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This paper deals with the calculation of X-ray Elasticity Constants (XEC) of phases embedded in multi-phase 

polycrystals. A three scales (macroscopic, pseudo-macroscopic, mesoscopic) model based on the classical self-

consistent formalism is developed in order to analyse multi-phase effects on XEC values. Simulations are 

performed for cubic or hexagonal crystallographic structure phases embedded in several two-phases materials. In 

fact, it is demonstrated that XEC vary with the macroscopic stiffness of the whole polycrystal. In consequence, 

the constants of one particular phase depend on the elastic behaviour and the volume fraction of all the phases 

constituting the material. Now, XEC play a leading role in pseudo-macroscopic stresses determination by X-Ray 

Diffraction (XRD) methods. In this work, a quanti-tative analysis of the multi-phase effects on stresses 

determination by XRD methods was performed. Nu-merical results will be compared and discussed. 

1 Introduction 

Experimenters require proportionality constants, called X-ray Elasticity Constants (XEC), in order to 

determine the residual stress state of a material from X-ray strain measurements [1].  

Apart from effects due to crystallites morphology or orientation (crystalline texture), XEC depend on 

several parameters such as the diffracting planes chosen, the nature of each phase through their elastic 

mechanical properties, and the volume fraction of the different phases constituting the multi-phase poly-

crystal [2]. Methods leading to XEC values determination are well known in the case of single-phase 

materials. Experimental and scale transition simulation schemes (based for example on works [3–9]) 

yield concordant numerical results in this particular case. For two phases materials, a more elaborate 

approach is proposed in the present paper. Knowing the volume fraction and the mechanical behaviour of 

the single crystal of each phase, one needs to calculate the XEC necessary for his experiments. In fact, it 

is usually assumed that XEC remain the same in two-phases materials as in single phase ones. This hy-

pothesis yields straightforwardly to introduce the classical, available in the literature, values of single-

phase XEC in the “sin2
ψ” relation, in order to process the experimental pseudo-macroscopic strain data 

obtained through measures in two-phases samples, e.g. [10–13]. This methods implicitly neglects the 

effects of the second phase on the mechanical elastic behaviour of the diffracting volume. It implicitly 

considers the phase as a connex domain in which the diffracting volume is fully embedded. The aim of 

this work consists in the evaluation of the two-phases effect on the XEC values and its consequences on 

the stresses determined by XRD analysis in cubic and hexagonal crystallographic structures. 

* Corresponding author: e-mail: freour@lamm.univ-nantes.fr, Tel.: +33 02 40 17 26 25, Fax: +33 02 40 17 26 18 
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2 One site self-consistent calculation model 

2.1 The three scales representation for multi-phase materials: scale transition formalism  

XRD stress determination amounts to a sampling of the material with a set of crystallites which orienta- 

tions are well defined. The elastic properties of this set are therefore anisotropic. It means that a multis- 

cale modeling of XEC should start at the crystallite scale with an elastically anisotropic formulation. To 

account for intergranular heterogeneities occurring during elastic strain, self-consistent approaches are 

used to express the behavior of polycrystals. As part of the model, ellipsoidal inclusions, representing a 

crystallite, are one after another embedded in an infinite homogeneous equivalent matrix representing the 

two-phases polycrystalline aggregate. It should be remembered that XEC concept is based on an iso- 

tropic elastic behaviour of the matrix. It implies that the material should be assumed as perfectly disor- 

dered. In fact, in the particular case, when the principal axis of ellipsoidal anisotropic inclusions are 

statistically oriented, macroscopic stiffness remains isotropic, even in two-phases materials. This ques- 

tion has been thoroughly investigated by Qiu and Weng [14]. In the general case, however, when the 

principal axis are preferentially oriented along a specific direction, the elastic properties of the homog- 

neous equivalent medium become anisotropic. Macroscopic anisotropy can appear in the presence of 

crystalline texture too [15]. In the considered context, the main consequence of macroscopic anisotropy 

is that the classical XEC are no more suitable for the interpretation of XRD strains measurements. It will 

often be necessary to introduce the matrix of the stress factors, calculated from the Orientation Distribu-

tion Function (ODF). An example is given by Sprauel et al. in [16].  

 First, let us introduce the description of the effective macroscopic mechanical behavior (σΙ, εΙ) of the 

polycrystal. The statistical self-consistent framework assumes the following regular equations deduced 

from [6, 9, 17] : 

 I I:= Cσ ε ,  with  ( ) ( ){ }
1

1,

: :i i

i N

Ω Ω
−

=

 = + − C c I P c C    (1)  

σ and ε are the stresses and strains. Superscripts I or II on strain and stress tensors denote respectively 

macroscopic (first order) and mesoscopic (second order) quantities. 

 C is the effective elastic modulus of the homogeneous equivalent medium (polycrystal).  

 I is defined by 
( )

2

ik jl il jk

ijklI
δ δ δ δ+

= ,  where δ  is the Kronecker symbol. 

( )i
Ωc  denotes the single crystal elastic stiffness (of the phase i) referred to a sample-fixed coordinate 

system whose orientation, in which the orientation of the crystallite is symbolically denoted by Ω. Hill’s 

tensor P expresses the local  interactions depending on the morphology assumed for the crystallites [17]. 

It is linked to Eshelby tensor Sesh by P = C : Sesh. The integration of the Green’s tensor of the homogene- 

ous equivalent medium over the surface of an inclusion provides the expression of P. The method is 

detailed, for example, in [18]. 

 A : B denotes the double scalar product AijklBklmn. 

 N is the number of phases in a Representative Volume Element (RVE) of the polycrystal. It is as- 

sumed that the average of equation (1) is equivalent to a spatial average over the RVE (ergodic hypothe- 

sis). The average operation is successively done over every orientation Ω for each phase. 

 At mesoscopic scale, the stresses σ ΙΙ(Ω) and strains ε ΙΙ(Ω) of any inclusion can be expressed by a 

similar equation  

 ( ) ( ) ( )II II: .i
Ω Ω Ω= cσ ε  (2) 

 The scale transition formalism relating the macroscopic first order and mesoscopic second order me- 

chanical states verifies the strain localization law usually described through ( ) ( )II I:Ω Ω= Aε ε , where 
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the localization tensor A(Ω) is expressed by  

 ( ) ( ){ }
1

: i
Ω Ω

−

 = − + A P c C I   (3) 

A(Ω) depends on the macroscopic stiffness C which can be calculated iteratively from the implicit equa-

tion (1). 

 Following Hill [8], the macroscopic strain is obtained by  

 ( )I II .Ω=ε ε  (4)  

 In order to study a multi-phase polycrystal, it is necessary to introduce a pseudo-macroscopic, inter- 

mediate, scale between the mesoscopic and the macroscopic ones. This new level of representation has 

been defined by Sprauel so as to simulate the behavior of the different phases  constituting the whole 

material [19]. Remind that the term “phase” is here employed in its crystallographic sense: each phase is 

constituted by every crystallite exhibiting the same properties (e.g. single crystal elastic constants, …), 

whatever their orientation Ω. The pseudo-macroscopic strain of a given α phase can be defined as the 

average of the strains over all the crystallites composing this phase:  

 ( )II .Ω
α

α

=ε ε  (5) 

The localization law can be obtained from equation (3):  

 ( ) ( )I I: : .Ω Ω
α

αα

= =A Aε ε ε  (6) 

In consequence, the pseudo-macroscopic stress concentration law would be expressed through 

 ( ) ( ) ( ) ( ) ( )II II I: : : .Ω Ω Ω Ω Ω
α α α

α α α

= = =c c Aσ σ ε ε  (7) 

Using equation (6), it comes:  

 ( ) ( ) ( )
1

: : : .
α

Ω Ω Ω
−α α α

α

= c A Aσ ε  (8) 

This relation enables us to define the pseudo-macroscopic stiffness corresponding to a phase with   

 :α α α

= Cσ ε   (9) 

Comparison between (8) and (9) leads to 

 

( ) ( ) ( )

( ) ( ){ } ( ){ }

1

1
1 1

: :

: : : : .

Ω Ω Ω

Ω Ω Ω

−
α α

αα

−
− −

α α α α

α α

=

   = − + − +   

C c A A

C c P c C I P c C I

  (10) 

 This equation is quite different from the corresponding expression of the isolated polycrystalline sin-

gle α phase macroscopic stiffness (1) because the properties of the second phase might have an influence 

on Cα through the value of C (and thus of P). In fact, equation (1) is established by considering each 

phase as a single inclusion whereas in equation (10) each phase is composed of many crystallites with 

different orientations. The term 1 1 1[ :{ ( ) } ]Ω Ω
− α − −

α α
〈 〉 = 〈 − + 〉A( ) P c C I  might be considered as a deviation 

factor expressing the average interaction between α crystallites and the infinite equivalent medium. In 

consequence, in a multi-phase material, the nature and the proportion of the other phases forming the 

polycrystal affect the average elastic properties of a given α phase. As a result,  the pseudo-macroscopic 

stiffness of a phase arbitrarily isolated might not be identified to its macroscopic stiffness, when it is 

integrated in a multi-phase material.  

3



The reason why Cα is not equal to its single phase value could either be a closure problem of the self-

consistent model or have a physical origin. As a matter of fact, the definition of the pseudo-macroscopic 

stress and strain in equations (6) and (7), although intuitive and consistent with usual definitions, is arbi-

trary. 

Basic tests can be performed to study the expressions obtained. Let us consider a single-phase mate-

rial. The definition of the average strain I II
= 〈 〉ε ε  implies that 1( ) ( ) ( )Ω Ω Ω

−

α α
〈 〉 = = 〈 〉 = 〈 〉A I A A . In 

consequence, (10) leads to the expected regular single-phase implicit relation (1): 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
11

: : : : : .Ω Ω Ω Ω Ω Ω Ω
−−

α α α α α α

αα α

α

⎡ ⎤= = = − +⎣ C c A A c A c P c C I  

Let us focus on the general case of a n-phases polycrystalline aggregate, containing a volume fraction f i 

of any given phase i. Imposing the homogenization conditions (4) and (5) over the  strain localization 

law (6) gives : 1,( ) .i NΩ
=

〈 〉 =A I  

This expression can also be developed : i( ) ( ) .i

i

f fΩ Ω
α

α

≠α

〈 〉 + 〈 〉 =∑A A I

 In consequence, α phase average pseudo-macroscopic localization tensor deviates from the identity as 

follows: 
1 1

( ) ( ) .i

i

i

f
f f

Ω Ω
α α α

≠α

〈 〉 = − 〈 〉∑A I A Where f i is the volume fractions of phase i and 
1

1.
N

i

i

f
=

=∑

 In conclusion, self-consistent model constitutive relations imply that the average pseudo-macroscopic 

localization tensor of a given α phase is necessarily different from the identity. This results in a deviation 

between pseudo-macroscopic stiffness and the corresponding single-phase macroscopic stiffness. Also, 

this deviation should be considered as the expression of continuum mechanics fundamental laws rather 

than as an hypothetical closure problem of the model. As a matter of fact, it can be considered that the α 

phase is not a connex volume. One could intuitively think that its overall properties should be influenced 

by the medium that makes it connex. Therefore, as a response to a given average stress, the phase is not 

free to deform in its own “macroscopic” way, when it is embedded in other phases. In consequence, the 

deviation between single-phase macroscopic stiffness and pseudo-macroscopic stiffnesses will be 

strongly related to the volume fraction and elastic mechanical properties of these other phases.  

 The introduction of the pseudo-macroscopic stiffness Cα raises the question of the scale transition 

relations existing between the phases and the polycrystalline multi-phase matrix. According to the strain 

localization (3), the macroscopic strain can be developed as follows: 

( ) ( ) ( ) ( )I II II II: : : : .i
Ω Ω Ω Ω= − +P c P Cε ε ε ε (11)

An averaging of this expression only on α phase crystallites yields: 

( ) ( ) ( ) ( )I II II II: : : : .Ω Ω Ω Ω
α

α α α α

= − +P c P Cε ε ε ε (12)

I ,ε P and C being constant over α phase, these tensors may be factored out of the averages: 

( ) ( ) ( ) ( )I II II II: : : : .
α

Ω Ω Ω Ω
α

α α

= − +P c P Cε ε ε ε (13)

According to the mesoscopic to pseudomacroscopic averaging equations (5) and (7), one should obtain: 

{ }I : : : : : : : : : .α α α α α α α α α⎡ ⎤= − + = − + = − +⎣ P P C P C P C P C C Iε σ ε ε ε ε ε ε (14)

Finally, the pseudomacroscopic stresses and strains can be expressed through the macroscopic 

strain state, as a function of the pseudomacroscopic and macroscopic stiffness, respectively given by (14) 
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and (9):  

 ( )
1

I: : ,
−

α α = − + P C C Iε ε  (15) 

 ( )
1

I: : : .
−

α α α = − + C P C C Iσ ε  (16) 

These equations mean that the average stress or strain state of the polycrystalline α-phase can be ob-

tained through a classical multi-phase self-consistent scheme by considering it as a single inclusion of 

stiffness C
α embedded in a homogeneous matrix having the stiffness of the macroscopic material. How-

ever, it should be remembered that the stiffness tensor Cα is not that of the isolated single α-phase but is 

given by equation (10). Up to now, the developed equations are very general. They are therefore valid for 

a macroscopically anisotropic (textured) material. 

 Finally, in order to take into account multi-phase effects in the simulation, it is necessary to consider 

three levels in the schematization of the material: the classical grain and polycrystal levels (mesoscopic 

and macroscopic scales) and an intermediate pseudo-macroscopic scale defining the behaviour of each 

phase. This representation and the associated scale transition formalism will now be applied to XEC 

determination. 

2.2 Application to XEC simulation 

According to [16, 20], the lattice strain ,ϕ ψ
ε
α  measured in α phase by XRD corresponds to the integration 

of the mesoscopic strains (3) over all orientations Ω of the Diffracting Volume (DV), and their projection 

on the measurement direction ϕ, ψ: 

 ( )t II

,
DV

,n n
ϕ ψ
ε ε Ω

α

α 

= ⋅ ⋅

r r

  with  

sin cos  

sin sin .

cos

n

ψ ϕ

ψ ϕ

ψ

 
 

=  
 
 

r

   (17) 

 Neglecting effects due to crystallographic or morphologic texture, the usual linear relation between 

the measured strain and the triaxial pseudo-macroscopic stress undergone by the α-phase could be de-

veloped as follows : 

 

( )

( )

( )

2 2 21
, 2 11 12 22 332

1
2 13 232

1
2 33 1 11 22 332

cos sin 2 sin  sin

cos sin  sin 2

S .

S

S

S

ϕ ψ
ε σ ϕ σ ϕ σ ϕ σ ψ

σ ϕ σ ϕ ψ

σ σ σ σ

α α α α α α

α α α

α α α α α α

= + + −

+ +

+ + + +

      (18) 

 Substituting the numerical values obtained through (16, 17) in (18) provides a relation leading to the 

determination of the XEC 1/2 2S
α  and 1S

α  characteristic of the α-phase embedded in the multi-phase 

polycrystal studied.  

 According to the theory described by Bollenrath, Hauk and Müller [21], the XEC of a given  

cubic symmetry phase can be expressed for any {hkl} diffracting plane through: 

( ) ( ) ( )1 1
2 22 2

00 3 .S hkl S h hkl S= − Γ  This expression depends on two main factors: the slope S, and the 

cubic orientation parameter symbolically denoted by Γ.  These terms are respectively given by: 

( )
( )

2 2 2 2 2 2

2
2 2 2

h k h l k l
hkl

h k l
Γ

+ +
=

+ +

, and ( )[ ]2 XR

1
1

2
S S hhh A= − . 
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Table 1 Cubic symmetry single-crystal elasticity constants and anisotropy parameter A
c
.

austenitic 

phase [23] 

ferritic phase 

[23] 

aluminium 

[1] 
β -SiC 

[23] 

diamond-C 

[23] 

copper 

[1] 

c11 [GPa] 197.5 237.4 108.2 352.3 1020.0 168.4 

c12 [GPa] 124.5 134.7  61.3 140.4  250.0 121.4 

c44  [GPa] 122.0 116.4  28.5 232.9  390.0  75.4 

44

11 12

2
c

c
A

c c
=

−

 3.34  2.27  1.23  2.20  1.01  3.21 

 AXR denotes the X-Ray anisotropy coefficient of the diffracting phase, corresponding to the following 

ratio: 
1

22
XR 1

22

( 00)

( )

S h
A

S hhh
= . 

In the same way, XEC of hexagonal symmetry phases verify the following relation due to Evenschor 

and Hauk [19] : ( ) ( ) ( )21
2 1 2 32

. . . .S hk l x x H hk l x H hk l= + +

Introducing the lattice parameters a and c of the considered structure, the hexagonal orientation 

parameter symbolically denoted by H is given by: ( )

( )

2

2

2 2 24

3

l
H hk.l

c
h k hk l

a

=
 

+ + + 
 

. 

 In consequence, for phases exhibiting hexagonal crystallographic structure, 1/2 S2 values varies be-

tween 1/2 S2(10.0) = x1 and 1/2 S2(00.1) = x1 + x2 + x3. 

 This model has been used to simulate the cases of several two-phases materials: duplex steels, alumin-

ium–β silicon carbide Metal Matrix Composites (MMC), aluminium–diamond carbon composites, cop-

per–Feα alloys, aluminium–beryllium alloys, aluminium–zinc alloys and cadmium–zinc alloys. The dif-

ferent systems have been especially chosen in order to separate the effects of the following parameters on 

XEC values: single-crystal anisotropy, crystallographic structure and the ratio of the elastic moduli of the 

two considered phases.  

 The micromechanical constants used for each cubic or hexagonal single-crystal inclusion are respec-

tively given in Tables 1 and 2. The two-phases elastic behaviour has been simulated through a calculus 

involving 4000 spherical crystallites randomly oriented. The diffracting volume elastic behaviour has 

then been determined for each phase and different compositions of the α + β  material: 0% β, 25% 

β, 50% β, 75% β and 100% β, (this last composition corresponds to the limiting case of vanishing 

α phase). Table 3 summarizes the cases of two usually encountered materials: duplex steels and alumin-

ium–β silicon carbide MMC. The localization of a macroscopic stress in the crystallites of the diffracting 

volume provides values for the XEC. Results obtained are given in Tables 4 and 5 which summarizes the 

main elastic heterogeneities and sources of anisotropy of the considered polycrystals. Nevertheless, XEC 

do not depend on σΙ. In consequences, the macroscopic loading is arbitrary. 

Table 2 Hexagonal symmetry single-crystal elasticity constants [25]. 

c11 [GPa]  c12 [GPa] c13 [GPa] c33 [GPa] c44 [GPa] c66 [GPa] Ah1 Ah2 c11/c33 

zinc 165.0 31.0 50.0  62.0  39.6  67.0 1.64 0.39 2.66 

cadmium 114.5 39.5 39.9  50.8  19.8  37.5 1.89 0.66 2.24 

beryllium 292.3 26.7 14.0 336.4 162.5 132.8 0.82 0.94 0.87 

NB: The departure of the parameters A
h1, Ah2 and c11/c33 from unity can be used as a measure of the elastic anisot-

ropy of hexagonal crystals. 
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Table 3 Multi phase effects on pseudomacroscopic stiffness. 

Stiffness tensor components and bulk moduli calculated in Al–SiC MMC at pseudomacroscopic scale 

 f(Al)  0.00  0.25  0.50  0.75  1.00 

C11(Al) [GPa] 112.2 112.2 112.1 112.1 112.1 

C12(Al) [GPa]  59.3  59.3  59.3  59.3  59.4 

K(Al) [GPa]  76.9  76.9  76.9  76.9  77.0 

C11(SiC) [GPa] 437.7 434.2 430.8 428.1 426.7 

C12(SiC) [GPa]  97.6  99.4 101.1 102.5 103.2 

K (SiC) [GPa] 211.0 211.0 211.0 211.0 211.0 

Stiffness tensor components and bulk moduli calculated in duplex steels at pseudomacroscopic scale   

 f(Feα)  0.00  0.25  0.50  0.75  1.00 

C11(Feα) [GPa] 281.0 281.1 281.2 281.2 281.2 

C12(Feα) [GPa] 112.9 112.8 112.8 112.8 112.7 

K(Feα) [GPa]  168.9 168.9 168.9 168.9 168.9 

C11(Feγ) [GPa] 250.6 250.8 251.1 251.3 251.5 

C12(Feγ) [GPa]  97.9  97.8  97.7  97.6  97.5 

K(Feγ) [GPa] 148.8 148.8 148.8 148.8 148.8 

 
Table 4 XEC [10–6 MPa–1] determined in cubic symmetry phases of several two-phases polycrystals.  

XEC calculated in the case of a MMC aluminium–β silicon carbide 

diffracting phase volume fraction 100% 75% 50% 25% ∼0% 

1/2 S2(h00)  19.99 19.75 19.52 19.31 ∼19.19 aluminium 

S   1.71  1.35  0.98  0.69 ∼ 0.49 

1/2 S2(h00)   3.63  3.82  4.04  4.23 ∼ 4.36 β-SiC 

 S  1.15  1.40  1.68  1.93  ∼2.10 

XEC calculated in the case of duplex steel 

diffracting phase volume fraction  100% 75% 50% 25% ∼0% 

1/2 S2(h00)  8.77 8.68 8.65 8.59 ∼8.56 austenitic phase 

S  3.68 3.59 3.54 3.48 ∼3.43 

1/2 S2(h00)  7.31 7.33 7.35 7.37 ∼7.41 ferritic phase 

S  2.29 2.32 2.34 2.39 ∼2.43 

XEC calculated in the case of an iron–copper two-phases polycrystal 

diffracting phase volume fraction 100% 75% 50% 25% ∼0% 

1/2 S2(h00)   7.31  7.39  7.56  7.71 ∼ 7.82 ferritic phase 

S   2.29  2.43  2.61  2.80 ∼ 2.96 

1/2 S2(h00)  13.55 13.32 12.94 12.55 ∼12.34 copper 

S   5.36  5.00  4.57  4.15 ∼ 3.84 

XEC calculated in the case of an aluminium–diamond carbon two-phases polycrystal 

diffracting phase volume fraction 100% 75% 50% 25% ∼0% 

1/2 S2(h00)  19.99 19.69 19.34 19.11 ∼19.06 aluminium 

S   1.71  1.23  0.70  0.37  ∼0.23 

1/2 S2(h00)   1.29  1.29  1.30  1.30  ∼1.30 diamond   

carbon S   0.01  0.01  0.01  0.01  ∼0.01 
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Diffracting αααα grains

Non diffracting αααα grains

β β β β grains

a b  

3�� Interphase interactions in two-phases polycrystals  

3.1 Discussion about multi-phase effects on pseudomacroscopic stiffness values (Table 3) 

The one site self consistent formalism (10) shows that the pseudo-macroscopic stiffness tensor of a given 

phase integrated in a multi-phase material should be different from the corresponding single-phase mate-

rial macroscopic stiffness. Pseudo-macroscopic stiffness obviously varies as a function of the nature and 

volume fraction of the other phase constituting the two-phases polycrystal. Nevertheless, it is shown in 

table 3 that, in most cases, multi phase effect on pseudo-macroscopic stiffness is usually negligible. Al-

though pseudo-macro-stiffness varies with the nature and the volume fraction of the other phase, the bulk 

modulus K of each phase remains perfectly constant at pseudomacroscopic scale. It is well known that K 

  
Table 5 XEC [10–6 MPa–1] determined in hexagonal symmetry phases of several two-phases poly- 

crystals 

XEC calculated in the case of an aluminium–beryllium two-phases polycrystal 

diffracting phase volume fraction –100% –75% –50% –25% ∼0% 

x1 = 1/2 S2(10.0) –3.52 –3.55 –3.58 –3.60 –3.62 

x2  –0.68 –0.79 –0.90 –0.98 –1.03 

x3  –0.39 –0.44 –0.47 –0.48 –0.47 

beryllium 

1/2 S2(00.1) –3.23 –3.20 –3.15 –3.10 –3.06 

XEC calculated in the case of a cadmium–zinc two-phases polycrystal 

diffracting phase volume fraction –100% –75% –50% –25% ∼0% 

x1 = 1/2 S2(10.0) –17.72 –17.80 –17.90 –17.97 –18.05 

x2  –  5.74 – 5.80 – 5.76 – 5.62 – 5.43 

x3  –  6.37 – 5.16 – 4.14 – 3.28 – 2.61 

cadmium 

1/2 S2(00.1) –29.83 –28.76 –27.80 –26.87 –26.09 

x1 = 1/2 S2(10.0)  10.21 –10.21 –10.23 –10.24 –10.27 

x2  –  0.84 – 1.26 – 1.80 – 2.43 – 3.17 

x3  –  8.61 – 9.83 –11.28 –12.90 –14.71 

zinc 

1/2 S2(00.1) –17.98 –18.78 –19.71 –20.71 –21.81 

XEC calculated in the case of an aluminium–zinc two-phases polycrystal 

diffracting phase volume fraction –100% –75% –50% –25% ∼0% 

x1 = 1/2 S2(10.0) –10.21 –10.21 –10.21 –10.22 –10.24 

x2  –  0.84 – 1.24 – 1.75 – 2.38 – 3.19 

x3  –  8.61 – 9.73 –11.05 –12.60 –14.51 

zinc 

1/2 S2(00.1) –17.98 –18.70 –19.51 –20.44 –21.56 

Fig. 1� a) Diffracting volume consti-

tuted by α grains only connected to 

other α grains. (Case of equality of the 

XEC in the single-phase and two-

phases material). b) Diffracting vol-

ume constituted of α grains interacting 

with α and β first neighbours grains. 
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Fig. 2 Calculated systematic relative error δ,  due to multiphase effects, on the stresses determined in 

several cubic structure phases of two-phases polycrystals. f denotes the volume fraction of the analysed 

phase. δ (f  = 0) corresponds to the limit case of Eshelby’s inclusion. These values constitute the upper 

bound of the systematic error. 
 
values are, since it is an invariant of the stiffness tensor, identical in single crystal (mesoscopic scale) and 

in cubic structure single phase polycrystals (macroscopic scale). In consequence a variation of the bulk 

modulus would not be physically acceptable. Results obtained satisfy this criterion. This confirms the 

numerical validity of the model developed which implies the deviation of pseudo macro stiffness values 
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in order to ensure the consistence between the average moduli determined at macroscopic and pseudo-

macroscopic scales, and the elastic behaviour of the inclusions. 

3.2 Analyse of multi-phase effects on XEC 

Tables 4, 5 show that the XEC of a given α-phase generally vary with the volume fraction of the phase in 

a given system, and with the nature of the second (β) phase. The model takes into account multi-phase 

effects on XEC numerical values. In physical terms, this discrepancy between XEC of a given phase, 

calculated in a single-phase material and in a two phases sample can be explained by the elastic interac-

tions existing between the polycrystalline matrix and any crystallite. Through these interactions, the 

mechanical behaviour of α-phase diffracting volume depends directly on the polycrystalline macroscopic 

stiffness denoted by C. Thus, according to (1), the second phase is closely involved in the iterative cal-

culation of C tensor. In consequence, the presence of the β-phase affects α-phase diffracting volume 

mechanical behaviour through its volume fraction and pseudo-macroscopic stiffness Cβ tensor. This 

phenomenon can be schematised on Fig. 1a and 1b: α-phase XEC could be equal in the single-phase sam-

ple and in the two-phases polycrystal, if the crystallites of α diffracting volume were only connected to  

α grains. This corresponds to the Fig. labelled 1a. As part of this particular assumption, an α diffracting 

inclusion interacts only with a homogeneous medium having a macroscopic stiffness close to Cα. How   

 

Systematic error on the stresses determined in

the beryllium phase of an Al - Be material
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Fig. 3� Calculated relative systematic error δ,  due to multiphase effects, on the stresses determined in 

several hexagonal structure phases of two-phases polycrystals. f denotes the volume fraction of the ana-

lysed phase. 
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ever, in reality, the grains of α diffracting volume often have α and β grains as first neighbours simulta-

neously, as shown on Fig. 1b. The presence of these first neighbours β grains generates interactions 

which affect α diffracting volume elastic behaviour. In fact, our model only describes the case of Fig. 1b 

in an average meaning: the interactions of β grains on the behaviour of α phase are only taken into ac-

count through the average stiffness of the matrix, i.e. the homogeneous equivalent medium. 

 In the case of the MMC aluminium–β SiC, calculated XEC strongly depend on each phase volume 

fraction. Similar effects have been observed for several two-phases polycrystals: in pure cubic structure 

systems in the case of ferritic steel–copper sample, in pure duplex hexagonal structure such as cadmium–

zinc polycrystal, and in dual structure systems, in the case of  aluminium–zinc polycrystal, for example. 

This property, characteristic to such two-phases polycrystals, results from the mechanical behaviour 

heterogeneities existing between the phases. 

 On the opposite, when the macroscopic behaviour of the two phases is similar, such as in the case of 

duplex steels, the XEC do not vary significantly with the volume fraction of each phase.  

 In conclusion, in a (α + β) two-phases polycrystal, the XEC of a given α-phase deviates more and 

more from the values obtained in the single-phase case, when α-phase volume fraction tends towards 0, 

and when α and β have very different elastic behaviour. 

 In the case of aluminium–diamond like carbon systems, aluminium XEC verify this rule, while dia-

mond XEC seem not to follow it. In fact, diamond XEC remains almost constant, in spite of the large 

mechanical discrepancies existing between the two phases. This result could be expected in particular 

cases: a phase with elastically isotropic single crystal keeps its XEC constant, whatever the two-phases 

state of the polycrystal in which it is embedded. In fact, this property is only valid for a macroscopically 

isotropic material. If the second phase exhibit a crystallographic or morphologic texture, the overall 

stiffness tensor will be anisotropic. This would influence the localisation tensor and thus the elastic be-

haviour of the diffracting volume. Diamond like carbon has a single-crystal anisotropy constant Ac close 

to 1. In consequence, its XEC are not modified by the polycrystal two-phases state. Similar results have 

been obtained on tungsten (Ac = 0.98) and to some extent in the case of molybdenum (Ac = 0.91) and TiC 

(Ac = 0.90), according to the single-crystal elastic constants given in [23–25]. On the opposite, results 

obtained on Zinc and Copper emphasize that multi-phases effects on XEC arise in the case of strongly 

anisotropic diffracting phases.  

4 Consequences on the stresses determined by XRD analysis 

on multi-phase samples 

As mentioned before, the usual assumption consists in introducing single-phase XEC values in the 

“sin2ψ” equation, in order to process numerically the strains measured in two-phases polycrystals. The 

results given by our simulations demonstrate that this approach constitutes an approximation of the poly-

crystalline sample mechanical effective behaviour. In consequence, this assumption generates a system-

atic error δ on the determined stresses. For a given set of {hkl} diffracting planes, in the case of a mate-

rial including a volume fraction f of the analysed phase, one should express this systematic deviation as 

follow :     

( ) ( )

( )

2 2

2

1 1 1
2 2 .

1 1
2

S f S f

S f
δ

− =

=

=

(19) 

 This relation applied to several two-phases systems yields the curves given on Figs. 2 and 3. As part of a 

residual stress analysis through XRD, the relative error on stresses values due to experimental and data proc-

esses generally remains between 5% and 15% for the considered phases. The maximal influence of non 

diffracting phase on the X-ray behaviour of diffracting phase is given in Table 6, where the main properties 

of the two-phases material simulated are summarized. Figs. 2 and 3 show that the systematic relative error 

δ  resulting from the usual assumption is often lower than 5%. δ  curves confirm the existence of particular 

Γ0 orientation values for which XEC are equal in the single phase and in the two-phases material. 
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 Table 6 Maximum multi-phase influence on XEC. 

material diffracting

phase 

crystallographic 

structure 

diffracting 

phase  

anisotropy 

non  

diffracting 

phase  

anisotropy 

ratio of 

moduli of 

the two 

phases 

maximum influence 

of not diffracting 

phase on the X-ray 

behaviour of  

diffracting phase (δmax)

Fe(α) cubic medium strong  1.4% Fe(α + β) 

Fe(γ) cubic strong medium 
weak 

 2.4% 

Fe(α) cubic medium strong  7.0% Fe(α)/Cu 

Cu cubic strong medium 
medium 

 8.9% 

Al cubic weak medium  4.0% Al/SiC 

SiC cubic medium weak 
strong 

20.1% 

Al cubic weak none  4.7% Al/C 

C cubic none weak 
strong 

 0.1% 

Al cubic weak weak  3.3% Al/Be 

Be hexagonal weak weak 
strong 

 5.3% 

Al cubic weak strong  1.1% Al/Zn 

Zn hexagonal strong weak 
medium 

19.9% 

Cd hexagonal medium strong 12.5% Cd/Zn 

Zn hexagonal strong medium medium 21.3% 

 

 It should be noted that our purpose is not to obtain the macroscopic strain in a two phases material. 

This objective would be limited to a purely elastic loading and could not give any valuable information 

in the case of residual stresses due to stress-free strains such as thermal or plastic loading or phase trans-

formation (see for example [19]). Our purpose is to provide a rigorous scheme to express the average 

stress of one phase of a multiphase material from the elastic strains measured by XRD in the same phase, 

whatever the physical origin of the stress. 

 To express this mathematically, the measured strain in α-phase can be expressed by 

 ( ), 1 :ϕ ψ
φψ

ε
α α

= B � , 

 ( )( )I LI LaDv

, 1 2 3 .: : :ϕ ψ
φψ

ε
α  = + − B B Bσ ε ε  

Our model provides a mean to calculate operator B1 in order to measure σα
 but, in no way, the expres-

sion of operators B2
 and B3 nor any access to the macroscopic stress σ Ι

 and the stress-free strains εLΙ
 and 

ε
LαD. εLΙ

 and εLαDv are respectively the macroscopic stress-free strain and the stress-free strain of α dif-

fracting volume. In our model, the basic assumption is that one crystallite of the diffracting phase inter-

acts with both phases in proportion to their volume fraction, however, in reality, this might not always be 

true. For instance, SiC particles in Al/SiC composite are composed of several crystallites; one crystallite 

is thus surrounded by more SiC crystallites than Al crystallites. To go a little further, the elementary 

domain in XRD is not the grain but the coherently diffracting domain which size is much smaller than 

the grain size. Whether such a domain interacts with both phases can be discussed.   

5 Conclusion  

The choice of the XEC values is crucial, especially so as to determine residual stress  through XRD 

analysis. A one-site elastic self-consistent calculation scheme based on Kröner-Eshelby’s formalism has 

been developed in order to simulate the diffracting volume elastic behaviour of cubic or hexagonal 

phases embedded in two-phases polycrystals. It was shown that XEC values of a given phase generally 

12



depend on the volume fraction and pseudo-macroscopic stiffness of the other phases constituting the 

whole material. It has been demonstrated that this dependence could be regarded as an error source af-

fecting the calculation of stresses from measured strains data. It is also necessary to take into account 

effects due to two-phases interactions in order to minimize the deviation between the residual stresses 

determined through XRD experiments and true stresses in the sample. To go deeper into this study, an 

analytical model will be soon proposed in order to express XEC for cubic phases embedded in multi-

phase polycrystals. The property of elastically isotropic phases at mesoscopic scale, whose XEC remains 

identical to the corresponding single-phases values, in any multi-phase material, will be demonstrated 

owing to this analytical solution.  

 The deviation between pseudomacroscopic and single-phase stiffnesses was also studied. Numerical 

computations justifies, in most cases, the identification of pseudomacroscopic elastic moduli to the single 

phases corresponding values. In a further study, it will be taken advantage of this property in order to 

propose a method suited for the characterization of the macroscopic elastic moduli of a phase embedded 

in a multiphase polycrystal.  

References 

 [1] I. Noyan and J. Cohen, Residual Stress Measurement by Diffraction and Interpretation (Springer Verlag, New 

York, 1987). 

[2] K. Tanaka, Y. Akiniwa, and T. Ito, Proc. of the ECRS6, Vol. 2, 1012–1019 (2000). 

[3] W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig/Berlin, 1928). 

[4] W. Voigt, Ann. Phys. Chem. (Leipzig) 38, 573–587 (1889). 

[5] A. Reuss, Z. Angew. Math. Mech. 9, 49–58 (1929). 

[6] E. Kröner, Z. Physik 151, 504–518 (1958). 

[7] E. Kröner, J. Mech. Phys. Solids 15, 319–329 (1967). 

[8] R. Hill, J. Mech. Phys. Solids 15, 79–95 (1967). 

[9] J. D. Eshelby, Proc. R. Soc. Lond. 241 A, 376–379 (1957). 

[10] P. Hadmar, P. Mabelly, L. Barralier, and J. M. Sprauel, Proc. ECRS 4, Cluny, 1043–1051 (1996). 

[11] K. Van Acker and P. Van Houtte, Proc. ECRS 4, Cluny, 911–920 (1996). 

[12] M. Ceretti and C. Braham, Colloque de métallurgie, Saclay, 221–232 (1994). 

[13] V. Hauk, P. J. T. Stuitje, in: Residual Stresses, edited by E. Macherauch and V. Hauk (DGM, Oberursel, 1986), 

pp. 337–346. 

[14] Y. P. Qiu and G. J. Weng, Int. J. Solids Struct. 27, 1537–1550 (1991). 

[15] C. Tomé, Texture and Anisotropy (Cambridge University Press, Cambridge, 1998), pp. 283–325. 

[16] J. M. Sprauel, M. François and M. Barral, Proc. ICRS 2, Nancy, 172–177 (1988).  

[17] R. Hill, J. Mech. Phys. Solids 13, 89–101 (1965). 

[18] R. Morris, Int. J. Eng. Sci. 8, 49–61 (1970). 

[19] J. M. Sprauel, in “Analyse des contraintes résiduelles par diffraction des rayons X et des neutrons ”, (Commis-

sariat à l’Energie Atomique, 1996), chapter VIII, pp. 185–202. 

[20] J. M. Sprauel and L. Castex, Proc. EPDIC 1 (1991). 

[21] F. Bollenrath, V. Hauk, and E. H. Müller, Z. Metallkde. 58, 76–82 (1967). 

[22] P. D. Evenschor and V. Hauk, Z. Metallkde. 63,  (1972). 

[23] D. H. Chung and W. R. Buessem, J. Appl. Phys. 39, 217–245 (1967). 

[24] G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (The M.I.T. 

Press, Cambridge, Mass., 1971). 

[25] W. F. Hosford, The Mechanics of Crystals and Textured Polycrystals (Oxford Science Publications, Oxford, 

1993), p. 16. 

13


