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The homogenization theory is

 

a

 

powerful approach to

 

determine the effective thermal conductivity ten- sor of

 

heterogeneous materials such as

 

composites,

 

including thermoset matrix and fibers.

 

Once the effect ive properties are calculated,

 

they can be

 

used to

 

solve a

 

heat conduction problem on

 

the composite structure at

 

the macroscop ic

 

scale.

 

This approach leads to

 

good approximations of

 

both the heat flux

 

and temperat ure fields

 

in

 

the 

interior zone of

 

the structure;

 

however edge effects occur in

 

the vicinity of

 

the domain boundaries.

 

In

 

this paper,

 

following an

 

approach proposed for 

elasticity problems,

 

it

 

is

 

shown how these edge effects can be

 

accounted for.

 

An

 

additional asymptotic expansion term is

 

introduced,

 

which plays the role 

of

 

a

 

‘‘heat conduction boundary layer’’

 

(HCBL)

 

term.

 

This expansion decreases expo- nentially and tends to

 

zero far from the boundary.

 

Moreover,

 

the 

HCBL length can be

 

determined from the solution of

 

an

 

eigenvalues problem.

 

Numerical examples are considered for a

 

standard multilayered material 

and for a

 

unidirection al

 

carbon-epoxy composite.

 

The homogenized solutions computed with a

 

finite

 

element software,

 

and corrected with the HCBL 

terms are compared to

 

a

 

heterogeneous finite

 

ele- ment solution at

 

the microscopic scale.

 

The influences

 

of

 

the thermal contrast and the scale factor are 

illustr ated for different kind of

 

boundary condit ions.

1. Introduction

Composite materials represent an innovative technological

solution to improve and create more competitive products in many 

industrial sectors. In leading-edge domains such as aeronautics,

the high performanc es of composites are an undeniable asset. Met- 

als are then gradually substitut ed by composites in airplane struc- 

tures. However , even if it has great advantages for mechanical 

issues, it may lead to some drawbacks regarding heat transfer.

Composite materials are heteroge neous media actually so insulat- 

ing compare d to metallic ones that heat confinement issues rapidly 

occur. To predict the thermal environment of airplane structures 

(and the associated thermo-mechani cal behavior) for design pur- 

pose, thermal properties and the associated uncertainties of in- 

volved orthotropic composite structures are thus required.

Reliable and efficient methods are necessar y for their character- 

ization. They have to take into account one of the main features of

such structures: the multiple spatial scales involved in the heat 

conduction process. Two parallel distinct and complemen tary ap- 

proaches can be considered for this issue. The first one is experi- 

mental and consists in using dedicated devices to measure , at the 

macrosco pic level, the effective anisotropic thermal properties of

samples, by using the classical transient flash [1] or hot wire [2]

methods , or a specific hot disc method [3]. Measurem ents can also 

be done at the microscopic level to characteri ze each component of

the structure, with a spatial resolution of a few cubic micrometers 

[4]. The second is a multi-scale approach and aims to calculate the 

effective thermal conductivity tensor from data known at the scale 

of the components . Volume averaging methods have been widely 

develope d to specify the relationshi ps between the microstru cture,

the component propertie s and the corresponding macroscopic 

paramete rs [5–7]. Most of these works have been developed for 

modeling heat transfer and/or fluid flow within porous materials .

With the same goal, periodic homogeniza tion based on the asymp- 

totic expansion method has been also very fruitful [7–12]. This 

method was also developed for modeling porous material [12],

but in this paper we only consider heat conduction in periodic 

structure s without advection term. Then, no transport term will 

appear in the homogenize d equation s, and no contact between 

fluid and solid phases has to be modeled. Thanks to this approach,

the initial heat conduction problem posed on the heteroge neous 
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domain is split in two problems . One is solved on the periodic cell 

at the microscopic scale: this solution provides the effective ther- 

mal properties of the medium. The second is a macrosco pic prob- 

lem, whose solution enables the determination of homogenized 

temperature and heat flux fields in the part. Asympto tic expansion 

method applied to heat conduction problem is not straightforw ard 

since the homogenized problems depend on several parameters 

such as thermal contact between components or thermal conduc- 

tivity contrast with respect to scale ratio [12]. The same approach 

was developed for non periodic structures, but it requires the 

determination of the representative volume element as in random 

structures [13,27] for example. This approach leads to good 

approximat ions of both the heat flux and temperature in the inte- 

rior zone of the structure, as long as the periodicity is satisfied.

However edge effects occur in the vicinity of the domain bound- 

aries due to the loss of periodicity. These edge effects are well 

known in thermal science and are of crucial importance for all heat 

conduction modeling, especially at the interface between different 

media [14]. They are sometimes analyzed as thermal constriction 

effect [15,16]. It is thus mandatory to take them into account, with- 

in the framework of the asymptoti c expansion method, as it has 

been done in numerous works in mechanics [17–20] see also the 

references cited in the review papers [21,22]. The different ap- 

proaches which have been proposed may be classified into three 

categories. In the first one, another expansion correspondi ng to

boundary layers is considered [17–19]. It can be shown that the 

boundary layer solution decay rapidly with respect to the distance 

from the edge. This originates another class of method, for which 

the objective is to define boundary conditions for the homogen ized 

problem, such that a good approximat ion of the exact solution will 

be obtained in the interior zone of the domain [20]. A third cate- 

gory of method combines two models, a microscale model in the 

boundary layer domain, and a macrosca le model outside this do- 

main with appropriate interface conditions [23]. However, as far 

as we know, only few works have addresse d edge effects for ther- 

mal applications, introducing the concepts of ‘‘heat conduction 

boundary layer’’ (HCBL) and constrict ion resistance [16]. Within 

this context, we thus focus on the study of such HCBL and edge ef- 

fect problem in steady state in a first step, following the approach 

of H. Dumontet [19] for elasticity, based on the introduct ion of an- 

other expansion in the vicinity of the boundary. The study of edge 

effects can be extended for the homogenize d transient problem 

[24]. More generally, several authors [14,25–28], have studied 

the question of modeling the boundary conditions of porous med- 

ium, including the contact between the solid and the fluid phases 

in the interfacial region. In case of a surface with periodic rough- 

ness, correcting terms of the temperat ure and heat flux fields can 

be also computed (see e.g. [29]). Such edge effects are out of the 

scope of this paper and will be not considered in the following.

The outline of the paper is as follows: in a first part, we first

briefly recall the main homogen ization results, based on the 

asymptoti c expansion method and we present the correction of

edge effects by introducing the ‘‘heat conduction boundary layer’’

terms, as the solution of a specific heat conduction problem at

the micro-sc ale level. We consider only the heat conduction 

problem, without any transport term. Three kinds of boundary 

condition s are considered. It is shown how the size of the boundary 

layer can be determined by solving an eigenvalues problem.

In a second part, we compare the temperature and heat flux

fields obtained from the numerica l solution of the heteroge neous 

and the homogen ized problems respectively. Two cases are stud- 

ied: one is a multilaye red structure ; the other one is a unidirec- 

tional composite which involves parallel cylindrical fibers within 

an insulating polymer matrix. The influences of scale factor, ther- 

mal contrast and volume fraction are discussed.

2. Periodic homogen ization

2.1. Problem statement – A multi-sca le approach 

Let us consider a piece of heterogeneous periodic material,

Fig. 1, defined in a bounded domain X � R3. The macroscopic coor- 

dinates of a point of X are denoted x = [x1,x2,x3,] in a Cartesian 

coordina te system {0,e1,e2,e3}

The boundary @X is subdivided in three distinct parts,

@X ¼
S3

i¼1Ci; in order to consider three different usual kinds of

boundary conditions associated to the heat conduction problem:

Nomenc lature 

Latin letters 
ei Space vectors 
dm Depth of the (HCBL) heat conduction boundary layer 
f Volume heat source 
Gm Semi-infinite domain 
eGm Truncated semi-infinite domain 
h, h⁄ Heat transfer coefficient, modified heat transfer 

coefficient
kij Heat conductivity compon ent 
K Heterogeneo us thermal conductivity tensor 
K⁄ effective heat conductiv ity tensor 
Li Sizes of the 3-D parallelepip ed domain 
li Sizes of the periodic cell 
n Outward unit normal 
Rhom Rhet Rconst Thermal resistance s of the homogen eous wall. the 

heterogeneous wall, thermal constrictio n
T1;m

BL Temperature correcting term at the order k = 1,
associated to the boundary Cm

T� Heterogeneo us temper ature field
Tk homogenized approximat ion of T� at the order k
Text External temperat ure 

Y spatial domain of the periodic cell 
x, y, s Space variables 

Greek letters 
@X, @Y Boundary of X, of the cell Y
dm Scalar solution of the eigenvalues problems 
e Scale factor 
Ci Boundaries of X
ui Normal outwa rd component of the heat flux on the 

boundary 
u0 Homogeniz ed heat flux, at the order 0
u� Heterogen eous heat flux field
/

0;m
BL Heat flux correctin g term at the order k = 0, associated 

to the boundary Cm

j Thermal contrast 
W

m
i Solution of the eigenvalues problems 

vm
i Solutions of element ary problems , on eGm

sf Volume fiber ratio 
wi (y) Solutions of element ary problems , on Y

X Spatial domain of the piece 



� A Dirichlet condition on C1 where the temperat ure is fixed to

T1(constant for simplicity), this value will be taken equal to zero 

without loss of generality 

� A Neumann condition on C2 where the normal outward compo- 

nent of the heat flux is fixed by (a varying function) u2(s),

s 2C2,

� A Fourier condition on C3 where the normal outward compo- 

nent of the heat flux u3(s) = h[T(s) � Text(s)], is fixed by an exter- 

nal temperature Text(s), s 2 C3 and a heat transfer coefficient h.

A spatially distributed (and stationary) volume heat source 

f(x),x 2X can be considered all over the spatial domain.

The heterogeneous fields are denoted respectively T� (tempera-

ture) and u� (heat flux) in X. These fields satisfy the following set 

of steady heat conduction equations together with the three kinds 

of boundary equations 

divxð�u
�ðxÞÞ ¼ f ðxÞ in X ð1aÞ

u�ðxÞ ¼ K$xT�ðxÞ in X ð1bÞ

T�ðsÞ ¼ T1; s 2 C1 ðDirichlet condition Þ ð1cÞ

u�ðsÞ � n ¼ u2s 2 C2 ðNeumann condition Þ ð1dÞ

u�ðsÞ � n ¼ hðT� � TextÞs 2 C3 ðFourier condition Þ ð1eÞ

where n is the outward unit normal and K the heterogeneo us

thermal conductivity tensor; it is cell-period ic and each component 

kij(y); i,j = 1,2,3 depends on the local variable y (microscopic scale)

in the cell domain Y.

Instead, the heteroge neous material is assumed to have a peri- 

odic structure . The periodic cell (see the Fig. 1), is denoted

Y ¼
Q3

i¼1½0; li�, and y = (y1,y2,y3) 2 Y are the coordinates of a cell

point. The scale factor e is the ratio between the size of Y and the 

size of X, the microscopic coordina tes are thus defined from 

y = e�1x.

2.2. Asymptotic expansion method 

Assuming that the scale factor e is small enough, the asymptotic 

expansion method is used [9,12], and the temperature T� can be

developed under the following form:

T�ðx; yÞ ¼ T0ðx; yÞ þ T1ðx; yÞ � �þ T2ðx; yÞ � �2 þ � � � ; x 2 X; y 2 Y ð2Þ

where Tk is the approxim ation of T� at the order k, and is supposed 

to be periodic at the microscopic scale. Moreover it is assumed that 

the thermal conduct ivity of each components of the heterogeneo us

structu re have the same order of magnitud e, which means that the 

therma l contrast is not too large. In practice, this is the case for most 

of composite s used in aeronau tic.

It can be classically shown [12] that:

� The first term T0 depends only on the macroscopic variable x,

and is the solution of an homogenized heat conduction problem 

in the domain X with an effective heat conductivity tensor K⁄:

divxð�hu0iðxÞÞ ¼ f ðxÞ in X ð3:aÞ

T0ðsÞ ¼ T1 on C1 ð3:bÞ

hu0i � n ¼ u2 on C2 ð3:cÞ

hu0i � n ¼ hðT0 � TextÞ on C3 ð3:dÞ

Where hu0iðxÞ ¼ K� � $xT0ðxÞ in X ð3:eÞ

and h�i ¼
1

jY j

Z

Y

½��dY ; ð3:fÞ

� The second term T1(x,y) can be written in the following form 

T1ðx; yÞ ¼
X3

i¼1

@T0

@xi

ðxÞ:wiðyÞ ¼ ðrT0ðxÞÞt �wðyÞ ð4Þ

where the functions wi(y), i = 1,2,3, are solutions of the elementary 

problem s, set on Y

divyðKðyÞðei � $ywiðyÞÞÞ ¼ 0; ð5:aÞ

wi periodic on @ Y ð5:bÞ

�
ð5Þ

The terms of the homogeni zed tensor K⁄ are indepen dent of the var- 

iable y, and are given by (i, j = 1, . . .,3):

K�
i;j ¼

1

jYj

Z

Y

½KðyÞðei � $ywiðyÞÞ�
tejdY ð6Þ

� The heat flux, at the order 0, is given by:

u0ðx; yÞ ¼ ðKðyÞ:½ei � $ywiðyÞ�ejÞ$xT
0ðxÞ ð7Þ

Fig. 1. The spatial domain X of the heterogeneous periodic medium and the associated periodic cell Y.



Periodic homogeniza tion provides heat flux u0 and temperature 

T0 fields, which are good approximation s of the heterogeneous

solutions u� and T� far enough from the boundary @X ¼
S3

i¼1Ci of

the domain. However, this approximat ion is not satisfactory any- 

more close to the boundary. This is first due to the loss of period- 

icity. The second reason is that u0 is generally not compatible with 

an arbitrary Neumann or Fourier conditions, since these conditions 

are only satisfied in a weak sense (see Eqs. 3.c,3.d and 3.e ).

We can thus underline that the classical theory of homogen iza- 

tion of periodic media provides a rather bad description of the het- 

erogeneous fields close to the boundary. Consequentl y, it is

necessary to improve the accuracy of the homogenize d solutions 

(temperature and/or heat flux) in the vicinity of the boundary. Cor- 

recting terms of edge effects have thus to be determined.

2.3. Correction of the edge effects 

The method developed in this work has been first proposed for 

elasticity problems by Dumontet [19]: it consists in introducing 

additional terms in the asymptotic expansion of the homogen ized 

solution, which have an effect essentially in the vicinity of the 

boundaries. It is shown in the following how the determination 

of these additional terms depends on the kind of the boundary 

conditions.

For sake of simplicity and clarity, the spatial domain will be

considered as a rectangu lar parallele piped X ¼
Q3

i¼1½0; Li�, and only

two elementary cases will be studied separately: one to determine 

the correcting terms associated to the Neumann condition (Fig. 2a)

and one to the Fourier condition (Fig. 2b).

Each of these conditions will be fixed uniform only on the left 

face, named C2 or C3 at (x1 = 0) of the parallele piped, together with 

a Dirichlet condition on the opposite face, at x1 = L1, named C1. To

avoid the computati on of correcting terms due to effects of the 

other edges and corner effects, conditions of periodicity will be

considered on the four other faces of the parallelepip ed. However,

the method is quite general and can be applied to more complex 

situation s.

The asymptotic expansion of the temperature is now written as

follows.

T�ðx; yÞ ¼ T0ðxÞ þ ðT1ðx; yÞ þ T1
BLðx; yÞÞ þ � � � ; x 2 X; y 2 Y ð8aÞ

T1
BLðx; yÞ ¼

X3

m¼1

T1;m
BL ðx; yÞ ð8bÞ

and the additional term T1
BL results of the superpos ition of elemen -

tary terms T1;m
BL ðx; yÞ which are dependin g on the kind of boundar y

conditio ns on Cm,m = 1, 2 or 3

2.3.1. Correcting terms associated to a Neumann or a Fourier 

condition, m = 2 or 3

It is shown in Appendix A, how the correcting terms associated 

to each of these conditions are determined . The approaches are 

similar, however, in the next Section 3, the numerical examples 

will illustrate the differenc e. To define T1;m
BL , a semi-infinite domain 

(Fig. 3) is considered in the direction e1 normal to the face Cm, and 

denoted by

Gm ¼�0;1½��0; l2½��0; l3½; m ¼ 2;3 ð9:aÞ

The surface of Gm at (x1 = 0) is denoted C0
m, and C0

m � Cm. The term 

T1;m
BL is thus defined for x 2 Cm and y = (y1,y2,y3) 2 Gm, it is periodic 

in the {e2,e3} directions. In practice for the computa tion of the cor- 

recting terms, the semi-in finite domain will be truncated in the e1

direction:

eGm ¼�0;dm½��0; l2½��0; l3½; with dm 6 L1 ð9:bÞ

By introducing the set of functions vm
i ðyÞ; i ¼ 1;2;3; m ¼ 2 or 3 ,

solution s of the following elementary problem s, on the sub-dom ain 

Gm:

divyðKðyÞð$yvm
i ðyÞÞÞ¼0 in Gm ð10:aÞ

KðyÞð$yvm
i ðyÞÞ �n¼�KðyÞððeiþ$ywiðyÞÞÞ �n

þ
1

jYj

Z

Y

KðyÞðeiþ$ywiðyÞÞdY �n on C
0
m ð10:bÞ

vm
i ðyÞ periodic along the fe2;e3g directions ð10:cÞ

T1;m
BL ðx; yÞ can be put under the following form (details are given in

Appendix A):

T1;m
BL ðx; yÞ ¼

X3

i¼1

@T0

@xi

ðxÞvm
i ðyÞ ¼ ðvmðyÞÞt

$xT
0ðxÞ ð11Þ

While the correcting term of the heat flux is given by:

/
0;m
BL ðx; yÞ ¼ KðyÞð$yv

mðyÞÞ:$xT
0ðxÞ ð12Þ

2.3.2. Correcting terms associated to a Dirichlet condition on the 

opposite face C1

A similar approach (see Appendix A) can be considered to deter- 

mine the additional term T1;1
BL ðx; yÞ; in the vicinity of the boundary 

C1, on a semi-infinite sub-domain:

G1 ¼� �1; L1½��0; l2½��0; l3½ ð13Þ
Fig. 2. The 3-D spatial domain X and its boundary conditions: (a) – Neumann &

Dirichlet boundary conditions; (b) – Fourier and Dirichlet boundary conditions.



It leads to the following results, for x 2 C1 and y = (y1,y2,y3) 2 G1

T1;1
BL ðx; yÞ ¼

X3

i¼1

@T0

@xi

ðxÞ:v1
i ðyÞ ð14Þ

With the functions v1
i ðyÞ; i ¼ 1;2;3 , solutions of the following ele- 

mentary problems , on the sub-domain G1:

ry KðyÞ $yv1
i ðyÞ

� �� �
¼ 0 in G1 ð15:aÞ

v1
i ðyÞ ¼ �wiðyÞ on C

0
1 ð15:bÞ

v1
i ðyÞ periodic along the fe2; e3g directions ð15:cÞ

In practice for the computation of the correcting terms, the semi- 

infinite domain G1 will be trunca ted in the e1 direction to

eG1 ¼�L1 � d1; L1½��0; l2½��0; l3½; with d1 6 L1 ð16Þ

2.3.3. Homogenized solutions with correcting terms of edge effects for 

both cases 

Finally, in both cases considered above, the correcting terms 

T1
BLðx; yÞ associated to the Neumann & Dirichlet boundary condi- 

tions (case 1), or to the Fourier & Dirichlet boundary conditions 

(case 2), respectively on C2 and C1, or C3 and C1, takes the form:

T1
BLðx; yÞ ¼ T1;1

BL ðx; yÞ þ T1;m
BL ðx; yÞ; m ¼ 2 or 3 ð17Þ

In both cases, the homoge nized solutions (temperature and heat 

flux), given by the asymptotic expansio n truncated at the first order,

and corrected by the boundar y layer terms in the vicinity of these 

boundaries can be written in the matrix form:

T�ðx; yÞ 	 T0ðxÞ þ ½wðyÞ þ v1ðyÞ þ vmðyÞ�t$xT
0ðxÞ ð18Þ

/�ðx; yÞ 	 ðKðyÞ � ½e� $ywðyÞ þ $yv1ðyÞ þ $yvmðyÞ�eÞ$xT
0ðxÞ ð19Þ

These results will be illustrated in Section 3 by two numerica l

exampl es. The homogenized solution s are compared to those of

the heterogeneo us problem . As already stated, the semi-infinite do- 

mains have to be truncated in practice . This point is developed in

the following sub-sectio n.

2.4. Determinati on of the boundary layer sizes- Truncation of the sub- 

domains Gj

For the determination of the functions vj
iðyÞ; i ¼ 1;2;3; j ¼

1;2;3 , the equations have been set on the semi-infinite domains 

Gj, j 2 {1,m}; m = 2 or 3. It can be shown [30] that the correcting 

terms T1;j
BL ðx; yÞ are decreasing exponenti ally when y1 tends to

± infinity. This property leads to express vj
iðyÞ in the following

forms:

v1
i ðyÞ ¼ W

1
i ðyÞ:e

�d1ðL1�y1Þ ð20:aÞ

vj
iðyÞ ¼ W

j
iðyÞ:e

�dj y1 ; j ¼ 2;3 ð20:bÞ

where the positive scalar terms dj have to be determine d.

The functions vj
iðyÞ are computed on truncated sub-domai ns,

Eq. (9.b) for the Dirichlet condition and Eq. (16) for the Neumann 

or the Fourier condition. Then, due to the decreasing property of

the exponenti al function, the depth of the HCBL sizes, in the nor- 

mal direction e1 of the boundary Cm can be estimated by dm ¼ 3
dm

. In practice, the determination of the length dm can be performed 

numerica lly according to empirical trial and error calculations. It is

shown in Appendix B, how the paramete rs dm and the functions 

W
m
i ðyÞ are found to be solution of the following eigenvalues prob- 

lem, for both cases considered here. The solutions are computed 

such that:

� in the truncated sub-domain eGm;

d2
mk11W

m
i � dm

@k11

@y1

� �
þ
@k12

@y2

þ
@k13

@y3

� �m

i

þ divy K$y W
m
i

� �

� 2dm

k11

k12

k13

2
64

3
75

t

K$y W
m
i

� �
¼ 0 in eGm ð21:aÞ

W
m
i ðyÞ Periodic in the e2;e3 directions ð21:bÞ

� with the boundary condition s:

1. Neumann or Fourier conditions, (m = 2,3):

KðyÞ $yW
m
i ðyÞ

� �
�n¼ expð�dmy1Þ½�KðyÞðejþ$yxjðyÞÞ

þ
1

jYj

Z

Y

KðyÞðþ$ywjðyÞÞdy�þ

dmW
m
i

0

0

2
64

3
75 �n on C

0
m; ð21:cÞ

2. Dirichlet condition (m = 1)

W
m
i ðyÞ ¼ e�d1ðL1�y1ÞxjðyÞ on C

0
1 ð21:dÞ

Fig. 3. The semi-infinite domain Gm associated to a Neumann or a Fourier condition.



3. Numerical results – discussion

The mathematical homogen ization developed above, lead to the 

determination on one hand of the effective conductivity tensor K⁄

of the homogenized medium and to boundary layer terms T1
BLðx; yÞ

which are correcting terms of the first order in the asymptotic 

expansion of the homogenize d solutions, on the other hand.

To illustrate these results, two numerical examples are devel- 

oped: one is a simple periodic multilayere d structure and the other 

one is a unidirectional composite which involves parallel cylindri- 

cal fibers within an insulating polymer matrix. The effective con- 

ductivity tensors of the homogenize d medium, together with the 

boundary correcting terms corresponding to the different kinds 

of boundary conditions are computed . Thus the heterogeneous 

and the homogenized solutions (temperature and heat flux) are 

compared. Numerical solutions are computed using the Finite Ele- 

ment Software Comsol Multiphysics �. Moreover, the homogen iza- 

tion process allows to reduce significantly the node number and 

the degree of freedom (dof) number, required for meshing the spa- 

tial domain of the heterogeneous medium, without loss of accu- 

racy. They are compared at the end of the Section 3.

3.1. Periodic multilayered structure 

Due to the symmetry of the structure and the assumpti on of

periodic conditions on four faces of the parallele piped as discussed 

in Section 2, the numerical study can be reduced (Fig. 4a and b)

without loss of generality, on a rectangu lar spatial 2-D domain.

The conductivi ty tensor K(y) on the cell domain is denoted 

KðyÞ ¼
k11 0
0 k22

� �
; with kiiðyÞ ¼

km; if y�ðlayer 1Þ
kf ; if y�ðlayer2Þ

� �
i ¼ 1;2

3.1.1. The homogenized heat conductivity tensor 

To compute the terms of the homogen ized heat conductivity 

tensor K⁄ (see Section 2.2), the functions wi, i = 1,2, are first deter- 

mined on the cell domain Y, with the data given in Table 1. The 

multilaye red stack is characterized by the thickness l/2 of each 

layer, and the thermal contrast j = kf/km, the ratio of the heat con- 

ductivity of the conductive layer over the insulating one. An ana- 

lytical resolution shows that the functions wi, i = 1,2, are 

independen t of the y1 variable:

wðyÞ ¼
w1ðyÞ ¼ 0

w2ðyÞ ¼
R l

0
dn

k22ðnÞ

h i�1 R y2

0
dn

k22ðnÞ
� y2

8
<
:

Then the components of the homogenized conductivity tensor are com-

puted according to Eq. (6). The numerical values which quantify the

non isotropic property of the homogenized medium, are found to be:

K� ¼
k
�
11 k

�
21

k
�
12 k

�
22

" #
¼

2:6 0

0 0:38

� �
ðW:m�1:K�1Þ :

Fig. 4. The multilayered medium and its periodic cell – (a) 3-D domain; (b) 2-D domain – Insulting layer (grey), conductive layer (blank).



It can be noted that, in this simple multilaye red case, these values 

can be easily found by using standard heat conducti on rules:

k
�
11 ¼

kmþkf ;
2

, 1
k�22

¼ 1
2

1
km

þ 1
kf

	 

.

3.1.2. Correcting term and Boundary layer associated to a Dirichlet 

boundary condition 

To compute the boundary layer term TBL
1,1 (x,y), in the vicinity 

of the boundary C1, associate d to the Dirichlet condition, the meth- 

od developed in Section 2.3.2 is performed numerica lly. The func- 

tions v1
i ðyÞ; i ¼ 1;2 , solutions of the elementar y problems, set on

the truncated sub-domain eG1 ¼�L � d1; L���0; l���0; l�, are first com- 

puted with d1 = 2 mm from C0
1. The function v1

1ðyÞ is equal to zero.

Because of the periodic boundary conditions taken in the e2 direc-

tion, the component of the thermal gradient @T0

@x2
is also equal to

zero, then the correctin g term T1;1
BL in this example is the sum of

two terms which are equal to zero, everywhere in eG1. Conse- 

quently, the correctin g term /0;m
BL is also null:

/
0;m
BL ðx; yÞ ¼ KðyÞð$yv

mðyÞÞ:$xT
0ðxÞ ¼ 0

This example illustrat es a particula r case, where edge effects are 

null; the first order approximat ion T0(x) + T1(x,y) � of the heteroge- 

neous solution does not require any edge correction, and gives 

accura te results even close to this boundar y.

3.1.3. Correcting term and Boundary layer associate d to a Neumann 

boundary condition 

To compute the boundary layer term T1;2
BL ðx; yÞ; in the vicinity of

the boundary C2, associated to a Neumann condition, the method 

develope d in Section 2.3.1 is performed numerica lly. The functions 

v2
i ðyÞ; i ¼ 1;2 , are firstly computed by solving the following ele- 

mentary problems, set on the sub-domain eG2, Eqs. (10.a)–(10.b),

Table 1

Thermal and geometrical data for the multilayered structure.

Layer Property Value

Layer 1 km (W � m�1 � K�1) 0.2 

Layer 2 kf (W � m�1 � K�1) 5

L (mm) 10

Geometry l (mm) 1

� 0.1

Fig. 5. Influence of the thermal contrast kf/ km on the correcting terms TBL
1,2 and

/0
BL , computed on the sub-domain eG2 , truncated at d2 = 2 mm; (a): Heat flux /0

BL;

(b): Temperature TBL
1,2 (in the insulating layer, i.e. along the red line drawn on

Fig. 4b).

Fig. 6. Influence of the scale ratio e on the correcting terms TBL
1,2 and /

0
BL .e1, versus 

x1, computed on the sub-domain eG2 , truncated at d2 = 0.8 mm/ (a): temperature 

TBL
1,2/ (b): Heat flux density /0

BL � e1 (in the insulating layer, i.e. along the red line 

drawn on Fig. 4b). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)



on the sub-domain eG2 ¼�0; d2½��0; l½��0; l½, truncated at the distance 

d2 = 2 mm from C0
2, in the normal direction e1.In this example, the 

function v2
2ðyÞ 
 0, is equal to zero, then the boundary layer term 

T1;2
BL ðx; yÞ reduces to

T1;2
BL ðx; yÞ ¼

@T0

@x1

ðxÞv2
1ðyÞ

From the numerica l solution of the eigenvalues problem (see Sec- 

tion 2.4.1), the lowest solution is found to be d2 = 6277 m�1 and

the estimation of the boundary layer depth is d2 	 3
d2
¼ 0:5 mm.

Then the influence of the thermal contras t on the depth of the 

boundary layer d2 can be easily studied by solving numerica lly 

the eigenvalu es problem for several values of the thermal contrast 

kf/km. It is found that the value of d2 is indepen dent from this 

paramete r. Fig. 5a and b show the boundary layer terms T1;2
BL and

/0
BL compute d for several values of kf, while the value km = 0.2 -

W � m�1 � K�1is kept constant. Two results are highlight ed from 

these plots: (i) the variation of the therma l contrast has no influence

on the boundary layer size; (ii) only the magnitud e of T1;2
BL and

/0
BL increases with the thermal contras t up to a limit kf/km = 25,

and no influence is observed over this limit.

In the same way, the influence of the scale ratio e on the depth 

of the boundary layer can be easily studied. Fig. 6a and b depict the 

evolution of T1;2
BL and /0

BL along x1 for different values of e. We first

observe that the boundary layer term T1;2
BL tend to become negligi- 

ble when e decrease s, contrary to the heat flux /0
BL. These results 

confirm that the edge effect correctio n is not necessary for the 

Fig. 7. Comparison of homogenized and heterogeneous fields in the insulating layer (along the red line, Fig. 4b), computed on the sub-domain eG2 , truncated at d2 = 3 mm/ (a):

Heat flux density/ (b): Temperature fields. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



temperature field when e is small enough (T0 is thus a good 

approximat ion of T�). However, this correction has to be applied 

from the order 0 of e to the heat flux, since heat flux density is sen- 

sitive to edge effect even for small values of the scale ratio.

Finally to underline the importance of the correctin g terms 

close to the boundary, it is interesting to compare the computed 

solutions of the heterogeneous and homogenize d fields of temper- 

ature and heat flux density. The following heat flux is thus applied 

on C2: u�(s) � n = u2 = 2.10 3 Wm�2. The comparison is done along a

1D cut (see red line in Fig. 4c) in a insulating layer, on Fig. 7. Let us

recall that the exact temperature T(x) in a homogeneous 1-D wall 

(without edge effect), computed with a Dirichlet condition T = 0

at x1 = L1, and a Neumann condition at x1 = 0 and the heat conduc- 

tivity coefficient k
�
11 is

Tðx1Þ ¼ �
u2

k�11

L1

x1

L1

� 1

� �
:

In this example, the temperat ure predicted by the approximat ion T0

(0,x2) + T1(0,x2)e at (x1 = 0), without correcting term, is independen t

of the x2 variable and is identica l to the exact homogeneou s med- 

ium solution, the computed value is T(0) = 7.69 K, as shown on

Fig. 11b. Moreover , dTe

dx1
the slope of the heterogeneo us field within 

the wall, far enough from the boundary (see Fig. 11b), is constant 

and identica l to that of the homogen eous one dT
dx1

¼ � u2

k�11
computed

with the effective heat conducti vity k
�
11 in the direction e1.

These curves illustrate how the approximation at the first order 

of the temperature T0(x) + T1(x,y)�� and heat flux density /0(x,y)�e1

computed for the homogenize d medium are good approximat ions 

respectivel y of the temperature T�(x) and heat flux /�(x)�e1 of the 

heteroge neous medium, provided that x 2X is far enough from 

the boundary C2 (in the normal direction to this boundary). In

the vicinity of the boundary C2, additional terms are needed to cor- 

rect the edge effects, thus the approximat ions T0ðxÞ þ ðT1ðx; yÞþ

T1
BLðx; yÞÞe and /0ðx; yÞ þ /0

BLðx; yÞ have to be considered and give

accurate results.

3.1.4. Correcting term and boundary layer associated to a Fourier 

condition

It was shown in Section 2.3.2 and Appendix A, how the same ap- 

proach can be used to compute the boundary layer term T1;3
BL ðx; yÞ,

in the vicinity of the boundary C3, associated to a Fourier condition 

u�(s)�n = h(T� � Text) on C3. The numerical method is thus applied.

The functions v3
i ðyÞ; i ¼ 1;2, being identical (in this example) to

those computed for the Neumann condition v2
i ðyÞ; i ¼ 1;2, see the 

Fig. 8.a, hence the influence of the thermal contrast, or the scale ra- 

Fig. 8. Comparison of homogenized and heterogeneous fields (8(a)–(c)) in the insulating layer (along the red line, Fig. 4b). Influence of the heat transfer coefficient, 8(a) and 

(b): h = 10 W/m 2 K, and 8(c) and (d): h = 1000 W/m 2 K. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.)



tio on the correctin g term T1;3
BL ðx; yÞ, in the vicinity of the boundary 

C3, are similar.

However, the main difference with the Neumann condition 

comes from the introduction of the heat transfer coefficient h

and the external temperature Text. For numerical application, it is

taken here to the value Text = 10K. Then it is interesting to illustrate 

the influence of the coefficient h on the homogenized solution with 

or without the correcting term T1;3
BL . Homogeniz ed and heteroge- 

neous fields, computed along the 1-D cut red line shown on

Fig. 4c, (insulating layer) are compare d on Fig. 12, for the values 

h = 10 W/m 2 K and h = 1000 W/m 2 K. The exact temperature T(x)

in a homogeneous 1-D wall (without edge effect), computed with 

a Dirichlet condition T = 0 at (x1 = L1), a Fourier condition at

(x1 = 0) and the heat conductivi ty coefficient k
�
11; is now 

TðxÞ ¼ � Text

1þ
k�

11
hL1

x1

L1
� 1

	 

, thus the temperat ure at (x1 = 0) satisfies:

Tð0Þ ¼
Text

1 þ
k�11

hL1

< Text

� For h = 10 W/m 2 K, Fig. 8a and b, the values taken by the approx- 

imated solution without correcting term, T0(0,x2) + T1 (0,x2)e,

are independen t of the variable x2. As shown on Fig. 8a, they 

are identical to the predicted value T(0) = 0.37 K, Moreove r,

the slope of the heterogeneous field inside the wall, on the 

Fig. 8a, is almost identical to that of the analytical one:
dTe

dx1
	 dT

dx1
¼ � u2

k�11

Fig. 9. Comparison of homogenized and heterogeneous temperature fields in the insulating layer (along the red line, Fig. 4b). Influence of the modified heat transfer 

coefficient. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



� For h = 1000 W/m 2 K, Fig. 8c and d, we get T(0) = 7.93 K, it is also 

the value obtained from the approximated solution without 

correcting term T0(0,x2) + T1(0,x2)e, shown on Fig. 8c, and the 

slope of the approximat ed field remains close to the exact value 
dðT0ðxÞþT1ðxÞeÞ

dx1
	 dT

dx1
. However, in that case, the temperat ure slopes

of the heterogeneous and homogen eous wall inside the wall 

(Fig. 8c) are clearly different:

@Te

@x1

–
dT

dx1

¼ �
Text

1 þ
k�11

hL1

1

L1

This deviation can be explained by the fact that the approxima- 

tion T0 is computed without taking into account the edge effect 

(see Section 2.2). Consequently the average heat flux which enters 

the wall through C0
3, is only an approximat ion of the true value and 

it is over-predicted :

h

l

Z l

0

Text � T0ð0; x2Þ
	 


dx2 >
h

l

Z l

0

ðText � Teð0; x2ÞÞdx2

This heat flux bias inside the wall, betwee n k
�
11

dTe

dx1
and k

�
11

dðT0ðxÞþT1ðxÞeÞ
dx1

is well illustrated by the slope difference, on Fig. 8.c. The heat flux

entering the wall in a homoge neous medium, without edge effect,

would be:

�k
�
11

dT

dx1

¼
Text

1 þ
k�11

hL1

k
�
11

L1

¼
Text

L1

k�11
þ 1

h

And we note that Rhom ¼ L1

k�11
þ 1

h
defines the thermal resistanc e of the

homoge neous wall.

To correct the heat flux bias in this example, we suggest to

change the thermal resistance for computing T0(x). This can be

done by changing the heat transfer coefficient h by a modified va- 

lue h⁄ in the boundary condition on C3. Eq. (3.d) becomes:

hu0i � n ¼ h
�
ðT0 � TextÞ on C3;

And the modified value h⁄ is determined in order to have a better 

heat flux prediction throug h C
0
3:

h
�

Z l

0

ðText � T0ð0; x2ÞÞdx2 ffi h

Z l

0

ðText � Teð0; x2ÞÞdx2

Then the modified therma l resistanc e of the heterogeneo us 1-D wall 

becom es:

Rhet ¼
L1

k
�
11

þ
1

h
�

The thermal resistanc e differen ce between the heterogen eous and 

the homoge neous media, due to the therma l constriction phenom- 

enon generated at the boundary C3 by the multila yered periodic 

structu re. named Rconst, is then 

Rconst ¼ Rhet � Rhom ¼
1

h
� �

1

h

A numerica l value of the modified heat transfer coefficient h⁄ can be

compute d as follows:

� an initial guess is taken: h⁄ = h

� then T0; T1 þ T1;3
BL , are computed to get an approximat ed solution 

of Te:

Te 	 T0 þ e T1 þ T1;3
BL

	 


The modified value h⁄ is then chosen in order to have:

h
�

Z l

0

Text � T0ð0; x2Þ
	 


dx2 ¼ h

Z l

0

ðText � T0ð0; x2Þ � Teð0; x2Þ

þ T0ð0; x2ÞÞdx2

which implies :

h
�

Z l

0

ðText � T0ð0; x2ÞÞdx2 	 h

Z l

0

Text � T0ð0; x2Þ � eðT1 þ T1;3
BL Þ

	 

dx2

h
�
	 h 1 � e

R l

0
T1ð0; x2Þ þ T1;3

BL ð0; x2Þ
	 


dx2

R l

0ðText � T0ð0; x2ÞÞdx2

2
4

3
5

Fig. 10. The matrix/fiber composite medium and its periodic cell – (a) 3-D domain; (b) 2-D domain.

Table 2

Thermal and geometrical data for the matrix/fiber composite structur e.

Components Property Value

Matrix km (W � m�1 � K�1) 0.2 

Fiber kf (W � m�1 � K�1) 5

L (mm) 10

Geometry l (mm) 1

The fiber ratio (sf) 0.64 

� 0.1

Table 3

Influence of the thermal contrast and the fiber ratio on the effective heat conductivity.

The thermal contrast The fiber ratio Asymptotic expansion method k�
11

10 0.20 1.391

0.55 2.695

50 0.20 1.476

0.55 3.373

100 0.20 1.488

0.55 3.487



For exampl e with h = 1000 W/m 2 K, the ratio of integrals is positive,

then it comes h⁄ < h. The comparison betwee n the heterogeneo us

solution with the homoge nized solutions computed for h⁄ < h, is

shown on the Fig. 9: the heat flux bias can be decreased inside 

the wall with the modified value h⁄ = 830 W/m 2 K.

Finally, this example illustrates the interest in the determina- 

tion of the correctin g term T1;3
BL associated to a Fourier condition 

on the boundary C3. It gives a straightforwar d way to estimate 

numerically the thermal constriction resistance Rconst = Rhet � Rhom

generated at the boundary of the heteroge neous medium, without 

computing the heterogeneous field Te. In this example, the value is

evaluated to:

Rconst ¼
1

h
� �

1

h
	 2:10�4m2K=W :

It must be noted that the influence of the thermal constriction phe- 

nomeno n in the studied case, was not discussed above with the 

Neuma nn condition. In fact, the constric tion effect exists, and the 

slopes temperatur e for the homoge neous and the heterogen eous 

wall with thermal constric tion (edge effect) are respective ly:

dT

dx1

¼ �
u2

k
�
11

¼ �
u2

L1

L1

k
�
11

� �
and

dTe

dx1

¼ �
u2

L1

L1

k
�
11

þ Rconst

� �

so the difference is dðTe�TÞ
dx1

¼ � u2

L1
Rconst , which gives Teð0Þ�Tð0Þ

L1
	 0:4K

L1
. It

means that the differen ce betwee n the average value of the hetero- 

geneou s temperatur e Teð0Þ at the boundar y, computed on C
0
2, and 

the homogeneou s value T(0), should be close to 0.4 K. From the first

order approximat ion of the homoge nized solution , this difference is

Fig. 11. Numerical solutions/ (a): v2
i ðyÞ; i ¼ 1;2 computed on eG2 , truncated at d2 = 0.5 mm and/ (b): TBL

1,2 along two lines cut (see Fig. 10) on eG2 , truncated at d2 = 3 mm.



given by eðT1ð0; x2Þ þ T1;2
BL ð0; x2ÞÞ , and the numerica l computation of

the term e
l

R l

0
ðT1ð0; x2Þ þ T1;2

BL ð0; x2ÞÞdx2 	 0:4 K confirms this value.

In summary, the approach presented in the paper with the 

boundary layer terms provides satisfying results for Dirichlet or

Neumann boundary conditions. This may be not the case for the 

Fourier boundary condition, depending on the value of the ex- 

change coefficient. On way to overcome this problem is to propose 

to use a corrected value of exchange coefficient (h⁄) to obtain a

good approximation of the heterogeneous solution.

3.2. Application to a unidirectiona l matrix/fiber composit e

Following the same approach than in the previous section,

numerical computations are performed to illustrate the homogen i-

zation method in the case of a composite medium with 3-D peri- 

odic structure, as shown of the Fig. 10a. As in the previous 

example, the numerica l study is reduced on a rectangular spatial 

2-D domain, Fig. 10b. For simplicit y, the property of the medium 

in the e1 direction, parallel to the fibers will be ignored.

The computed solutions will be plotted along two lines cut in

the e1 direction: the red line (D1) which is entirely in the matrix,

and the blue line (D2) which cuts the fibers. The periodic cell is de- 

fined by a circle (radius rf) within a square lxl. The ratio sf ¼
pr2

f

l2
is

called the ‘‘volume fiber ratio’’, and j ¼
kf ;

km
the thermal contrast.

3.2.1. The homogenized conductivity tensor- 

To compute the terms of the homogenized heat conductivity 

tensor K⁄, the functions wi, i = 1,2, are first determined on the cell 

domain Y, with the data given in Table 2. Due to the symmetry of

Fig. 12. Comparison of homogenized and heterogeneous temperature fields along the line cut D2, (see Fig. 10).



the cell, the functions w1(y) 
 w2(y) are identical. The homoge- 

nized medium is isotropic in the plane (0,e1,e2). The components 

of the homogenize d conductivi ty tensor are identical, they are:

k
�
11 ¼ k

�
22 ¼ 0:835 W=mK:

Table 3 shows the influence of the paramete rs sf and j, on the com- 

puted effective heat conductivity. The influences of the therma l

contrast and volume fiber ratio, the heat conduct ivity of the isotro- 

pic homogen ized medium can be thus easily compute d. More gen- 

eral results have been perform ed by Matine [31] to take into 

account non perfect therma l contact betwee n the matrix and the fi-

bers. They include the influence of the thermal resistanc e between 

the matrix and the fiber, in the computa tion of the heat conductiv- 

ity of the homoge nized medium.

3.2.2. Correctin g term associated to a Neumann boundary condition 

The correcting term T1;2
BL ðx; yÞ; Fig. 11b, in the vicinity of the 

boundary C2, associated to the Neumann condition , is given by

the functions v2
i ðyÞ; i ¼ 1;2 , which are first computed on the 

sub-domain G2 ¼�0; d2½��0; l½��0; l½, truncated at the distance 

d2 = 0.5 mm from C
0
2, in the normal direction e1.They are plotted 

on Fig. 11a. The depth of the boundary layer is observed close to

Fig. 13. Comparison of the homogenized and heterogeneous temperature fields: (13(a) and (c)) along (D2) and (13(b) and (d)) along (D1) close to the boundary x1 = 0; (13(a)

and (b)) with h = 10 W/m 2 K and (13(c) and (d)) with h = 1000 W/m 2 K.

Fig. 14. Heterogeneous Temperature field along the line cut (D1),computed with 

h = 1000 W/m 2 K, compared to the homogenized approximation, computed with 

the modified heat transfer coefficient h⁄ = 939 W/m 2 K.



d2 = 0.5 mm. The value is confirmed by the solution of the eigen- 

values problem, which gives the lowest computed eigenvalue:

d2 ¼ 5688 m�1 ) d2 	
3

d2

¼ 0:53 mm

Numeric al solution s are compute d with the heat flux fixed on C2 to

u2 = 2.10 3 Wm�2. The temperatur e value at (x1 = 0) predicted by the 

homoge nized solution T0(0) + T1(0.)e without correcting term, is al- 

most identica l to the value compute d for the exact homogeneous 

medium solution, as shown on Fig. 12a:

Tð0Þ ¼
u2

k�11

L1

¼ 23:95 K;

As in the previous exampl e, the therma l constriction effect can be

evaluated by computin g the averag e temperature deviatio n

Teð0Þ � Tð0Þ 	 0:209 K. This numerical value is almost identical to

the value predicted by the correctin g term: e
l

R l

0
ðT1ð0; x2Þþ

T1;2
BL ð0; x2ÞÞdx2.

3.2.3. Correcting term associated to a Fourier boundary condition 

The homogen ized and heterogeneous temperatures, along the 

line cuts (D1) and (D2), computed with h = 10 W/m 2 K and 

h = 1000 W/m 2 K, are compared on Fig. 13. Analog observations 

with the previous case can be done. For high value of the heat 

transfer coefficient, there is a temperat ure bias (and a heat flux bias 

too!) inside the wall, between the heterogeneous and the homog- 

enized fields. This bias is well illustrate d along the line cut (D1) on

Fig. 13.d. Like in the previous example, it can be decreased by mod- 

ifying the heat transfer coefficient accordin g to the numerica l pro- 

cedure described in Section 3.1.4 from the knowled ge of the 

correcting term T1;3
BL . For this example, as shown of Fig. 14, the 

‘‘best’’ value of the modified coefficient is found to be

h⁄ = 939 W/m 2 K. The thermal constriction resistance is then esti- 

mated for this heterogeneous structure to

Rcons ¼
1

h
� �

1

h
	 6:10�5 m2K=W

3.2.4. Correcting term associated to a Dirichlet boundary condition 

The correcting term T1;1
BL ðx; yÞ, Fig. 15b, in the vicinity of the 

boundary C1, associated to the Dirichlet condition T1 = 0, on C1,

is computed from the functions v1
i ðyÞ; i ¼ 1;2, Fig. 15a, on the 

truncated sub-domain G1 ¼�L � d1; L½��0; l½��0; l½, with d1 = 2 mm

from C
0
1. Solving the eigenvalues problem for the determination 

the boundary layer depth, gives analog results with the Neumann 

condition problem, the value is observed close to 0.5 mm on

Fig. 15b. Contrary to the previous example, the correcting term 

T1;1
BL associated to a Dirichlet boundary condition , is not equal to

zero, but remains close to zero. The homogenize d solutions T0-

(L1) + T1(L1,y2)� and T0ðL1Þ þ ðT1ðL1; y2Þ þ T1
BLðL1; y2ÞÞ�, computed

respectively without and with the correcting term are compared 

on the boundary C1, Fig. 16.

3.3. Computationa l costs 

For both examples discussed above, heterogeneous and homog- 

enized numerical solutions have been computed with a finite ele- 

ment solver which needs to specify the mesh size of the considered 

spatial domain. It must be underlined that for getting solutions 

with similar accuracy, the mesh size needed for the heterogeneous 

structure are quite different than for the homogenize d solution. In

Table 4, we summarize the number of nodes and degrees of free- 

dom (dof) used to obtain the results presented in Sections 3.2

and 3.3. The computational cost is proportional to the square of

the dof. For each example, five kinds of solutions have been com- 

Fig. 15. Numerical solutions/ 15a: v1
i ðyÞ; i ¼ 1;2 computed on eG1 , truncated at

d1 = 0.5 mm and/15b: TBL
1,1 along two lines cut (see Fig. 10) on eG1 , truncated at

d1 = 2 mm.

Fig. 16. Comparison of the homogenized temperatures, computed without and 

with the correcting term T1;1
BL . The heterogeneous temperature is fixed to T1 = 0, on

C1.



puted, and for each of one, we precise the associated mesh and 

(dof) used.

4. Conclusion

An homogeniza tion approach based on asymptotic expansions ,

accounting for edge effects has been develope d. This method relies 

on the solutions of three microscopic scale problems and a macro- 

scopic one. The microscopic scale problems provide effective ther- 

mal properties, the depth of edge effects and the boundary layer 

corrections, depending on the kind of boundary conditions consid- 

ered. These latter can then improve the solution of the homoge- 

nized fields at the macrosco pic scale. It leads to a good 

approximat ion of the solution, even in the vicinity of the bound- 

aries. The accuracy of this approach has been shown through 

numerical results obtained for two examples: a multilaye red mate- 

rial and a composite structure.

For Dirichlet or Neumann boundary conditions, the approach 

presented in the paper with the boundary layer terms provides sat- 

isfying results. The numerical study of the correcting term associ- 

ated to a Fourier boundary condition, has highlighted the influence

of the heat transfer coefficient on the accuracy of the homogen ized 

solutions. The thermal analysis leads to introduce a modified heat 

transfer coefficient in order to improve the modeling of the homog- 

enized heat flux entering the medium through this boundary . This 

result can be interpreted by the thermal constriction phenomeno n

generated on the boundary. It was shown how a thermal constric- 

tion resistance can be evaluated directly from the computation of

the correcting term.

From the computation point of view, the examples also illus- 

trate how the homogenized approach allows to strongly reducing 

the number of degrees of freedom in performing the finite element 

method, comparatively to the resolution over the original hetero- 

geneous medium.

The method presented here is quite general for stationary heat 

conduction analysis within periodic structures. Moreover, it has al- 

ready been extended to non periodic heterogeneous medium, such 

as random one. In such case, the question of the determination of

the Representat ive Elementary Volume (REV) becomes crucial, and 

can be analyzed with statistical tools. Other extensions of the 

method are concerne d with non stationary heat conduction.

Appendix A. Problem Statement for the determination of

correcting terms T1;m
BL ðx; yÞ and /0

BLðx; yÞ in the vicinity of the 

boundary Cm

The semi-infinite domains G1 = ]�1,L1[�]0, l2[�]0, l3[ and 

Gm = ]0,1[�]0, l2[�] 0, l3[, m = 2,3 are considered in the direction 

e1 normal, respectively to the faces C1 and Cm, m = 2,3.

The boundary of G1 at (x1 = L1) and that of G2, G3 at (x1 = 0) are 

denoted C
0
m; m ¼ 1;2;3.

For x 2 Cm and y = (y1,y2,y3) 2 Gm, m = 1,2,3, the heterogeneous 

temperature field T� is searched under the asymptotic form:

T�ðxÞ ¼ T0ðxÞ þ ðT1ðx; yÞ þ T1;m
BL ðx; yÞÞ 2 þ � � �

The term T1;m
BL ðx; yÞ is periodic in the {e2,e3} directions.

Introduci ng the asymptoti c expansion in the heat equation of

the heterogeneous problem, and selecting the terms which have 

the same power �k, we get for k = 0

divy /
0;m
BL ðx; yÞ

	 

¼ 0 in Gm; m ¼ 1;2;3

with: /0;m
BL ðx; yÞ ¼ KðyÞ ryT1;m

BL ðx; yÞ
	 


By introducing the functions vmðyÞ ¼ vm
j ðyÞ

h i3

j¼1
in the above 

equation , such that:

T1;m
BL ðx; yÞ ¼ ðvmðyÞÞt :$xT

0ðxÞ

It comes 

divyððKðyÞ$yv
mðyÞÞrxT0ðxÞÞ ¼ 0 in Gm

X3

i¼1

@T0

@xi

ðxÞdivyðKðyÞ$yvm
i ðyÞÞ ¼ 0 in Gm

which is satisfied if and only if:

divyðKðyÞ$yvm
i ðyÞÞ ¼ 0 in Gm

This last equation will determine the functions vm
j ðyÞ

h i3

j¼1
in the 

semi-infinite domain Gm, once boundar y conditions will be set onC
0
m.

A.1. The Dirichlet condition on C1

For m = 1, we have: T�(s) = T1 = 0 on C1

From the asymptotic expansion of T� in the vicinity of the 

boundary C1, and by selecting the terms which have the same 

power �k, It comes, for k = 0,1:

T0ðxÞ ¼ T1 ¼ 0; ðT1ðx; yÞ þ T1;1
BL ðx; yÞÞ ¼ 0 on C

0
1

Using the properties of the solutions T1; T1;1
BL :

T1ðx; yÞ ¼
X3

i¼1

@T0

@xi

ðxÞwiðyÞ

T1;m¼1
BL ðx; yÞ ¼

X3

i¼1

@T0

@xi

ðxÞ:vm¼1
i ðyÞ

It comes:

X3

j¼1

@T0

@xj

ðxÞðwjðyÞ þ vm¼1
j ðyÞÞ ¼ 0 on C

0
1

This equation is satisfied, if and only if:

wjðyÞ þ vm¼1
j ðyÞ ¼ 0 on C

0
1

Which is the boundary conditio n on C
0
1 , to determine the functions 

vm¼1
j ðyÞ

h i3

j¼1

A.2. The Neumann boundary condition on C2

For m = 2, we have: u�ðsÞ � n ¼ KðyÞ$xT�ðxÞ ¼ u2 on C2.

By using the function derivation rule:

rx;yðT
1ðx; yÞÞ ¼ rxT1ðx; yÞ þ

1

e
ryT1ðx; yÞ

Table 4

Mesh data used for computing the numerical solutions with the finite element solver.

Computed solutions Spatial domain Example 1 (Section 3.1) Example 2 (Section 3.2)

Node numbers (dof) Node numbers (dof)

T�(x) Piece X 7716 30,551 13,054 51,673

T0(x) Piece X 315 1189 336 1281

w(y) Cell Y S3 454 192 723

vm(y) eGm
117 858 401 3809

wm
i ðyÞ eGm

117 858 401 3809



And from the asymptotic expansion in the vicinity of the boundary 

C2, by selecting the terms which have the same power �0, It comes 

KðyÞ rxT0ðxÞ þryT1ðx; yÞ þryT1;2
BL ðx; yÞ

h i	 

� n ¼ u2 on C

0
2

Using the properties of the solution s T0; T1; T1;m
BL :

T0ðxÞ : K�
xT0ðxÞ � n ¼ u2 on C2;

T1ðx; yÞ ¼
X3

i¼1

@T0

@xi

ðxÞ:wiðyÞ

T1;m¼2
BL ðx; yÞ ¼

X3

i¼1

@T0

@xi

ðxÞ:vm¼2
i ðyÞ

Then: KðyÞ rxT0ðxÞ þryT1ðx; yÞ þryT1;2
BL ðx; yÞ

h i	 

� n ¼ K�rxT0ðxÞ�

n on C
0
2

KðyÞ
X3

j¼1

@T0

@xj

ðxÞej

" #
� nþ KðyÞ

X3

j¼1

@ T0

@xj

ðxÞ$ywiðyÞ

" #
� n

þ KðyÞ
X3

j¼1

@T0

@xj

ðx

" !
$yv

m
j ðyÞ� � n

¼ K�rxT0ðxÞ � n on C
0
2 )

X3

j¼1

@T0

@xj

ðxÞKðyÞðryv
m
j ðyÞÞ � n

¼ �
X3

j¼1

@T0

@xj

ðxÞKðyÞðej þ $ywjðyÞÞ � n�
X3

j¼1

@T0

@xj

ðxÞK�ej � n

This equation is satisfied if and only if:

KðyÞð$yv
m
j ðyÞÞ � n ¼ �KðyÞðej þ $ywjðyÞÞ � n� K�ej � n on C

0
2; j

¼ 1;2;3

which is the boundary condition on C
0
2 , to determine the functions 

vm¼2
j ðyÞ

h i3

j¼1

With K�ej ¼
1

measðYÞ

R
Y
KðyÞðej þ $ywjÞdY; j ¼ 1; ::;3.

A.3. The Fourier condition on C3

For m = 3, we have: u�(s)�n = h (T� � Text) on C3

From the asymptoti c expansion of T� in the vicinity of the 

boundary C3, and by selecting the terms which have the same 

power �0, it comes as above:

KðyÞ rxT0ðxÞ þryT1ðx; yÞ þryT1;3
BL ðx; yÞ

h i	 

� n

¼ cðT0 � TextÞ on C
0
3

The solution T0(x) satisfies: K�
xT0ðxÞ � n ¼ hðT0 � TextÞ on C3

Then by the same way that for the Neumann condition, we get 

the same boundary condition for the determination of the func- 

tions vm¼3
j ðyÞ

h i3

j¼1
on C

0
3:

KðyÞ ryvm¼3
j ðyÞ

	 

� n ¼ �KðyÞðej þ $ywjðyÞÞ:n� K�ej � n on C

0
3; j

¼ 1;2;3

The existence , the unicity and the behavio r at infinity of the solu- 

tion of this problem have been already studied in the literature 

[26]. Moreover, it is shown that the correct ing terms TBL
1,j(x,y) are 

decreasing exponentia lly when y1 tends to ±infinity.

Appendi x B. Eigenvalues Problem Statement for the 

determin ation of the depth of correcting terms T1;m
BL ðx; yÞ in the 

vicinity of the boundary Cm

In both cases of Neumann and Fourier conditions, the functions 

vm¼2;3
i ðyÞ which determine the correcting terms T1;m

BL ðx; yÞ on

Gm = ]0,1[ �]0, l2[�]0, l3[, m = 2,3, are expressed under the form 

vm
i ðyÞ ¼ W

m
i ðyÞ � e�dmy1 .

Starting with the equation: div y KðyÞ $yvm
i ðyÞ

� �� �
¼ 0 in Gm,

It implies: div y KðyÞ $y W
m
i ðyÞ:e

�dmy1
� �� �� �

¼ 0 in Gm.

We have:

$yðW
m
i ðyÞ:e

�dmy1 Þ¼

@m
i

@y1
e�dmy1 �dme�dmy1W

m
i

@m
i

@y2
e�dmy1

@m
i

@y3
e�dmy1

2
6664

3
7775¼ e�dmy1

@m
i

@y1
�dmW

m
i

@m
i

@y2

@m
i

@y3

2
6664

3
7775

then:

divy KðyÞ $y W
m
i ðyÞ:e

�dmy1
� �� �� �

¼divy e�dmy1KðyÞ

@Wm
i

@y1
�dmW

m
i

@Wm
i

@y2

@Wm
i

@y3

2
6664

3
7775

0
BBB@

1
CCCA¼0

which implies 

e�dm y1 divy KðyÞ

@Wm
i

@y1
� dmW

m
i

@Wm
i

@y2

@Wm
i

@y3

2
6664

3
7775

0
BBB@

1
CCCA� dm k11

@Wm
i

@y1
� dmW

m
i

	 

þ k12

@m
i

@y2
þ k13

@Wm
i

@y3

h i
8
>>><
>>>:

9
>>>=
>>>;

¼ 0

div y KðyÞ

@Wm
i

@y1
� dmW

m
i

@Wm
i

@y2

@Wm
i

@y3

2
6664

3
7775

0
BBB@

1
CCCA� dm k11

@Wm
i

@y1
� dmW

m
i

	 

þ k12

@Wm
i

@y2
þ k13

@Wm
i

@y3

h i
¼ 0

It follows that the parameter dm and the functions Wm
i ðyÞ are the 

solution s of the eigenvalu es problem:

d2
mk11W

m
i � dm

@k11

@y1

� �
þ
@k12

@y2

þ
@k13

@y3

� �
W

m
i þ divy K$y W

m
i

� �� �

� 2dm

k11

k12

k13

2
64

3
75

t

K$y W
m
i

� �� �
¼ 0

References

[1] W.J. Parker, R.J. Jenkins, C.P. Butler, G. Abott, Flash method for determining 
thermal diffusivity, heat capacity and thermal conductivity, J. Appl. Phys. 32
(9) (1961) 1679–1684.

[2] P. Anderson, Thermal conductivity of some rubbers under pressure by the 
transient hot-wire method, J. Appl. Phys. 47 (6) (1976) 2424–2426.

[3] M. Thomas, N. Boyard, N. Lefevre, Y. Jarny, D. Delaunay, An experimental 
device for the simultaneous estimation of the thermal conductivity 3-D tensor 
and the specific heat of orthotropic composite materials, Compos. Sci. Technol.
53 (2010) 5487–5498.

[4] J. Jumel, D. Rochais, Measurement of thermal diffusivity, elastic anisotropy and 
crystallographic orientation by interferometric photothermal microscopy, J.
Phys. D – Appl. Phys. 40 (13) (2007) 4060–4072.

[5] M. Quintard, S. Whitaker, One and two-equations models for transient 
diffusion process in two-phase systems, Adv. Heat Transfer 23 (1993) 3157–
3169.

[6] G.C. Glatmaier, W.F. Ramirez, Use of volume averaging for the modeling of
thermal properties of porous materials, Chem. Eng. Sci. 43 (12) (1988) 3157–
3169.

[7] S. Whitaker, The Volume Averaging Method, Kluwer Academic Publishers., The 
Netherlands, 1999.

[8] A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic analysis for periodic 
structures, in: J.L. Lions, G. Papanicolaou, R.T. Rockafellar (Eds.), Studies in
Mathematics and it is Applications, vol. 5, North Holland Ed., Amsterdam,
1978.



[9] J.L. Auriault, Effective macroscopic description for heat conduction in periodic 
composites, Int. J. Heat Mass Transfer 26 (6) (1983) 861–869.

[10] E. Sanchez-Palencia, Boundary layers and edge effects in composites, in: E.
Sanchez-Palencia, A. Zaoui (Eds.), Homogenization Techniques for Composites 
Media, Lecture Notes in Physics, vol. 272, Springer-Verlag, Berlin, 1987, pp.
121–147.

[11] A. Dasgupta, R.K. Agarwal, Orthotropic thermal conductivity of plain-weave 
fabric composites using a homogenization technique, J. Comput. Math. 26 (18)
(1992) 2736–2759.

[12] J. Auriault, C. Boutin, C. Geindreau, Homogenization of Coupled Phenomena in
Heterogenous Media, John Wiley & Sons, 2010.

[13] M. Thomas, N. Boyard, L. Perez, Y. Jarny, D. Delaunay, Representative volume 
element of anisotropic unidirectional carbon–epoxy composite with high fiber
volume fraction, Compos. Sci. Technol. 68 (2008) 3184–3192.

[14] M. Prat, Some refinements concerning the boundary conditions at the 
macroscopic level, Transp. Porous Med. 7 (2) (1992) 147–161.

[15] A. Degiovanni, Constriction impedance, Rev. Gen. Therm. 34 (406) (1995) 623–
624.

[16] O. Fudym, J.C. Batsale, D. Lecomte, Heat diffusion at the boundary of stratified
media homogenized temperature field and thermal constriction, Int. J. Heat 
Mass Transfer 47 (2004) 2437–2447.

[17] A. Bensoussan, J.L. Lions, G. Papanicolaou, Boundary layer analysis in
homogenization of diffusion equations with Dirichlet conditions on the half 
space, in: K. Ito (Ed.), Proceedings of International Symposium on Stochastic 
Differential Equations, John Wiley & Sons, 1978, pp. 21–40.

[18] A. Bensoussan, J.L. Lions, G. Papanicolaou, Boundary layer analysis in
homogenization of transport processes, Res. Inst. Math. Sci. 15 (1979) 53–157.

[19] H. Dumontet, Homogénéisation et effets de bord dans les matériaux
composites –Doctoral thesis, Pierre et Marie Curie University, Paris, 1990.

[20] N. Buannic, P. Cartraud, Higher-order effective modeling of periodic 
heterogeneous beams Part 2: Derivation of the proper boundary conditions 
for the interior asymptotic solution, Int. J. Solids Struct. 38 (2001) 7163–7180.

[21] A.L. Kalamkarov, I.V. Andrianov, V.V. Danishevs’kyy, Asymptotic 
homogenization of composite materials and structures, Appl. Mech. Rev. 62
(2009) 030802.

[22] P. Kanouté, D.P. Boso, J.L. Chaboche, B.A. Schrefler, Multiscale methods for 
composites: a review, Arch. Comput. Methods Eng. 16 (1) (2009) 31–75.

[23] G. Panasenko, Multi-scale Modelling for Structures and Composites, Springer,
2005.

[24] F. Larsson, K. Runesson, F. Su, Variationally consistent computational 
homogenization of transient heat flow, Int. J. Numer. Methods Eng. 81
(2010) 1659–1686.

[25] M. Sahraoui, M. Kaviany, Slip and no-slip temperature boundary conditions at
interface of porous, plain media: conduction, Int. J. Heat Mass Transfer 36
(1993) 1019–1033.

[26] J.A. Ochoa-Tapia, S. Whitaker, Heat transfer at the boundary between a porous 
medium and a homogeneous fluid, Int. J. Heat Mass Transfer 40 (11) (1997)
2691–2707.

[27] C.G. Aguilar-Madera, F.J. Valdés-Parada, B. Goyeau, J.A. Ochoa-Tapia, One- 
domain approach for heat transfer between a porous medium and a fluid, Int. J.
Heat Mass Transfer 54 (2011) 2089–2099.

[28] M. Chandesris, D. Jamet, Boundary conditions at a planar fluid–porous
interface for a Poiseuille flow, Int. J. Heat Mass Transfer 49 (2006) 2137–2150.

[29] G. Allaire, M. Amar, Boundary layer tails in periodic homogenization, ESAIM:
Control Optim. Calculus Variations 4 (1999) 209–243.

[30] M. Amar, M. Tarallo, S. Terracini, On the exponential decay for boundary layer 
problems, C. R. Acad. Sci. Paris 328 (1) (1999) 1139–1144.

[31] A. Matine, N. Boyard, Y. Jarny, G. Legrain, P. Cartraud, M. Thomas, Effective 
thermal conductivity tensor of composite materials: Determination of the 
representative volume element, in: Sixth International Conference on Inverse 
Problem: Identification, Design and Control, 10th–12th October, Moscow,
Russia, 2010.


	Modeling of thermophysical properties in heterogeneous periodic media according to a multi-scale approach: Effective conductivity tensor and edge effects
	1 Introduction
	2 Periodic homogenization
	2.1 Problem statement – A multi-scale approach
	2.2 Asymptotic expansion method
	2.3 Correction of the edge effects
	2.3.1 Correcting terms associated to a Neumann or a Fourier condition, m=2 or 3
	2.3.2 Correcting terms associated to a Dirichlet
	2.3.3 Homogenized solutions with correcting terms of edge effects for both cases

	2.4 Determination of the boundary layer sizes- Truncation of the sub-domains Gj

	3 Numerical results – discussion
	3.1 Periodic multilayered structure
	3.1.1 The homogenized heat conductivity tensor
	3.1.2 Correcting term and Boundary layer associated to a Dirichlet boundary condition
	3.1.3 Correcting term and Boundary layer associated to a Neumann boundary condition
	3.1.4 Correcting term and boundary layer associated to a Fourier condition

	3.2 Application to a unidirectional matrix/fiber composite
	3.2.1 The homogenized conductivity tensor-
	3.2.2 Correcting term associated to a Neumann boundary condition
	3.2.3 Correcting term associated to a Fourier boundary condition
	3.2.4 Correcting term associated to a Dirichlet boundary condition

	3.3 Computational costs

	4 Conclusion
	Appendix A Problem Statement for the determinati
	A.1 The Dirichlet condition on Γ1
	A.2 The Neumann boundary condition on Γ2
	A.3 The Fourier condition on Γ3

	Appendix B Eigenvalues Problem Statement for the
	References


