dimensional crack
growth. Moreover, the coupling of the LSM with X-FEM will provide a simple and natural
method for extending the crack growth model into three dimensions.

In Section 2, we discuss the model for crack propagation. In Sections 3 and 4, respectively,
we give general descriptions of the LSM and X-FEM. In Section 5, the algorithm for modelling
crack growth using a level set formulation is presented. In Section 6, we discuss the coupling
of the LSM and X-FEM. In Section 7, we present some numerical results, and in Section 8§,
we conclude with a discussion.

2. GOVERNING EQUATIONS

In this section we will review the governing equations for the displacement field in an elasto-
static analysis. The domain of the problem is €2 with boundary I". The boundary I is sub-
divided into two parts, I, and I;. The displacement is prescribed on I',, and the traction is
prescribed on I}. In addition to the external boundary, the crack surface presents an addi-
tional boundary inside 2. The crack surface is denoted by I'. and is traction free; I\, consists
of I'J and I';, two coincident surfaces. The domain 2 and its boundary I' are illustrated
in Figure 1.
The strong form of the equilibrium equations and boundary conditions is

V.-6+b=0 in ()
c-n=T onl} 2)
c-n=0 on . 3)
c-n=0 onIl,.- 4)

u=U on I, (5)
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Figure 1. Domain ) and its boundaries I'.

where o is the Cauchy stress tensor, u is the displacement, b is the body force per unit volume,
and n is the unit outward normal. The prescribed traction and displacement are, respectively,
T and U.

We consider small strains and displacements, so the strain-displacement relation is

e=¢(u)=Vu (6)

In Equation (6), Vi is the symmetric part of the gradient, and ¢ is the linear strain tensor.
The constitutive relation is given by Hooke’s Law,

c=C:¢ (7)

where C is the Hooke tensor.
The space of admissible displacement fields is given by

#={u=U on T,, uis C° and discontinuous on I} (8)
The test space is given by
Uy={v=0onT,, vis C° and discontinuous on I} 9)

The weak form of the equilibrium equation is

/a(u):C:a(v)dQ:/b-de+ T-vdl' Vvea, (10)
Q Q I

It is shown in Reference [2] that for these test and trial functions, the weak form, (10),
implies the traction-free conditions on the crack surface I, (3) and (4), and the rest of the
strong form as described in Equations (1)—(5).



3. THE LEVEL SET METHOD (LSM)

The LSM is a numerical technique for tracking the motion of interfaces. In this method,
the interface of interest is represented as the zero level set of a function ¢(x(¢),t). This
function is one dimension higher than the dimension of the interface. The evolution equa-
tion for the interface can then be expressed as an equation for the evolution of ¢. For
our purposes, cracks will be considered as one-dimensional manifolds in two-dimensional
space.

In general, a moving interface y(¢) C R* can be formulated as the level set curve of a
function ¢(x,1) : R?xR — R, where

P(t)={xER*: p(x,t)=0} (11)

The motion of y(¢) is translated into an evolution equation for ¢ by taking the time derivative
of ¢(x(t),t)=0. The resulting equation for the evolution of ¢, and therefore 7, is

o+ F|Vo[=0 (12)
¢(x,t=0) = given (13)

where F is the speed of the front at x € y(¢) in the direction normal to the interface. The
initial conditions on ¢ are typically defined as

¢(x,t)= + min ||x — X, (14)
x,E(1) '

where ¢ is the signed-distance to the interface. The sign of the minimum distance depends

on which side of the interface a point x is located.

There are many advantages to using the LSM for tracking interfaces. First, unlike many
other interface tracking schemes, the motion of the interface is computed on a fixed mesh.
Second, the method handles changes in the topology of the interface naturally. Third, the
evolution equation is of the form (12) regardless of the dimension of the interface. Hence,
extending the method to higher dimensions is easily accomplished. Finally, the geometric
properties of the interface can be obtained from the level set function ¢. For example, the
unit normal to the interface is given by n=V¢/||Vo|.

One drawback to the LSM is that the level set representation requires a function of a higher
dimension than the original crack, potentially leading to higher storage and computational
costs. However, as noted in Reference [13], since we are only interested in motion near the
interface, level set computation need only be done in a region surrounding it. This is done by
first locating the interface and building the level set function using (14) in a predetermined
region on either side of the interface. The level set function is then updated only in this region
called the narrow band.

In two dimensions, the LSM has typically been used to track interfaces which are either
closed curves or curves that extend to the boundary of the computational domain. To represent
interfaces which are open segments, the level set model needs to be extended. A crack is
represented as the zero level set of a function (x,¢). The endpoints of the crack will be
represented by the intersection of the zero level sets of two functions, W(x,¢) and ¢;(x,1),
where the subscript i corresponds to the ith endpoint. The general formulation for tracking
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Figure 2. The set of nodes elected for enrichment. The nodes enriched by the branch function B, are
in squares. The nodes enriched by the Heaviside function H are circled.

open curves using level sets and its application to the representation of a crack is described
in more detail in Section 5.

4. THE EXTENDED FINITE ELEMENT METHOD

Modelling crack growth in a traditional finite element framework is cumbersome due to the
need for the mesh to match the geometry of the discontinuity. Many methods require remesh-
ing of the domain at each time step. In X-FEM the need for remeshing is eliminated. The
mesh does not change as the crack grows and is completely independent of the location
and geometry of the crack. The discontinuities across the crack are modelled by enrichment
functions.

To illustrate this, consider the X-FEM displacement approximation for a vector valued
function u(x) : R> — R? given by

4
W%, 1) = S uON) + 3 b(ON,OHWGM ) + 3 Ni(x) (z ai(t)B,(r,e)>
iel jeJ kek =1
(15)

where N;(X) is the shape function associated with node i and ¢ is the time. Time in this class
of problems is any monotonically increasing parameter; all solutions are for the equilibrium
equations since dynamic effects are not considered. In Equation (15), J is the set of all nodes
whose support is bisected by the crack. In Figure 2, this set is indicated by the circled nodes.
The set K contains all the nodes of the elements containing the crack tip. This set is shown
in Figure 2 by the nodes in squares. The nodal degrees of freedom corresponding to the
displacement are u;, b;, and a,.



The second important and distinguishing factor to note in Equation (15) is the enrichment
functions H(Y(x,¢)) and B;(r,0). The function H(y) is defined as

1 for y>0

H(y)_{—l for y<0 (16)

This implies that the discontinuity occurs at the location of the crack. The branch function
B, is defined by

B,(r,@):{\/?sing, \/?cosg, \/?singsine, \/?cosgsinﬁ} 17)

where (7,0) is a polar co-ordinate system with its origin at the crack tip and 0 =0 tangent to
the crack at its tip. The above functions span the asymptotic crack tip solution of elasto-statics,
and \/?sing takes into account the discontinuity across the crack face.

The introduction of the discrete approximation (15) into the principle of virtual work given
by Equation (10) leads to a system of linear equations. The stress intensity factors are com-
puted using the domain form of the J-integral as described in Reference [14]. The direction
in which the crack will propagate from its current tip, 0., is obtained using the maximum
hoop stress criteria [1]. The angle 6. depends on the stress intensity factors, K; and K>, and
is given by

B 1K kY
90—2arctan1 E:t <K2) +8 |, —-m<l.<m (18)

5. LEVEL SET ALGORITHM FOR MODELLING CRACK GROWTH

We model one-dimensional crack growth in a level set framework by representing the crack
as the zero level set of a function Y(x,#). An endpoint of the crack is represented as the
intersection of the zero level set of {y with an orthogonal zero level set of the function
¢i(x,t), where i is the number of tips on a given crack. For cracks that are entirely in the
interior of the bulk of a material, two functions are used, ¢; and ¢,, one for each crack tip.
For edge cracks only one function, ¢, is necessary. The values of the level set functions are
stored only at the nodes. The functions are interpolated over the mesh by the same shape
functions as the displacement. Thus,

(X, 1) =3 i(ON;(x);  (x,0)= 3 (t)Ny(x) (19)
JjeJ JjEJ

Since the shape functions are C°, the crack representation is also C°.

The level set function representing the initial crack is constructed by computing the signed-
distance function for the crack. A difficulty in doing this arises from the fact that, although
the crack tip lies within the domain, the level set function representing the crack must initially
be constructed on the entire domain. To circumvent this problem, the initial crack is extended
tangentially from its tip and the signed-distance function (14) is constructed from this extended
crack.



| 1 7
- \ / f
: \op-0 /
\: 1'|. F. fs —0 "J{
\ \ 4
\ 1', ! :’r
\ y >0
‘-. - 1" ul'. '{
\ e \ [ onl=n
3 $2>0 N /
\ 7 \/ "f
9, <0 03<0 % o
01>0 l‘/\/’ "".'It /
Pt -, i
Pl
- iy ! R\N r’}
i} 0 ¥
\ y< Ilf \ },‘F
"\“ e T ' ! 1'I<
LU [R— 0,20 ] ! \
'.‘ - F. ‘Ii 1'.
v T extension . _‘n'
\ — crack '; ‘p' I‘l
\ , [\
Figure 3. Construction of initial level set Figure 4. Level set function update. Gray region
functions. is QMo update Nop-gray is (2Update,

The level set functions that represent the crack tip are initially defined by
$i(x,0)=(x —x,) -t (20)

where t is a unit vector tangent to the crack at its tip and x; is the location of the ith crack
tip. Given the construction described by (20), the planar function ¢; has a zero level set
which is orthogonal to i at the crack tip. The initial level set functions, ¥ and ¢;, and the
representation of the crack are shown in Figure 3.

An important consideration is that, although the actual crack is embedded inside a domain,
the zero level set of Y cuts through the entire domain. In the level set framework, the crack
is considered to be the zero level set of y, where both ¢; <0 and ¢,<0 in the case of
an interior crack. In the case of an edge crack, ¢;<0. This is consistent with the initial
conditions and will continue to be so as the level set functions are updated.

For the case of more than one crack tip, it is convenient to define a single function ¢(x, 1)
for the crack tip level set representation by

d(x, 1) = max(¢;) (21

The function ¢ allows us to define the location of the crack using only one function whether
a crack has one or two tips. In other words, a crack is defined as the set

{x:Y(x,t)=0 and ¢p(x,7)<0} (22)

As mentioned in Section 3, it is not necessary to update the level sets on the entire two-
dimensional domain since we are only interested in the evolution of a one-dimensional curve.
Thus, we can confine the level set representation to a narrow band of elements around the



crack. In addition, we assume that once a part of a crack has formed, that part will no longer
change shape or move. Therefore, the Yy, ¢;, and ¢ functions need only be updated on a small
region of elements surrounding each crack tip. This narrow band is built by surrounding the
crack tip by a predetermined layer of elements. The number of surrounding elements is chosen
so that it is larger than the incremental growth length of the crack.

Crack growth is modelled by appropriately updating the ¢; and  functions, then recon-
structing the updated ¢ function. A crack is extended at each tip in the same manner, re-
gardless of the number of cracks and the number of tips on a given crack. The evolution of
¢; and  is determined by the crack growth direction, 0.. In each step, the displacement of
the crack tip is given by the prescribed vector F = (F, F),). The magnitude of crack extension
|IF|| depends on the crack growth law. The current location of the crack tip, x; =(x;, y;), is
also used in the equations of evolution.

Let the current values of ¢; and y at step n be ¢ and y/". The algorithm for the evolution
of the level set functions ¢; and  is as follows:

(1) ¢7 is updated using Equation (12). In Equation (12), F is always the speed normal to
the interface. However, F is not necessarily orthogonal to the zero level set of ¢”. For
this reason, we must first rotate ¢ so that F is orthogonal. ¢! after rotation is referred

to as ¢;l. and given by F
= —x)er + (v = ») (23)
HF|| 3]

(2) The crack is extended by computing new values of "*! only where d;i>0, which is
referred to as QU4 Let the region where ¢, <0.0 be Qno update,

+1 __ l//n in Quo update (24)
F
ml— 4 (x—x[)x’
[
=+ |(x— x) —(y—y) ‘ in Qupdate (25)
IIFH 3]

The sign of y"*! in QU4 g chosen so that it is consistent with the current sign on a
given side of the crack in (o update,
(3) ¢ is computed using (12) so that it represents the updated location of the crack tip.

Pt = — At|[F|| (26)

where, by construction, |[V¢| =1 at all times. The rotated level set function d;i is calcu-
lated exactly in Equation (23). Since ¢?*! is calculated from qﬁi, it is important to note
that ¢! is also recalculated in each step rather than updated from the previous values
of ¢;. The recalculation of ¢ to ¢! is illustrated in Figure 4.

(4) Once all ¢p"™’s corresponding to a crack are updated, ¢"*' is updated using (21).

The location of the new crack tip i can now be determined by finding the intersection of
the zero level sets of ¢! and the newly extended y"*'. The updated tip is used to determine
a new region of elements over which the level set computation will take place.



6. COUPLING THE LEVEL SET METHOD AND THE EXTENDED
FINITE ELEMENT METHOD

The LSM and X-FEM couple naturally to model crack growth. The algorithm for the growth
of cracks given in Section 5 is simple to implement. The values of ¥, ¢;, and ¢ are stored
at nodes. Any information needed for crack growth, such as the location of the crack tip,
can be obtained from these nodal values, making it unnecessary to store any other informa-
tion pertaining to the crack. The X-FEM algorithm is an efficient finite element scheme that
solves the elliptical problem which determines the evolution of a crack on a mesh. The mesh
is unchanged throughout the computation of the evolution of the crack. For these reasons, the
LSM and X-FEM work quite well together.

Moreover, the level set representation of the crack facilitates the computation of the enrich-
ment. The enrichment function (16) is defined so that the discontinuity is coincident with the
crack. Because the crack is represented as the zero level set of y, all values above or below
the crack are either positive or negative. From (16) we can see that

1 for Y(x,¢)>0

H(y)=H"((x,1)) = (27)
-1 for Y(x,t)<0

Therefore, to determine the location of a point relative to the crack, one merely has to
determine the sign of  at that point.

The enrichment functions (17) are defined in co-ordinates local to the crack tip. These
co-ordinates can be determined by the level set function representing the tip. The function
associated with the tips, ¢, is always planar with |V¢| =1, and its zero level set is orthogonal
to the zero level set of y at the crack tips. The orthogonality of these two level sets makes
a natural co-ordinate system. The direction of the local x-axis is determined by V¢. The
direction of the local y-axis is then simply €,xV¢, where €,=(0,0,1). In this local co-
ordinate system, the arguments of the branch function (17) can be expressed by the level set
functions. That is, at point x, the radius from the crack tip and the angle of deviation from
the tangent to the crack tip is given by

(x,7)
d(x,1)

The nodes chosen for enrichment can be determined from the nodal values of y and ¢.
In a given element, let Y, and Y, respectively, be the minimum and maximum nodal
values of iy on the nodes of that element. If ¢ <0 and YrinYmax <0, then the crack cuts
through the element and the nodes of the element are to be enriched with (16). Similarly, let
Gmin and Puax, respectively be the minimum and maximum nodal values of ¢ on the nodes
of an element. If in that element Qi Pmax <O and Yinin Yimax <0, then the tip lies within that
element, and its nodes are to be enriched with (17).

The coupling of the LSM with X-FEM is illustrated in Figure 5. For a given crack, each
iteration begins by examining the level set functions at each node of each element in the
narrow band and choosing the nodes which require enrichment from the nodal values of these
functions. These nodes are then enriched by the appropriate function and the stress field is

r=+v 2(%0)+ ¢2(x,r) and 0= tan"!

(28)



For each element in narrow band
If¢o<0.0and y vy . <0
* Choosc node for Heaviside
enrichment.
If (Dminq)max <0.0and YminWmax <0
» Choose node for branch function
enrichment.

Xfem enriches chosen nodes and
uses them to computes stresses.
K1 and K2 are determined,

from which 0, is computed.

Given 8, ¢ updated to o0*1 and
crack extended by updating y to \Vn+1

Figure 5. Coupling of the extended finite element method and the level set method.
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Figure 6. Initial configuration of edge crack problem.

determined by X-FEM. Once the stress field is determined, the stress intensity factors are
computed, and from these factors the direction of crack growth 6. is computed. The angle 6.
is then used in updating the level set functions. Once the level set functions are updated, the
process is repeated.
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7. NUMERICAL EXAMPLES

In this section we present three numerical examples. The first two examples present the
growth of an initially straight crack in a simple square mesh subject to tensile loading. The
third example illustrates the growth of a crack in a fillet of a structural member.

7.1. Crack growth in square mesh subject to tensile loading

The first two examples are chosen to illustrate the accuracy and robustness of the level set
representation of crack growth. The first example is an edge crack, which has one moving
endpoint. The other is a centre crack in which both endpoints are free to evolve. Both examples
are run on a square mesh, where x€(0,16) and ye€(—8,8). A cyclic traction normal to
the edge is applied at y=—-8.0, 0.0<x<16.0 and at y=8.0, 0.0<x<16.0. The remaining
boundaries are traction free. In addition, the lower left-hand corner of the mesh, (0.0, —8.0),
is fixed. The examples are run for a total of five steps, and in each step the crack grows a
distance of 0.5 at each endpoint. The number of cycles per iteration is then obtained from
the stress intensity factor by the Paris Law. The results obtained from the LSM are compared
to those of the X-FEM algorithm described in Reference [1], where a crack is explicitly
represented as a set of straight segments.

7.1.1. Edge crack. The first example is an edge crack under tensile loading T with unit
amplitide. The co-ordinates of the endpoints of the initial crack are (0.0,1.0) and (7.0,1.0).
This is illustrated in Figure 6. Stress intensity factors K; and K,, as well as the location
of crack tips, were compared for meshes of different refinement. The stress intensity factors
are those computed before the crack grows for the given step. The comparison of the stress
intensity factors is given in Table I, and the comparison of the crack tips is in Table II.

The level set representation of a crack is shown in Figure 7. The crack in this figure was
modelled on a 50x50 mesh. The narrow band on which computation took place extends
five elements around either side of the crack. The crack is represented by =0, which is
drawn as the thicker line. In the level set representation, the crack tip is the intersection
of the orthogonal zero level sets y and ¢;. For comparison, the solution determined by the
explicit representation of the crack by a series of rectilinear line segments as described in
Reference [1] is shown. The level set crack is semi-quadratic in each element because the
shape function representation (22) is bilinear in each element.

Figure 8 shows the level sets of the functions representing the crack and the crack tip after
the fifth iteration. It is clear from this figure that the zero level set of the y function represents
the crack. The displayed level sets were chosen so that an approximate computational domain
can be seen. Hence, the level set functions do not exist outside of the regions illustrated in
Figure 8, and at each iteration, computation is done only in the region represented by the
level sets of the function ¢;.

7.1.2. Centre crack. This example is again a crack in a plate under tensile loading T with
unit amplitide, as shown in Figure 9. The initial crack is straight and has endpoints with
co-ordinates (5.0, —1.0), referred to as tip 1, and (11.0,1.0), which is tip 2. The comparison
of the stress intensity factors is shown in Table III, and the comparison of the crack tips is
shown in Table IV.

11



Table I. Stress intensity factors for the edge crack.

Step Explicit crack Level set crack
30%x30 Mesh
1 Ki: 11.9437 Ki: 11.9437

Ky: —5.27453e — 1 Ky: —5.27453e — 1
2 Ky: 13.4528 Ky: 13.4508

K>: —7.19400e — 2 K>: —6.28707¢ — 3
3 K;: 15.0378 Ky: 15.1149

K>: —6.59637e — 2 K>: —4.16088¢ — 2
4 Ky: 169723 K;: 17.0019

K>: 3.47538e —2 K>: —3.06219¢ — 2
5 Ky: 19.3645 Ky: 19.3840

K>: 3.09982¢e — 2

100 x 100 Mesh

K>: —1.10077¢ — 2

1 Ki: 11.9945 Ky: 11,9945

K>: —5.69560e — 1 Ky: —5.69560e — 1
2 Ky: 13.5723 Ky: 13.5723

Kr: —3.46207¢ — 2 Ky: —3.45084¢ — 2
3 Ki: 153164 Ky: 153164

K>: —5.70880e — 2 K>: —5.71534e -2
4 Ky: 17.2541 Ky: 17.2459

K>: 9.49401e — 4 K>: 345291e — 3
5 Ky: 19.4749 Ky: 19.4748

K>: 1.34399¢ — 2 K>: 1.09760e — 2

Table II. Evolution of crack tips for the edge crack.

Step Explicit crack Level set crack
30%x30 Mesh
0 (7.00 000, 1.00000) (7.00 000, 1.00000)
1 (7.49807, 1.04391) (7.49807, 1.04391)
2 (7.99564, 1.09314) (7.99610, 1.08 828)
3 (8.49276, 1.14673) (8.49387, 1.13539)
4 (8.99009, 1.19828) (8.99147, 1.18429)
5 (9.48759, 1.24825) (9.48902, 1.23376)
100x 100 Mesh
0 (7.00 000, 1.00000) (7.00 000, 1.00000)
1 (749777, 1.04717) (749777, 1.04717)
2 (7.99529, 1.09687) (7.99529, 1.09687)
3 (8.49243, 1.15029) (8.49243, 1.15028)
4 (8.98958, 1.20365) (8.98959, 1.20349)
5 (9.48679, 1.25632) (9.48681, 1.25614)

12
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Table III. Stress intensity factors for centre crack.

Step Explicit crack Level set crack
30x30 Mesh—Tip 1 and Tip 2
1 Ki: 342434 Ki: 3.42434

K>: 1.10835 K>: 1.10835
2 Ki: 3.95943 Ki: 4.13820

K>: —942231e — 1 K>: —6.40598¢ — 1
3 Ki: 4.55955 Ki: 4.76276

K>: 9.88267e — 1 K>: 4.55367e — 1
4 Ki: 530417 Ki: 539151

K> — 8.41266e — 1 K>: —3.45293e — 1
5 Ki: 597014 Ki: 6.11876

K>: 6.70257e — 1 K>: 1.6908% — 1
100x 100 Mesh—Tip 1
1 Ky: 3.42837 Ki: 3.42837

K>: 1.08407 K>: 1.08407
2 Ki: 421270 Ki: 421257

K>: —4.16980e — 1 Ky: —4.15402¢ — 1
3 Ki: 4.84677 Ki: 4.84653

K>: 6.94297¢ — 2 K>: 6.74268¢ — 2
4 Ky: 543278 Ki: 543243

K>: —7.04901e — 2 K>: —6.98822¢ — 2
5 Ki: 6.13437 Ki: 6.13395

K>: —7.43117e -3 K>: —7.74329% — 3
100x 100 Mesh—Tip 2
1 Ki: 342832 K: 3.42832

K>: 1.08403 K>: 1.08403
2 Ky: 421262 Ki: 421249

K> —4.16918e — 1 K>: —4.15340e — 1
3 K: 4.84663 K: 4.84639

K>: 6.93549¢ — 2 K>: 6.73526e — 2
4 Ki: 543255 Ky: 543219

K>: —7.04848e — 2 Ky: —6.98774e — 2
5 Ki: 6.13399 Ky: 6.13357

K>: —7.56382¢ — 3 K>: —7.87572¢ — 3

The level set representation of the centre crack is shown is Figure 10. As in the first
example, the crack is represented as the zero level set of a single function . However,
in this case, each endpoint is represented by a separate level set function, ¢; and ¢,. The
level sets of the three functions and an approximate computational domain are illustrated in
Figure 11. Again, the cracks in both figures were modelled on a 50 x 50 mesh with a narrow
band size of five elements on either side of the crack.

As can be seen in the tables, the results obtained from the LSM agree closely with those
based on the explicit X-FEM representation. As the mesh is refined, the results converge
towards one another. The slight discrepancy between the results of the two methods is caused
mainly by a difference in the construction of the subelements [1], which are used for quadrature
around the crack. In the case of the explicit representation, the crack is represented in a way
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Table IV. Evolution of crack tips for the centre crack.

Step Explicit crack Level set crack

30x30 Mesh

0 Tip 1: (5.00000, —1.00000) Tip 1: (5.00000, —1.00000)
Tip 2: (11.0000, 1.00000) Tip 2: (11.0000, 1.00000)

1 Tip 1: (451147, —0.893528) Tip 1: (451147, —0.893527)
Tip 2: (11.4885, 0.893528) Tip 2: (11.4885, 0.893528)

2 Tip 1: (4.02251, —0.998004) Tip 1: (4.01304, —0.933143)
Tip 2: (11.9775, 0.998004) Tip 2: (11.9870, 0.933143)

3 Tip 1: (3.53088, —0.906860) Tip 1: (3.51595, —0.879257)
Tip 2: (12.4691, 0.90680) Tip 2: (12.4840, 0.879257)

4 Tip 1: (3.03431, —0.965267) Tip 1: (3.01604, —0.888707)
Tip 2: (12.9657, 0.965269) Tip 2: (12.9840, 0.888707)

5 Tip 1: (2.53686, —0.914761) Tip 1: (2.51637, —0.870576)
Tip 2: (13.4631, 0.914761) Tip 2: (13.4836, 0.870576)

100x 100 Mesh

0 Tip 1: (5.00000, —1.00000) Tip 1: (5.00000, —1.00000)
Tip 2: (11.0000, 1.00000) Tip 2: (11.0000, 1.00000)

1 Tip 1: (4.51055, —0.897817) Tip 1: (4.51055, —0.897817)
Tip 2: (11.4894, 0.897821) Tip 2: (11.4894, 0.897821)

2 Tip 1: (4.01059, —0.891720) Tip 1: (4.01059, —0.891372)
Tip 2: (11.9894, 0.891716) Tip 2: (11.9894, 0.891368)

3 Tip 1: (3.51101, —0.871310) Tip 1: (3.51101, —0.871026)
Tip 2: (12.4890, 0.871314) Tip 2: (12.4890, 0.871030)

4 Tip 1: (3.01106, —0.863865) Tip 1: (3.01106, —0.863534)
Tip 2: (12.9889, 0.863875) Tip 2: (12.9889, 0.863545)

5 Tip 1: (2.51110, —0.857631) Tip 1: (2.51110, —0.857305)
Tip 2: (13.4889, 0.85767) Tip 2: (13.4889, 0.857343)

such that the crack can kink inside an element. However, the level set functions are defined
at the nodes of elements, allowing only for a smooth interpolation, as given in Equation (19),
of the level sets within each element. The subelements in the level set geometry are therefore
constructed on either side of a smooth crack, whereas subelements in the explicit representation
are constructed so that they match the geometry of the kinks. Additionally, in the explicit
representation of the crack, subelements can be built within existing subelements. In the level
set representation, at each iteration all of the existing subelements are deleted and a completely
new set is created. These differences in subelements cause unequal quadrature near the crack
tip, which in turn causes a slight difference between the evolutions of the explicit and level
set cases. As the mesh is refined, the need for reslicing elements as well as the fraction of
elements in which kinks can occur is reduced, making the subelements in the two methods
more comparable.

7.2. Crack growth from a fillet

This example shows the growth of a crack from a fillet in a structural member. The configura-
tion of the problem is taken from experimental work found in Reference [15] and is shown in
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Figure 10. Centre crack at time=0,3,5; 7/ cor- Figure 11. Level set functions representing the
responds to the zero level set of ¢i(X,#,). The centre crack at time =35.
explicit piecewise-linear representation is shown

as the diamond.

Initial
Crack
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Region

s s

Figure 12. Experimental configuration of crack growth from a fillet taken from Reference [15].

Figure 12. The computational domain is outlined by the dashed line. In this example, we
investigate the effects of the thickness of the lower I-beam. Only the limiting cases of a very
thick, rigid I-beam and a very thin, flexible I-beam are discussed. The effects of the thickness
are incorporated into the problem through the boundary conditions. For a rigid beam, the
displacement in the vertical direction is fixed on the entire bottom. To model a flexible beam
we fix the vertical displacement of only the endpoints of the bottom of the domain. The
structure is loaded at the top boundary with a load of P =20kN.

The initial crack is Smm in length. Crack growth was simulated for a total of 12 steps, with
each step size of length Smm. The narrow band on which the level set functions are computed
extends four elements on either side of the crack. Figure 13 is a close-up of the mesh in the
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Figure 13. Crack paths for a rigid (upper crack) and flexible (lower crack) constraint. The

path of the level set solution is shown as the solid line with the crack tip at the twelfth

step shown as the intersection of the two zero level sets. The path of the explicit crack is
shown by an X at the crack tip for each step.

vicinity of the fillet. Crack paths for a rigid constraint (upper path) and flexible constraint
(lower path) are shown for both the level set representation and the explicit piecewise-linear
representation. The crack model given by the level sets in this case is piecewise linear since
triangular elements with linear shape functions are used for Equation (22). However, the
length of the segments is determined by the elements encountered by the crack path. The
crack tip at the twelfth step is the intersection of y =0 and the orthogonal solid line ¢ =0.
The explicit representation is shown as an X at the crack tip location at each iteration.

8. CONCLUSIONS

The LSM and X-FEM couple naturally to solve the elasto-static fatigue crack problem. The
level set formulation is used to model the crack and update the crack tip at each iteration.
The geometry of the crack is easily represented by two zero level sets that are orthogonal to
one another at the crack tip. The level set functions, therefore, naturally provide two local
co-ordinate systems that are needed for enrichment by the X-FEM algorithm. The process of
determining the nodes to be enriched is facilitated through the level set representation. We
use X-FEM to solve the elasto-static problem and determine the direction of crack growth.
The examples presented show that the results obtained by the level set formulation are com-
parable to those obtained with an explicit model of the crack. The advantages of the LSM
and the X-FEM, although not overwhelming in two dimensions, are simple and useful. In
three dimensions, the advantages of the combination of the two methods promise to be very
beneficial.
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