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A technique for the modeling of cracks and crack growth in plates using the extended ®nite element method (X-FEM) is presented. Beginning with a plate formulation which does not exhibit shear locking, the ®nite element approximation is enriched with both discontinuous and near-tip functions. This allows for the modeling of crack geometries which are independent of the ®nite element mesh topology, and greatly facilitates the simulation of crack growth. Guidelines for the construction of the enriched approximation and the numerical integration of the weak form in the X-FEM framework are reviewed. To obtain the mixed-mode stress intensity factors, we derive appropriate domain forms of an interaction integral in the context of Mindlin±Reissner plate theory. Several benchmark problems of through-the-thickness cracks in in®nite and ®nite plates are solved to illustrate the accuracy and utility of the new formulation.

Introduction

Plate and shell formulations are widely used to analyze thin-walled structures such as aircraft fuselages subjected to bending and pressure loads. Through-the-thickness cracks (often called through cracks) may develop when these structures are subjected to cyclic loads, and the determination of mixed-mode stress intensity factors is critical to the modeling of fatigue crack propagation. Despite the practical importance, relatively little research has focused on developing robust numerical methods to determine fracture parameters and simulate crack growth in thin plates. Standard ®nite element formulations for crack growth are burdened by the need to remesh at each stage of crack evolution, as well as uncertainties in the use of path-independent integrals to calculate shear and moment intensity factors. In this paper, we address both diculties by developing a suitable domain form of the interaction integral in conjunction with the extended ®nite element method (X-FEM) to model the fracture of Mindlin±Reissner plates.

1

The Mindlin±Reissner plate theory is attractive for the numerical simulation of fracture for several reasons. In comparison to the Kirchho theory, the Mindlin±Reissner theory allows for transverse shear strains through the thickness of the plate. This in turn enables the three boundary conditions at the free surface of the crack face to be met, and results in an angular distribution of stresses consistent with the three-dimensional theory at the crack tip [START_REF] Knowles | On the bending of an elastic plate containing a crack[END_REF]. With regards to ®nite element discretization, the Mindlin±Reissner variational formulation places fewer restrictions on the smoothness of the approximating space, so that the plate displacements can be approximated with classical C 0 interpolations. Despite these advantages, ®nite element formulations based on Mindlin±Reissner theory for fracture analysis are complicated by shear-locking and the calculation of mixed-mode intensity factors.

Analogous to the stress intensity factors of classical three-dimensional fracture mechanics, in Mindlin± Reissner theory the near-tip ®elds are described in terms of moment and shear force intensity factors. The de®nition of these quantities can be found in [START_REF] Sih | Mechanics of Fracture 3: Plates and Shells with Cracks[END_REF], with analytical solutions for some simple geometries. Unfortunately, many of these solutions were recently shown to be incorrect for thin plates [START_REF] Joseph | Bending of a thin Reissner plate with a through crack[END_REF]. More recent analytical and numerical results are limited to simple geometries, and quite often are only available for pure Mode I loadings. One reason for the latter is the apparent lack of a suitable method to extract the mixed-mode intensity factors. While some work has been performed in this area [START_REF] Sosa | On invariant integrals in the analysis of cracked plates[END_REF][START_REF] Sosa | Computation of stress intensity factors for plate bending via a path-independent integral[END_REF], the derived contour integrals are not well suited to ®nite element calculations, and in some cases only accomplish part of the task. The issue is addressed in the present paper by developing a domain form of the interaction integral.

When considering ®nite element approximations of relatively thin plates, it is necessary to address the phenomenon known as shear locking. As the plate becomes very thin, both the solution and its approximation must satisfy the constraint that the transverse shear strains vanish in the domain. When there are not enough functions in the ®nite element subspace which satisfy this constraint, a poor approximation results for the plate displacements. Fortunately, plate elements have been developed which do not exhibit shear locking. See Pitk aranta and Suri (1996) for an excellent review of several plate elements and the pertinent issues. Concerning the modeling of fracture, the free surface of the crack faces presents additional challenges, and some elements perform much better than others [START_REF] Pitk Aranta | Upper and lower bounds for plate-bending ®nite elements[END_REF]. Numerical studies of plate fracture often use less robust formulations, and examine only relatively thick plates. In the present investigation, we examine the performance of the MITC4 element [START_REF] Bathe | Finite Element Procedures[END_REF] in fracture analysis.

A limited amount of research has focused on the simulation of crack growth in Mindlin±Reissner plates. Crack growth in thin shells was simulated with ®nite elements and continuous remeshing in [START_REF] Potyondy | Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures[END_REF], in which the growth direction was determined using stress intensity factors obtained from a fracture analysis of the Kirchho model for thin plates [START_REF] Hui | A theory for the fracture of thin plates subjected to bending and twisting moments[END_REF]. The X-FEM has recently emerged as a promising alternative to model crack growth with ®nite elements without the need to remesh the domain. The present technique has a distinct advantage over boundary element methods as it is readily applicable to non-linear problems, anisotropic materials, and arbitrary geometries. The method originates to [START_REF] Belytschko | Elastic crack growth in ®nite elements with minimal remeshing[END_REF], where a standard two-dimensional ®nite element approximation was enriched with the asymptotic near-tip ®elds. By aligning the discontinuity in the near-tip ®elds with the crack, a crack geometry which is independent of the ®nite element mesh was modeled. This formulation was extended in [START_REF] Mo Es | A ®nite element method for crack growth without remeshing[END_REF] by replacing the near-tip functions with a simple discontinuous function away from the crack tip. In addition to fracture mechanics, the method has been generalized and applied to other problems in applied mechanics [START_REF] Dolbow | Discontinuous enrichment in ®nite elements with a partition of unity method[END_REF][START_REF] Dolbow | An extended ®nite element method with discontinuous enrichment for applied mechanics[END_REF].

The key concept behind the X-FEM is the incorporation of special enrichment functions into a standard ®nite element approximation. The enriched approximation is constructed using the partition of unity concept [START_REF] Melenk | The partition of unity method: Basic theory and applications[END_REF][START_REF] Duarte | Hp clouds ± a meshless method to solve boundary-value problems[END_REF]. In this framework, global enrichment functions are multiplied by the local ®nite element partition of unity. This construct ensures a conforming approximation and retains a measure of sparsity in the discrete equations. A key feature of the X-FEM is the use of discontinuous enrichment functions and modi®ed integration algorithms to construct the stiness matrix. These allow the method to model geometric features which are topologically independent of the ®nite element mesh.

This paper is organized as follows. In the next section, we summarize the governing equations and variational formulation for the fracture of Mindlin±Reissner plates. Section 3 describes the discrete approximation in the X-FEM framework. In order to extract the mixed-mode intensity factors, a domain form of the interaction integral for plates is derived in Section 4. Numerical examples are given in Section 5, and some concluding remarks are provided in Section 6.

Problem formulation

There are several dierent ways to introduce the Mindlin theory. In this section, the governing equations are developed from the integration of the principle of virtual work through the thickness with the appropriate kinematic assumptions.

Governing equations

Consider the domain X & R 2 with boundary C which represents the mid-plane of a plate with thickness t occupying the region X ÂÀt=2; t=2. We designate C d as an internal surface across which the displacement ®eld may be discontinuous. The conventions adopted in this paper are shown in Fig. 1. The main assumptions of the Mindlin theory state that the in plane displacements, u 1 and u 2 vary linearly through the thickness with the section rotations w 1 and w 2 . In addition, the normal stress r 33 is assumed to vanish in the domain. We make the additional assumptions that the surfaces of the plate (x 3 t=2; Àt=2) and any crack faces are traction-free.

In the e 1 ; e 2 ; e 3 basis, where e 3 is the unit normal vector to the plate, the displacement components at a point x 1 ; x 2 ; x 3 are given by Fig. 1. Notations and sign conventions for a plate with a through crack.
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where w is the transverse displacement and w 1 and w 2 are section rotations about the x 2 and x 1 axes, respectively. The above can be expressed in a more compact form as
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with the bending contribution b w 1 2 rw

À rw t Á 4 
and a shear contribution s w; wrw w: 5

We note that the e 3 related components are zero for both b and s .

The virtual internal work is de®ned by

dW int X r : rdudX; 6
where r is the symmetric stress tensor, and du is an arbitrary virtual displacement from the current position. After a few manipulations, we obtain the relation r : rdux 3 r p : b dwr s Á s dw; dw; 7

where the p superscript indicates a reduction of the operator to the in plane e 1 ; e 2 components and r s is the shear stress vector r s r Á e 3 . Substituting Eq. (7) into Eq. ( 6) and integrating through the thickness gives the work expression

dW int X M : b wQ Á s w; wdX; 8 
where the moment M and shear Q are de®ned by

M t=2 Àt=2 x 3 r p dx 3 ; Q t=2 Àt=2 r s dx 3 : 9 
The virtual external work is composed of the action of the bending and twisting moments gathered in a couple vector C, and of the shear traction T. As previously stated, we assume there is no external pressure acting on the plate. The virtual external work is then

dW ext C C Á dw dC C T dw dC: 10 
Equating the internal and external virtual work, and applying the divergence theorem yields the equilibrium equations in X rÁM À Q 0 11a rÁQ 0 11b

and the traction boundary conditions on C

C M Á n; 12a T Q Á n; 12b
where n is the unit outward normal to the boundary. The constitutive relationships are obtained by energetic equivalence between the plate and the threedimensional model. Assuming the plate is made of an isotropic homogeneous elastic material of Young's modulus E and of Poisson's ratio m, the constitutive relations are given by

M 11 M 22 M 12 P R Q S Et 3 121 À m 2 1 m 0 m 10 001 À m P R Q S b11 b22 b12 P R Q S 13
and

Q 1 Q 2 ! lkt s1 s2 ! ; 14
where l is the shear modulus. The correction factor k accounts for the parabolic variation of the transverse shear stresses through the thickness of the plate, and is taken to be k 5=6.

The above equations can be rewritten in a more compact form using the fourth order bending stiness tensor D b and the second order shear stiness tensor D s :

M D b b ; Q D s s : 15 

Variational formulation

Let the boundary C be divided into a part C u on which kinematic boundary conditions w g ; w g ) are imposed and a part C t on which loads are applied with the restrictions

C C u C t C u C t Y:
16

The kinematics constraints are given by a prescribed transverse displacement w and prescribed rotations w while the loads come from the prescribed couples C and prescribed shear tractions T.

Let U be the space of kinematically admissible transverse displacements and rotations U fw; wPV : w w g ; w w g on C u g; 17

where V is a space of suciently smooth functions on X. The details on the regularity of the space are discussed in Babu ska and [START_REF] Babu Ska | A ®nite element scheme for domains with corners[END_REF] and [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF]. We note that the space V allows for discontinuous functions across C d . The space of test functions is de®ned similarly as U 0 fw; wPV : w 0; w 0o n C u g: 18

The weak form is to ®nd w; wPU such that It can be shown that the above is equivalent to the equilibrium equations (11a) and (11b) and traction boundary conditions (12a) and (12b). When the space V is discontinuous along C d , the traction-free conditions on the crack faces are also satis®ed.

Extended ®nite element approximation

In this section, we present the methodology of constructing a discrete approximation to the plate displacements with the X-FEM. The essential concept behind the X-FEM is the modeling of geometric features which are independent of the topology of the ®nite element mesh. This is eected through the implementation of enrichment functions and modi®cations to the integration of the weak form. Only the essential details are provided in this section, see [START_REF] Mo Es | A ®nite element method for crack growth without remeshing[END_REF] or [START_REF] Dolbow | An extended ®nite element method with discontinuous enrichment for applied mechanics[END_REF] for more details.

In the following, we ®rst describe a standard plate approximation which does not exhibit shear locking. The manner in which this formulation is enriched with both discontinuous and near-tip ®elds in the X-FEM framework is then described. Finally, modi®cations made to the numerical integration of the Galerkin weak form are discussed.

Discretization with the MITC4 plate element

When discretizing the plate equations ( 11a) and (11b), some care must be taken for thin plates. As the plate becomes very thin, the following relationship must be satis®ed to keep the strain energy in the plate bounded rw w 0: 20

In other words, the shear strain s must vanish in the domain as t 3 0. This condition is known as the Kirchho constraint, and it applies to both the solution w; w and its approximation w h ; w h . When there are not enough functions in V h which satisfy Eq. ( 20), a degradation in the accuracy and initial rates of convergence is observed for the plate displacements w h ; w h . This phenomenon is often referred to as shear locking.

Several dierent element formulations have been developed to address the shear locking issue. A consideration when dealing with plate fracture is the element performance near the free surface of the crack faces, and in this regard the MITC class of elements [START_REF] Bathe | Displacement and stress convergence of our MITC plate bending elements[END_REF] oer superior performance over other available formulations (see the analysis of Pitk aranta and Suri, 1996). In the following, we review only the standard approximation.

Following [START_REF] Brezzi | Mixed-interpolated elements for Reissner±Mindlin plates[END_REF], we denote the admissible spaces of rotations and transverse displacement by W and W, respectively. When the domain does not contain an internal boundary or re-entrant corner, these are usually taken to be W H 1 0 X 2 and W H 1 0 X. The ®nite element subspaces are then denoted by

W h & W and W h & W.
Consider the speci®c approximations w h P W h and w h P W h . The MITC formulation avoids shear locking by making a modi®cation to the expression for the shear energy

lktjjw h Àrw h jj 2 0
21 by applying a bounded linear operator R with values in a third space C h . This operator is applied to the shear energy as

lktjjRw h Àrw h jj 2 0 : 22 
The choice of this reduction operator, in conjunction with the spaces W h , W h , and C h is not arbitrary. [START_REF] Brezzi | Mixed-interpolated elements for Reissner±Mindlin plates[END_REF] outline a set of ®ve criteria for these spaces to satisfy in order to maintain convergence.

In the present investigation, we consider only the MITC4 element, whose approximation is based on the 4-node isoparametric quadrilateral. The resulting formulation is identical to that developed in [START_REF] Hughes | Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element[END_REF]. Let us assume that we have a triangulation of the domain X and that each element is a quadrilateral. Each element E is the image of a reference quadrilateral Ê through an invertible mapping:

x xn n PÀ1; 1ÂÀ1; 1. On each element the transverse displacement ®eld is expressed in terms of the four nodal coecients w i ; i 1; ...4 through the classical bilinear shape functions / i w h x 4 i1 / i nxw i ;

x P E; n P Ê: 23

The rotation ®eld in the bending term (the ®rst term in Eq. ( 19)) also uses the classical bilinear shape functions; the degrees of freedom being the e 1 and e 2 components of the vector w at each of the four nodes of the element wx 4 i1 / i nxw i ;

x P E; n P Ê: 24

The reduction operator R is implemented by modifying the approximation of the rotation vector in the shear term (second term in Eq. ( 19)). We express this modi®cation through the special shape functions /i as

wx 4 i1 /i nxw i ; x P E: 25 
Note that /i represents a 2 Â 2 matrix, with non-zero o diagonal entries. This allows for a mixed interpolation of the rotation components [START_REF] Bathe | Finite Element Procedures[END_REF].

The standard approach to modeling a crack geometry is to explicitly mesh the line of discontinuity. In the next section, we describe how the standard approximation can be enriched with discontinuous functions to model fracture.

Enriched MITC approximation

Consider a mesh of MITC4 elements and an independent crack geometry as shown in Fig. 2. In the X-FEM framework, the crack is modeled by enriching the standard approximation with discontinuous and near-tip functions. In the following equations, we express the approximation in global form with a sum over all nodal degrees of freedom. The explicit dependence of the bilinear shape functions / i on the local parent coordinates n is also dropped for convenience.

The following enriched approximation is proposed for the plate displacements and section rotations in the bending terms: Fig. 2. An arbitrary crack placed on a mesh.

w h x iPI / i xw i jPJ / j xH xb w j kPK / k x 4 l1 c w kl G l r; h 3 ; 26a w h x iPI / i xw i jPJ / j xH xb w j kPK / k x 4 l1 c w kl F l r; h 3 : 26b 
The section rotations in the shear terms are approximated by

w h x iPI /i xw i jPJ /j xH xb w j kPK /k x 4 l1 c w kl F l r; h 3 : 27 
In the above equations, I is the set of all nodes, J, the set of nodes associated with the crack interior, and K, the set associated with the crack tip. The precise de®nitions of these sets is given later.

The above enriched approximation corresponds to applying the same reduction operator R in the MITC4 formulation, with the spaces W h , W h , and C h enriched with both discontinuous and near-tip ®elds. The extent to which the above approximation satis®es the criteria outlined in [START_REF] Brezzi | Mixed-interpolated elements for Reissner±Mindlin plates[END_REF] for an arbitrary crack and mesh geometry is an area for future research.

We now describe the construction of the discontinuous function H x in two dimensions. This is a `generalized Heaviside' function, in which the discontinuity is aligned with the surface C d . The surface C d is considered to be a curve parametrized by the curvilinear coordinate s, as in Fig. 3. Given a point x in the domain, we denote by x à the closest point on C d to x.Atx à , we construct the tangential and normal vector to the curve, e s and e n , with the orientation of e n taken such that e s  e n e z . The function H x is then given by the sign of the scalar product x À x à Áe n , i.e.

H x 1 for x À x à Áe n > 0; À1 for x À x à Áe n < 0: & 28
In the case of a kinked crack as shown in Fig. 3(b), where no unique normal but a cone of normals is de®ned at x à , H x1 if the vector x À x à belongs to the cone of normals at x à and À1 otherwise.

The sets of near-tip functions G l and F l are expressed in terms of the local polar coordinates r; h at each crack tip. They are derived from the sets of functions f l and g l which span the asymptotic near-tip ®elds for the section rotations and transverse displacements, respectively (see Section 4.1). We take G l to be only those functions in g l which are proportional to r 3=2 . The set F l is taken to be equivalent to f l . These sets of Fig. 3. Illustration of normal and tangential coordinates for a smooth crack (a) and for a crack with a kink (b). x à is the closest point to x on the crack. In both of the above cases, the jump function H has value À1a tx. near-tip functions were found to give the best overall results in terms of the performance with varying plate thickness and the accuracy of moment and shear force intensity factors. It bears emphasis that the near-tip discontinuity can be represented with other sets of functions, or even a single function which is discontinuous across the crack tip geometry (see [START_REF] Dolbow | Discontinuous enrichment in ®nite elements with a partition of unity method[END_REF]. In the context of linear elastic fracture mechanics, the incorporation of the exact near-tip asymptotic functions signi®cantly improves the accuracy of the formulation. The studies presented in Section 5 provide further insight.

We now turn to the de®nitions of the sets J, K 1 and K 2 . We shall denote by x 1 and x 2 the location of the crack tips 1 and 2 and by D the geometry of the crack discontinuity. The sets K 1 and K 2 consist of those nodes whose support closure contains crack tip 1 or 2, respectively. The set J is the set of nodes whose support is intersected by the crack and do not belong to K 1 or K 2 . More precisely K 1 fk P I : x 1 P x k g; 29 K 2 fk P I : x 2 P x k g; 30

J fj P I : x j D T Y; j T P K 1 ; j T P K 2 g; 31

where x is the support of a node's shape function, with closure x. Fig. 4 illustrates the sets J (circled nodes), K 1 (squared nodes near tip 1) and K 2 (squared nodes near tip 2) for a uniform mesh. In practice, the difference between the open set x j and its closure x j in the de®nition of the set J is de®ned with a user-speci®ed tolerance (see [START_REF] Dolbow | Discontinuous enrichment in ®nite elements with a partition of unity method[END_REF].

Numerical integration

For elements cut by the crack and enriched with the jump function H x, it is necessary to make a modi®cation to the element quadrature routines in order to accurately assemble the contribution to the Galerkin weak form on both sides of the discontinuity. As the crack is allowed to be arbitrarily oriented in an element, the use of standard Gauss quadrature may not adequately integrate the discontinuous ®eld. If the integral of the function H x is indistinguishable from that of a constant function, spurious singular modes can appear in the system of equations. In this section, we present the modi®cations made to the numerical integration scheme for elements cut by a crack.

The stiness matrix is normally constructed with a loop over all elements, as the domain is approximated by X m e1 X e ; 32 where m is the number of elements, and X e , the element subdomain. For elements cut by a crack, we de®ne the element subdomain to be a union of a set of subpolygons whose boundaries align with the crack geometry X e mes e1

X es ; 33

where m es denotes the number of subpolygons for the element.

The subtriangles implemented for nodal selection shown in Fig. 5 work well for integration across the discontinuity C d . These subtriangles are also used to select nodes enriched with the discontinuous function H x, by calculating the percentage of a node's support above and below the crack. Simpler schemes, such as the trapezoids used by [START_REF] Fish | Finite Element Method for Localization Analysis[END_REF] and the formulation suggested in [START_REF] Dolbow | An extended ®nite element method with discontinuous enrichment for applied mechanics[END_REF] may also perform adequately. The key feature is a consistent algorithm for nodal selection and enrichment. It is emphasized that the subpolygons are only necessary for integration purposes; no additional degrees of freedom are associated with their construction. In the integration of the weak form, the element loop is replaced by a loop over the subpolygons for those elements cut by the crack.

Extraction of mixed-mode intensity factors

In this section, we present the methodology for calculating the mixed-mode moment and shear force intensity factors for through cracks in Mindlin±Reissner plates. We begin by providing a brief summary of the pertinent quantities that arise when dealing with cracks in Mindlin±Reissner plates. The crack tip contour integrals which have previously been developed are reviewed, and we discuss why these integrals are not well suited for ®nite element analysis. This discussion motivates the derivation of a domain form of the interaction integral for Mindlin±Reissner plates.

Plate fracture mechanics

Consider the problem of a through crack in a plate as shown in Fig. 6, where for convenience we adopt a local polar coordinate system centered at the crack tip. As opposed to the stress intensity factors obtained in classical elasticity, in plate theory the quantities of interest are moment and shear force intensity factors. These are de®ned as A link to the stress intensity factors of three-dimensional elasticity is made by considering the variation in stress components through the plate thickness. The bending stresses vary linearly through the plate thickness, while the transverse shear stresses vary parabolically. These considerations typically motivate the following relationships:

k 1 x 3 12x 3 t 3 K 1 ; k 2 x 3 12x 3 t 3 K 2 ; k 3 x 3 3 2t 1 4 À 2x 3 t 2 5 K 3 : 35 
The asymptotic displacement ®elds in Mindlin±Reissner plate theory can be found in [START_REF] Sosa | Computation of stress intensity factors for plate bending via a path-independent integral[END_REF] as a power series in r p . We list here only those terms proportional to r p and r 3=2 : For the purposes of de®ning the near-tip enrichment functions in Section 3.2 for the plate theory, we consider only the terms proportional to r p for the rotations w 1 and w 2 . For the transverse displacement, we consider terms proportional to both r p and r 3=2 . With these restrictions, the above near-tip ®elds are contained in the span of the sets The asymptotic near-tip moment and shear ®elds obtained from the displacement ®elds (34a)±(36c) are

w 6 2r p 5tl K 3 sin h 2 6 2 p r 3=2 K 1 Et 3 1 3 7 m cos 3h 2 À1 À m cos h 2 ! 6 2 p r 3=2 K 2 Et 3 À 1 3 5 3m sin 3h 2 1 À m sin h 2 ! 36a w 1 6 2r p K 1 Et 3 cos h 2 4 À 1 m1 cosh 6 2r p K 2 Et 3 sin h 2 4 1 m1 cosh 6 2 p r 3=2 K 3 Et 3 8 15 À sin h 2 À1 3m cos h 2 sinh ! : 36b w 2 6 2r p K 1 Et 3 4 sin h 2 À1 m cos h 2 sinh ! 6 2r p K 2 Et 3 À 2cos h 2 1 À m 1 m sin h 2 sinh ! 6 2 p r 3=2 K 3 Et 3 8 15 cos h 2 1 1 3m cosh: 36c
w
M 11 K 1 2r p cos h 2 1 À sin h 2 sin 3h 2 À K 2 2r p sin h 2 2 cos h 2 cos 3h 2 ; 39a M 22 K 1 2r p cos h 2 1 À sin h 2 sin 3h 2 À K 2 2r p sin h 2 cos h 2 cos 3h 2 ; 39b M 12 K 1 2r p sin h 2 cos h 2 cos 3h 2 K 2 2r p cos h 2 1 À sin h 2 sin 3h 2 ; 39c Q 1 À K 3 2r p sin h 2 ; 39d Q 2 K 3 2r p cos h 2 ; 39e
where only the singular terms have been provided. We note that when the loading is purely K 1 or K 2 , only the moments are singular at the crack tip. Similarly, when the loading is purely K 3 , only the shears are singular.

Available crack-tip contour integrals

Several dierent domain and path-independent integrals have been developed for the extraction of mixed mode moment and shear force intensity factors in plates, see for example those derived in [START_REF] Sosa | Computation of stress intensity factors for plate bending via a path-independent integral[END_REF] or [START_REF] Sosa | On invariant integrals in the analysis of cracked plates[END_REF]. We summarize the results of these investigations here in order to motivate the developments which follow. In this section, we use indicial notation where the Greek indices a; b range over the values 1; 2, and a comma denotes a partial derivative with respect to the following argument. We state the restrictions that the following development concerns the case when the crack-faces are traction free and there is no externally applied pressure on the plate.

The development of crack-tip contour integrals begins by considering the appropriate balance, or conservation law. De®ning the strain energy in the plate as

W 1 2 M ab w a;b  Q b w b w ;b à 40
it can be shown that W ;k ÀM ab w a;k Q b w ;k ;b 0 for k 1; 2 41 using the plate equations ( 11a) and (11b), constitutive laws (13), and ( 14), and strain±displacement relations (4) and ( 5). The measures J k are obtained by integrating the above expression over the domain A 0 enclosed by the contour C shown in Fig. 7. After applying the divergence theorem, we arrive at the following:

J k s C fW d kb À M ab w a;k  Q b w ;k à gn b dC: 42 
The measures J k vanish when the region enclosed by C does not contain a crack. In the present investigation, we are primarily concerned with the J 1 integral. When C is an open contour surrounding a crack tip, the J 1 integral is path independent and its magnitude is equivalent to the energy release rate corresponding to a unit crack advance in the x 1 direction. The relationship between the energy release rate G and the moment and shear force intensity factors is determined as follows. The asymptotic ®elds (36a)±(36c) are substituted into the above integral, and a vanishingly small path enclosing the crack tip is considered. In the limit, only the singular terms [Or À1 ] contribute to the result

J 1 G 12p Et 3 K 2 1 Â K 2 2 Ã p 2klt K 2 3 : 43 
The calculation of J 1 in conjunction with the above equation is not sucient to extract K 1 , K 2 ,a n dK 3 . While an analogous relationship can be derived for J 2 , we are still left with only two equations for the three unknowns. To address this issue, [START_REF] Sosa | On invariant integrals in the analysis of cracked plates[END_REF] separated the strain energy into bending and shear contributions as

W b 1 2 M ab w a;b Âà ; W s 1 2 Q b w b  w ;b à 44 
and derived the following integrals from the corresponding conservation laws:

J b k C fW b d kb À M ab w a;k gn b dC A 0 Q b w b;k dA; 45a J s k C fW s d kb À Q b w ;k gn b dC À A 0 Q b w b;k dA: 45b 
By substituting the near-tip ®elds into these expressions, the following relationships can be derived: J

b 1 12p Et 3 K 2 1 K 2 2 ; 46a J b 2 J s 2 À 24p Et 3 K 1 K 2 ; 46b J s 1 p 2klt K 2 3 : 46c 
While the magnitude of K 3 can certainly be determined from Eq. ( 46c) above, we cannot determine its sign. Furthermore, the two Eqs. ( 46a) and (46b) are generally insucient to separate K 1 and K 2 . A quadratic equation results, and the two roots are indistinguishable. While both the sign of K 3 and the separation of K 1 and K 2 may be determined by additionally examining the form of the near-tip ®elds, this process is fairly cumbersome and does not lend itself to the automatic simulation of crack growth. An additional concern involves the numerical calculation of the contour integrals (45a) and (45b) in a ®nite element context. When the plate displacements are approximated with C 0 X continuous shape functions, the moments M and shears Q will not be continuous across element boundaries on the contour C. This issue is typically addressed by using a `smoothing' technique such as that suggested in [START_REF] Hinton | Local and global smoothing of discontinuous ®nite element functions using a least squares method[END_REF]. In the sections which follow, we illustrate how the development of the domain form of an interaction integral for plates circumvents all of the aforementioned diculties.

The interaction integral

A particularly convenient method for extracting mixed-mode stress intensity factors is the interaction energy integral approach. [START_REF] Yau | A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity[END_REF] and [START_REF] Shih | Elastic±plastic analysis of cracks on bimaterial interfaces: part I ± small scale yielding[END_REF] have employed interaction energy integrals to evaluate mixed-mode stress intensity factors in two-dimensional plane problems. In the present investigation, the interaction energy integrals are developed for extracting mixed-mode moment and shear force intensity factors in Mindlin±Reissner plates.

To derive the interaction integral, we begin by considering two states of ®eld quantities: the present state M; Q; w; w , and an auxiliary state characterized by M aux ; Q aux ; w aux ; w aux . The J 1 integral for the sum of the two states is given by

J sum 1 s C fW sum d 1b ÀM ab M aux ab w a;1 w aux a;1 Q b Q aux b w ;1 w aux ;1 gn b dC; 47 where W sum 1 2 M  M aux : b aux b Q Q aux Á s aux s à : 48 
Expanding and rearranging terms gives

J sum 1 J 1 J aux 1 I; 49 
where I is the interaction integral given by

I s C fW int d 1b ÀM ab w aux a;1 M aux ab w a;1 Q b w aux ;1 Q aux b w ;1 gn b dC 50 
and W int is the interaction strain energy

W int M : aux b Q Á aux s M aux : b Q aux Á s : 51 
In a similar manner, the energy release rate corresponding to the sum of the present state and the auxiliary state is given by

G sum 12p Et 3 K 1 h K aux 1 2 K 2 K aux 2 2 i 6p 10lt K 3 K aux 3 2 : 52
Upon rearranging terms we obtain

G sum J 1 J aux 1 24p Et 3 K 1 K aux 1 Â K 2 K aux 2 Ã 12p 10lt K 3 K aux 3 : 53 
By equating J sum in Eq. ( 49) with G sum , we arrive at the following relationship:

I 24p Et 3 K 1 K aux 1 Â K 2 K aux 2 Ã 12p 10lt K 3 K aux 3 : 54 
The auxiliary state is set to the leading order terms in the expressions for the exact near-tip ®elds (36a)± (36c) and (39a)±(39e). For the near-tip displacements, only those terms proportional to r p are taken. The auxiliary strains are determined from Eqs. (39a)±(39e) and inverting the constitutive relationships ( 13) and ( 14). The process of evaluating the mixed-mode intensity factors involves making a judicious choice of the auxiliary moment and shear force intensity factors, and then evaluating the interaction energy integral (50). For example, to extract K 1 , we set K aux 1 1, K aux 2 0, K aux 3 0, from which it follows from the above that

K 1 Et 3 24p I: 55 
The moment and shear force intensity factors K 2 and K 3 are extracted in a similar fashion. In order to numerically evaluate the interaction integral, it is advantageous to recast the contour integrals in their equivalent domain forms which are developed in the following section.

Domain form of the interaction integral

In this section, we illustrate the use of a weight function q to recast the line integrals developed in the previous section into their equivalent domain form. The domain forms are particularly well suited for use with ®nite elements, as the same quadrature points used for the construction of the bilinear form can be used to calculate the domain integral. Additional quadrature points or the use of a smoothing procedure are not required.

We begin with the contour integral presented in the previous section (Eq. ( 50)). Consider the simply connected curve C C 0 C C À C as shown in Fig. 7. Following [START_REF] Moran | Crack tip and associated domain integrals from momentum and energy balance[END_REF], we now introduce a weight function q which is suciently smooth in the area A enclosed by C, and is de®ned on the surfaces as

q 1o n C 0o n C 0 & 56
We then use this function to rewrite Eq. (50) as

I s C n À W int d 1b M ab w aux a;1 h M aux ab w a;1 Q b w aux ;1 Q aux b w ;1 io m b q dC À CCÀ M a2 w aux a;1 h M aux a2 w a;1 Q 2 w aux ;1 Q aux 2 w ;1 i m 2 q dC; 57 
where we have used m i n i on C 0 , m i Àn i on C, and m 1 0, m 2 AE1 on the crack faces. The last integral above vanishes for traction free crack faces. Applying the divergence theorem to the integral over A,w e obtain

I A M ab w aux a;1 h n M aux ab w a;1 Q b w aux ;1 Q aux b w ;1 i À W int d 1b o q ;b dA A M ab w aux a;1 h n M aux ab w a;1 Q b w aux ;1 Q aux b w ;1 i À W int d 1b o ;b
q dA: 58

The integrand in the second integral above needs to be examined in more detail. If the auxiliary ®elds satisfy the strain±displacement equations ( 4) and ( 5), the constitutive equations ( 13) and ( 14), and the equilibrium equations ( 11a) and (11b), then this integrand will vanish. When the auxiliary ®elds are chosen to be the leading order terms in r, however, either the equilibrium equations or the strain±displacement relationships will not be satis®ed exactly. These conditions are similar to those studied in [START_REF] Gosz | Domain integral formulation for stress intensity factor computation along curved threedimensional interface cracks[END_REF], where the auxiliary ®elds did not satisfy certain governing equations due to the curvature of the threedimensional crack front. Consider the present conditions when the auxiliary ®elds correspond to a pure K 1 state. We have from Eqs. (39a)±(39e) that

Q aux 0; aux s 0 59
and yet from Eqs. (36a)±(36c) the section rotations are non-zero, and so the strain±displacement relationship ( 5) is not satis®ed. A similar situation arises when the auxiliary ®elds correspond to a pure K 2 state, and when the case is pure K 3 we have M aux 0; rÁM aux 0 60 and yet the auxiliary shears are non-zero and so the equilibrium equations are not satis®ed. After a good deal of algebraic manipulations, the appropriate cancellations can be made to reduce Eq. ( 58) to the following domain form of the interaction integral:

I A M ab w aux a;1 h n M aux ab w a;1 Q b w aux ;1 Q aux b w ;1 i À W int d 1b o q ;b dA A M aux ab;b n À Q aux a w a;1 Q a w aux
;a1 w aux a;1 À aux s a;1 o q dA: 61

We remark that it is necessary to include the terms in the second integral to preserve the domain independence of the measure number I.

The above integral can be reduced depending on whether the quantity of interest is K 1 , K 2 ,orK 3 , as certain terms in the auxiliary ®elds vanish for each case. For example, for K 1 and K 2 the integral takes the form

I A M ab w aux a;1 h n M aux ab w a;1 i À W int d 1b o q ;b dA
A Q a w aux a;1 q dA; 62 whereas for K 3 the integral reads

I A Q b w aux ;1 h n Q aux b w ;1 i À W int d 1b o q ;b dA À A Q aux a w a;1 q dA: 63 
It is noted that the above forms are similar to the bending and shear integrals (45a) and (45b) presented earlier. In fact, the above forms can also be derived by considering Eqs. (45a) and (45b) for the sum of two states, and then performing the same manipulations presented in this section. Finally, if the auxiliary state variables are set to the present variables in the interaction integral, we recover the domain form of the J 1 integral for plates. This is given by

J 1 A M ab w a;1 Â È Q b w ;1 Ã À W d 1b É q 1;b dA À CCÀ M a2 w a;1 Â Q 2 w ;1 Ã m 2 q 1 dC: 64 
When the loading is known to be purely K 1 , the above equation can be used in conjunction with Eq. ( 43) to calculate the moment intensity factor.

The proceeding development of a domain form of the interaction integral can be readily extended to other formulations, such as the Kirchho plate model. In addition, the incorporation of pressure loads and tractions on the crack faces does not place any restrictions on the formulation. The additional external forces simply enter into the equations in the form of surface and contour integrals (see [START_REF] Moran | Crack tip and associated domain integrals from momentum and energy balance[END_REF].

In the numerical examples given in the next section, the domain A is set from the collection of elements about the crack tip. Using a local characteristic length h local , the domain is set to be all elements within a ball of radius r d from the crack tip. We have used r d 2h local . The weight function q takes a value of unity for all nodes within r d , and zero on the outer contour. See Mo es et al., 1999 for details.

Numerical examples

In this section, we present some examples using the extended MITC4 plate formulation. We ®rst examine the accuracy of the as a function of plate thickness for a benchmark problem, and then present a more general example. Throughout this section, the material properties are assumed to be isotropic with Young's modulus E 200 GPa and Poisson's ratio m 0:3.

Benchmark problem

As a benchmark problem we consider a through crack in an in®nite plate subjected to a far-®eld moment M 0 . The crack is oriented at an angle b with respect to the x 1 axis as shown in Fig. 8. Accurate calculations were carried out by [START_REF] Joseph | Bending of a thin Reissner plate with a through crack[END_REF] for various plate thicknesses for b 0 . In this con®guration, the loading is purely mode I, and the domain form of the J -integral for plates ( 64) is used in conjunction with Eq. ( 43) to determine the moment intensity factor K I . We also take advantage of the symmetry about the x 2 axis (when b 0) and model only one-half of the plate with ®nite elements. To approximate the in®nite plate, the plate width W is taken to be 20 times the half crack length a. The crack length is taken to be 2a 1:0 for the results presented in this study .

Fig. 9 shows the normalized K I for four discretizations, two with enrichment and two without. The lower curve corresponds to a standard MITC4 approximation, and the values for K I are within 5% of the exact for the entire range of plate thicknesses. These values are improved when the mesh is re®ned for a total of 2463 degrees of freedom as shown. We observe that the solution obtained with the enriched approximation and only 755 degrees of freedom is as accurate as the standard approximation with 2463 degrees of freedom. The last curve for the enriched case with 3087 degrees of freedom exhibits less than 1% error. An exception concerns both enriched solutions when the normalized thickness t=a 0:01, where a signi®cant decrease in accuracy is observed. This deviation may be attributed to the onset of shear locking for the enriched approximation. We note that this occurs only for very thin plates t=W 1=2000, and that the calculated moment intensity factor K 1 for t=a 0:1 is within 3% of the limiting value of 0.4439. This is illustrated in Fig. 10 where the moment intensity factor is not normalized.

Additional moment intensity factors are calculated for a ®nite plate as a function of crack length for various plate thicknesses. The geometry of the plate is taken to be the same as in the previous example, and the results are compared to those given in [START_REF] Boduroglu | Internal and edge cracks in a plate of ®nite width under bending[END_REF]. In this study, the mesh does not model the crack discontinuity; the jump in the rotations and transverse displacement is created entirely with enrichment. Table 1 gives the results for four dierent width to thickness ratios for the case when the plate is modeled with 1424 MITC4 elements. These results show excellent correlation for the cases when t w=4 and t w=8, in which the maximum error is 1.2%. For the remaining cases the maximum difference between the numerical solutions and those given in [START_REF] Boduroglu | Internal and edge cracks in a plate of ®nite width under bending[END_REF] is 9.4%. We remark that the results given in [START_REF] Boduroglu | Internal and edge cracks in a plate of ®nite width under bending[END_REF] are not as reliable as those found in [START_REF] Joseph | Bending of a thin Reissner plate with a through crack[END_REF]. In the latter, the moment intensity factors are shown to be signi®cantly greater than the classical results [START_REF] Sih | Mechanics of Fracture 3: Plates and Shells with Cracks[END_REF] as the thickness t 3 0. The results shown in Table 1 are consistent with these ®ndings.

Angled center crack

We now present results for the moment and shear force intensity factors as a function of the angle b for the geometry of Fig. 8. These results serve to illustrate the versatility of the present formulation, as well as the validity of the interaction integral derived in Section 4.4. We consider the case of a relatively thick plate, by taking t=a 2. The exact solution for the in®nite plate is given in [START_REF] Sih | Mechanics of Fracture 3: Plates and Shells with Cracks[END_REF] as

K 1 U1M 0 a p cos 2 b; 65a K 2 W1M 0 a p cos b sin b; 65b K 3 À 10 p 1 mt X1M o a p cos b sin b; 65c 
where the functions U1, W1,a n dX1 are computed numerically from integral equations. When t=a 2, these are approximately 0:82, 0:68 and 0:06, respectively. We remark that [START_REF] Joseph | Bending of a thin Reissner plate with a through crack[END_REF] have questioned the validity of the above relationships for thinner plates.

We present results as a function of b for two situations. In the ®rst case, a portion of the mesh is rotated such that the element edges align with the geometry of the crack. A typical mesh of 1920 MITC4 elements is shown in Fig. 11. In the second case, the same number of elements is used but the the mesh is not rotated and the crack cuts across element boundaries. In all con®gurations, the plate displacements are discretized with the enriched MITC4 approximation (26a) and (26b). Fig. 12 shows the results when the crack aligns with the mesh. The numerical results show good correlation with the exact values for the full range of b. The results for a ®xed mesh are shown in Fig. 13. While the agreement between the numerical and the exact results for K 1 and K 2 is acceptable, there is substantial deviation in K 3 . From Eqs. (39a)±(39e), we observe that there is a strong relationship between the shear force intensity factor and the shear ®elds Q. For pure K 3 loading, only the shears Q 1 and Q 2 are singular. As the approximation for the shear is also modi®ed by the MITC formulation to avoid locking, we can conclude from these studies that a crack cutting across element boundaries adversely aects this approximation. An improvement in the results is achievable with ®ner discretization, and Fig. 14 shows the results using a mesh of 4080 MITC4 elements.

Summary and concluding remarks

In this paper, a new formulation for modeling cracks in plates in the Mindlin±Reissner framework has been presented. The form of the enriched approximation is similar to that in Mo es et al. (1999), with dierent sets of near-tip functions for the rotations and transverse displacement. In order to extract the 20 mixed-mode intensity factors, appropriate domain forms of the interaction integral were derived. A key component to the success of the domain integrals is the incorporation of terms which arise from the failure of the auxiliary ®elds to satisfy the equilibrium and strain±displacement equations. Several benchmark problems illustrated good performance for the formulation over a range of plate thicknesses. Some adverse eects of the enrichment were noticed in the calculation of the shear force intensity factor when the crack cut across element boundaries.

Further studies are required to determine the extent to which the present enriched formulation avoids shear locking. The selection of approximating spaces which do not exhibit shear locking are usually formulated in terms of the local polynomial spaces on the element level. A diculty with the enriched basis functions is that they are constructed using both the element and crack geometries, as opposed to just a map with a parent element. It is precisely this construction which gives the enriched formulation the ¯exibility to model cracks which are not oriented with the mesh. The form of the enriched approximation is ¯exible in the selection of the near-tip functions, and some modi®cations to the generalized Heaviside function can also be envisaged. It may therefore be possible to construct an enriched approximation which completely avoids shear locking.

The present formulation oers signi®cant promise to model crack growth in plates and shells. As the crack geometry can be represented independently of the mesh, it is not necessary to remesh the domain at each step in the simulation. Good correlation with experimental results has been obtained using the X-FEM in two-dimensional plane strain calculations [START_REF] Dolbow | An extended ®nite element method with discontinuous enrichment for applied mechanics[END_REF]. With regards to modeling crack growth in plates, all that is required is a suitable crack growth law. While several dierent crack growth laws have been developed for plates subjected to in-plane loads, little attention has focused on the three-dimensional eects resulting from bending loads. The development of a suitable crack growth law for plates and comparison to experimental results is therefore the focus of current research.
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Fig. 4 .

 4 Fig. 4. Crack on a uniform mesh of MITC4 elements. The circled nodes are enriched by the jump function whereas the squared nodes are enriched by the crack tip functions.

Fig. 5 .

 5 Fig. 5. (a) Nodal support cut by a crack. (b) The subtriangles associated with elements cut by the crack for node selection and the numerical integration of the weak form.

Fig. 6 .

 6 Fig. 6. Local polar coordinate system for through crack in plate.

Fig. 7 .

 7 Fig. 7. Conventions at the crack tip. The domain A 0 is enclosed by C, while A is enclosed by C, C , C À , and C 0 .

Fig. 8 .

 8 Fig. 8. Loading con®guration for bending of cracked plate.

Fig. 9 .

 9 Fig. 9. Normalized moment intensity factors for varying plate thickness.

Fig. 10 .

 10 Fig. 10. Moment intensity factors for varying plate thickness.

Fig. 11 .

 11 Fig. 11. Mesh with typical rotated center section. The crack geometry is shown in bold.

Fig. 12 .

 12 Fig. 12. Normalized moment and shear force intensity factors for center crack at angle b. The crack is aligned with the mesh.

Fig. 13 .

 13 Fig. 13. Normalized moment and shear force intensity factors for center crack at angle b. The crack is not aligned with the mesh.

Fig. 14 .

 14 Fig. 14. Normalized moment and shear force intensity factors for center crack at angle b. The crack is not aligned with the mesh of 4080 MITC4 elements.

  

  Pfg i r; hg

	5 i1 ; fw 1 ; w 2 gPff i r; hg	4 i1 ;		37a 37b
	where			
	fg I r; hg	r &' p sin h 2 ; r 3=2 sin h 2 ; r 3=2 cos h 2 ; r 3=2 sin 3h 2 ; r 3=2 cos 3h 2	;	38a
	ff I r; hg	r &' p sin h 2 ; r p cos h 2 ; r p sin h 2 sinh; r p cos h 2 sinh	:	38b

Table 1 Normalized

 1 K I values for ®nite plate

	t w=4		t w=8		t w=12		t w=16	
	a=wK I =K ref I	a=wK I =K ref I	a=wK I =K ref I	a=wK I =K ref I
	0.025	0.988	0.025	0.989	0.0333	1.067	0.0250	1.077
	0.05	0.992	0.050	0.993	0.0500	1.052	0.0375	1.090
	0.10	0.997	0.075	0.995	0.0667	1.069	0.0500	1.094
	0.20	1.000	0.100	0.996	0.0833	1.070	0.0625	1.092
	0.25	0.999	0.125	0.997	0.1667	1.054	0.1250	1.072
	0.333	1.013	0.250	0.998	0.3333	1.057	0.2500	1.062
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