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Experiments show that silts and silty soils exhibit contraction followed by dilation during shearing and the slope of failure line decreases at large strains, termed as phase transformation behaviour. This paper is to develop a new micromechanical stress-strain model that accounts for the phase transformation behaviour by explicitly employing the phase transformation line and its related friction angles. The overall strain includes plastic sliding and plastic compression among grains. The internal-friction angle at the phase transformation state and the void state variable are employed to describe the phase transformation behaviour. The model is examined by simulating undrained and drained triaxial compression tests performed on Pitea silts. The local stress-strain behaviour for contact planes is also investigated.

I. INTRODUCTION

Experimental observations under triaxial conditions for sands, sandy and silty soils show that the soil changes from contraction to dilation during the shearing [START_REF] Nakase | Undrained shear strength anisotropy of normally consolidated cohesive soils[END_REF][START_REF] Ovando-Shelley | Stress-strain Behaviour of Granular. Soils Tested in the Triaxial Cell[END_REF][START_REF] Georgiannou | The undrained behaviour of clayey sands in triaxial compression and extension[END_REF][START_REF] Yu | Testing and Modelling of Silty and Sulphide-Rich Soils[END_REF][START_REF] Thevanayagam | Undrained fragility of clean sands, silty sands and sandy silts[END_REF][START_REF] Chiu | A state-dependent elasto-plastic model for saturated and unsaturated soils[END_REF][START_REF] Ni | Contribution of fines to the compressive strength of mixed soils[END_REF][START_REF] Nocilla | The mechanics of an Italian silt: an example of transitional behavior[END_REF][START_REF] Ferreira | Problems in identifying the effects of structure and critical state in a soil with transitional behaviour[END_REF] , as shown in Fig. 1. The phase transformation (PT) state can be defined as the state when the soil behaviour changes from contraction to dilation (referred to as the phase transformation point by Georgiannou et al. [START_REF] Georgiannou | The undrained behaviour of clayey sands in triaxial compression and extension[END_REF] ). A phase transformation line (PTL) can be defined passing through PT states which is different from the failure line (FL) related to the critical state of materials.

Different from sands, materials with an amount of silts behave a dilative behaviour after a phase transformation to very large strains. Thus, the critical state in e-log p ′ plane is difficult to measure due to the incompleteness of test, as shown in the drained triaxial tests at low confining pressures by Ferreira & Bica [START_REF] Ferreira | Problems in identifying the effects of structure and critical state in a soil with transitional behaviour[END_REF] for natural samples (silt content 35%, sand 65%) and in the undrained triaxial tests by Nocilla et al. [START_REF] Nocilla | The mechanics of an Italian silt: an example of transitional behavior[END_REF] for an Italian silt (silt content 85%, clay content 3.5%), etc. This kind of soils is called 'transitional soils'. The role of silt content on the phase transformation line and failure line has been investigated by some researchers [START_REF] Nakase | Undrained shear strength anisotropy of normally consolidated cohesive soils[END_REF][START_REF] Yu | Testing and Modelling of Silty and Sulphide-Rich Soils[END_REF][START_REF] Thevanayagam | Undrained fragility of clean sands, silty sands and sandy silts[END_REF] . Figure 2(a) shows slight effects of silt content on the phase transformation line, while the important effect on the failure line (i.e. more silt, higher FL). For samples with silt contents of 60% and 100%, the slope of failure line decreases at very large strains. Similar results can be obtained for clay-silt mixture in Fig. 2(b) for the failure line. Whilst for the phase transformation line, the more clay content is, the higher PTL is. For the sample with clay content of 20%, the PTL lies in the FL. In other words, there is no phase transformation state and the FL corresponds to the critical state line when silt is mixed with certain amount of clay. Figure 2(c) shows the undrained behaviour of silt-clay-sand mixture which confirms the role of silt content on the failure line and the role of clay content on the phase transformation line.

As discussed above, we define the phase transformation behaviour of transitional soils as changes from contraction to dilation at PT state, the decrease of the slope of failure line during the dilation, and the increase of stresses during shearing without explicit critical states. This paper focuses on modelling this phase transformation behaviour of transitional soils by means of micromechanical approach. To enrich experimental observations on some silts or silty soils as shown in Fig. 2, drained and undrained triaxial tests on Pitea silt by Yu [START_REF] Yu | Testing and Modelling of Silty and Sulphide-Rich Soils[END_REF] were briefly presented to give evidence of the phase transformation behaviour of transitional soils. A microstructure based elastoplastic model was then developed based on the granular mechanics approach [START_REF] Chang | An elastic-plastic model for granular materials with microstructural consideration[END_REF][START_REF] Yin | Micromechanical analysis of kinematic hardening in natural clay[END_REF][START_REF] Yin | Microstructural modelling of stress-dependent behaviour of clay[END_REF][START_REF] Yin | Non-uniqueness of critical state line in compression and extension conditions[END_REF][START_REF] Yin | Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand[END_REF][START_REF] Yin | Multiscale modeling of a sensitive marine clay[END_REF][START_REF] Yin | Micromechanical analysis for the behaviour of stiff clay[END_REF][START_REF] Yin | Stress-dilatancy for sand under loading and unloading conditions[END_REF] , in which the mean soil particle is considered as a deformable grain. Different from models of sand and clay, several modifications are carried out to control the macro PT behaviour: (1) the PTL is explicitly employed instead of CSL; (2) the local internal-friction angle at the phase transformation state is fixed as observations which results in different stress-dilatancy relationship from sand and clay; (3) the local peak friction angle is varying with the density state based on the PTL. Furthermore, the local elastic law is more like the sand model (nonlinear in e-log p ′ plane) rather than the clay model (linear in e-log p ′ plane), and a second compression law is needed which is similar to the clay model rather than the sand model. The model's performance is then evaluated by comparing the predicted with the measured triaxial loading results for silt specimens under various confining stresses, and in both drained and undrained conditions. The local stress-strain behaviour for contact planes of various orientations and the distributions of local stresses and strains were also discussed. 

II. REVIEW OF EXPERIMENTAL RESULTS

Yu [START_REF] Yu | Testing and Modelling of Silty and Sulphide-Rich Soils[END_REF] carried out triaxial tests on Pitea silt in Sweden. Pitea silt has a water content w = 25-35%, liquid limit w L = 28% and a plasticity index I p = 6%. The grain size range and uniformity of the material are depicted in Fig. 3, which shows that the particle size distribution of the considered silt corresponds to average contents of clay as 6%, of silt as 80% and of sand as 14%.

The database includes both drained and undrained triaxial shear tests on isotropically consolidated specimens under three different confining stresses (see Fig. 4(a)). The phase transformation states for undrained tests were found directly from undrained stress paths. For drained tests the phase Fig. 3 Grain size distribution curves of Pitea silt. transformation states were found under the help of the curve η-dε v /dε d (ratio of deviatoric stress to mean effective stress versus ratio of incremental volumetric strain to incremental deviatoric strain) where positive and negative ratios correspond to contraction and dilation as shown in Fig. 4(b). The phase transformation line was thus found passing through phase transformation states. Figure 4(c) shows that the phase transformation line can be considered parallel to the isotropic consolidation line (ICL) for samples with the same initial void ratio, and lies under ICL in e-log p ′ curve. Note that for this soil, the critical state line in e-log p ′ plane cannot be found.

Based on all experimental observations (Fig. 2 and Fig. 4), Fig. 5 shows the schematic plot of phase transformation behaviour of transitional soils under undrained and drained conditions. For undrained condition, the sample behaves contraction until the phase transformation state (up to PTL in e-p ′ -q space), then changes to dilation up to failure line (in p ′ -q space). During the dilation, the slope of failure line decreases (slightly or significantly depending on material structures) up to a possible steady state or critical state at very large strains. For drained condition, similarly to undrained condition, the sample behaves contraction until the phase transformation state (up to PTL in e-p ′ -q space), then changes to dilation up to failure line (in p ′ -q space and e-ε a space). A steady state or critical state is questionable for very large strains since there is no evidence due to the incompleteness of tests. However, the phase transformation line is generally observed.

Note that for the selected experiments, it is questionable whether the slope of failure line decreases or not. However, it can be regarded as a special case of the general decreasing FL controlled by a material constant. Thus, the general trend of decreasing FL can be still valid for Pitea silt.

III. CONSTITUTIVE MODEL

Lacking SEM (scanning electron microscope) photos of Pitea silt, Fig. 6 shows the microstructure picture for Shanghai silt (silt content of 75% and sand content of 20%, unit weight of 18.5 kN/m 3 , water content of 30%, liquid limit of 32%, similar to Pitea silt), based on which the silt particles are more like sand grains. At the size of grains, long range forces such as electrostatic and van der Waals forces are negligible, and grains interact with each other mainly mechanically. Thus silty materials, considered as a collection of grains, can be analogized as granular material, and then the sand model can be extended for Pitea silt. The deformation of a representative volume of the material is generated by mobilizing and compressing all particles. Thus, the stress-strain relationship can be derived as an average of the deformation behaviour of local contact planes in all orientations. For contact planes in the α th orientation, the local forces f α j and the local movements δ α i can be denoted as follows:

f α j = {f α n , f α s , f α t } and δ α i = {δ α n , δ α s , δ α t }
, where the subscripts n, s and t represent the components in the three directions of the local coordinate system as shown in Fig. 7. The direction outward normal to the plane is denoted as n; the other two orthogonal directions, s and t, are tangential to the plane.

Density State

One of the important elements to consider in modelling the behaviour of transitional soils is the phase transformation concept instead of critical state concept for sand and clay. When the stress state passes through the phase transformation state, the soil behaves from contraction to dilation. At phase transformation state, the material remains at a constant volume. The void ratio corresponding to this state is e pt , which is a function of the effective mean stress p = (σ x + σ y + σ z ) /3 (all stress terms used in §III refer to effective stresses). The relationship has traditionally been written as follows:

e pt = e pt0 -λ ln p p pt0 (1) 
The two parameters (e pt0 , p pt0 ) represent a reference point on the phase transformation line. For convenience, the value of p pt0 is taken to be 0.01 MPa. The phase transformation line can be defined by two parameters e pt0 and λ. Using the phase transformation concept, the density state of an assembly is defined as the ratio e/e pt , where e is the void ratio of the assembly.

Inter-Particle Behaviour

In order to have a more apparent link between the micro and macro variables, we define a local stress τ α i and a local strain γ α i , which are directly related to the local forces f α j and the local movements δ α i Fig. 5. Schematic plot of phase transformation behaviour for undrained and drained triaxial conditions. at each contact, given by

τ α i = N l α 3V f α i , γ α i = δ α i l α (2)
where l α is the length of the branch vector, which joins the centroids of two contact particles. V is the volume of the representative element. Let us note that the local stress τ α i is not the stress on the physical contact area between two particles. It should be rather viewed as the average stress on the inter-particle plane when the particle and voids in the representative volume are homogenized into a continuum. For an isotropic medium, the local stress is identical to the tractions resolved on the plane due to global stress (i.e. τ α i = σ ji n α j ). A proof will be given later in Eq.( 18) In the local coordinate system, the local stress and local strain are respectively denoted as τ α n τ α s τ α t and γ α n γ α s γ α t . For convenience, we use the notation σ α = τ α n for local normal stress and the notation ε α = γ α n for local normal strain in the following sections.

Elastic part

The inter-particle behaviour can be characterized as the relationship between local stress and local strain, given by

τ α i = kα ij γ α j (3)
in which the stiffness tensor can be related to the contact normal stiffness, kα n , and shear stiffness, kα r ,

kα ij = kα n n α i n α j + kα r s α i s α j + t α i t α j (4) 
The inter-particle stiffness can be expressed as the form adopted for sand grains, given by

kα n = kα n0 σ α p ref n , kα r = k rR kα n = k rR kα n0 σ α p ref n (5)
where σ α is the local stress in the normal direction, p ref is the standard reference pressure taken as 0.01 MPa., and k rR is the ratio of shear to normal stiffness. kα n0 , k rR and n are material constants. The value of n is found to be 0.33 for two elastic spheres according to Hertz-Mindlin's formulation [START_REF] Mindlin | Microstructure in linear elasticity[END_REF] .

Plastic Part

Shear sliding Plastic sliding often occurs along the tangential direction of the contact plane with an upward or downward movement (i.e., dilation or contraction). The dilatancy equation used here is from the equation adopted for sand by Chang & Hicher [START_REF] Chang | An elastic-plastic model for granular materials with microstructural consideration[END_REF] with one additional parameter β controlling the magnitude of contraction or dilation, given by:

dε p dγ p = β τ σ -tan φ pt (6)
where φ pt is the inter-particle friction angle of phase transformation, which in value is very close to the internal friction angle measured at phase transformation state. The value β can be calibrated from experimental measurements of triaxial tests, which will be shown in the later section on numerical simulation.

Note that the shear stress τ and the rate of plastic shear strain dγ p in Eq.( 6) are defined as

τ = τ 2 s + τ 2 t and dγ p = (dγ p s ) 2 + (dγ p t ) 2 (7) 
The yield function is assumed to be of Mohr-Coulomb type, given by

F 1 (τ, σ, κ 1 ) = τ -σκ 1 (γ p ) = 0 (8) 
where κ 1 (γ p ) is an isotropic hardening/softening parameter. The hardening parameter is defined by a hyperbolic function in the κ 1 -γ p plane, which involves two material constants: φ p and kp .

κ 1 = kp tan φ p γ p σ tan φ p + kp γ p (9) 
When plastic deformation increases, κ 1 approaches asymptotically tan φ p . For a given value of σ, the initial slope of the hyperbolic curve is kp /σ. Under a loading condition, the shear plastic flow in the direction tangential to the contact plane is determined by a normality rule applied to the yield function. However, the plastic flow in the direction normal to the contact plane is governed by the stress-dilatancy equation in Eq. (6) . Therefore, the flow rule is non-associated.

The value of kp is found to be linearly proportional to kn so that

kα p = k pR kα n = k pR kα n0 σ α p ref n (10) 
The ratio k pR is a material parameter. The internal-friction angle at the phase transformation state φ pt is a constant for a given material. However, the peak friction angle, φ p , on a contact plane is dependent on the density state of neighbouring particles, which can be related to the void ratio e by tan φ p = e pt e m tan φ 0 (11) where m is a material constant [START_REF] Biarez | Elementary Mechanics of Soil Behaviour[END_REF] , and φ 0 is the inter-particle friction angle at failure, which in value is very close to the internal friction angle measured at failure state. Dense structures provide a higher degree of interlocking, which requires more effort to mobilise the particles in contact. When the dense structure starts to dilate, the degree of interlocking relaxes. As a consequence, the peak frictional angle is reduced, which results in a strain-softening phenomenon.

Normal compression

In order to describe the compressible behaviour between two particles, we hence add a second yield surface. The second yield function is assumed to be as follows:

F 2 (σ, κ 2 ) = σ -κ 2 (ε p ) for σ > p p (12) 
where the local normal stress σ and local normal strain ε p are defined in Eq.( 3). The hardening function κ 2 (ε p ) is defined as

κ 2 = σ p 10 ε p /cp or ε p = c p log κ 2 σ p ( 13 
)
where c p is the compression index for the compression curve plotted in the ε p -log σ plane. When the compression σ is less than σ p , the plastic strain produced by the second yield function is null. Thus, σ p in Eq.( 12) corresponds to the pre-consolidation stress in soil mechanics.

Elasto-plastic relationship

With the basic elements of inter-particle behaviour discussed above, the final incremental local stress-strain relation of the inter-particle contact can be derived, including both elastic and plastic behaviour, given by

τ α i = kαp ij γα j (14) 
Since detailed derivation of the elasto-plastic stiffness tensor is standard, it will not be given here.

Stress-Strain Relationship

Macro micro relationship

The stress-strain relationship for an assembly of clay particles can be determined from integrating the inter-particle behaviour at all contacts. During the integration process, a relationship is required to link the macro and micro variables. Using the static hypotheses, we obtain the relation between the strain of assembly and inter-particle strain

uj,i = N α=1 γα j n α k B α ik ( 15 
)
where γj is the local strain between two contact particles; n k is the unit vector of the branch joining the centres of two contact particles, and N is the total number of contacts, over which the summation is carried out. The tensor B α ik in Eq.( 15) is defined as

B α ik = A -1 ik (l α ) 2
where the fabric tensor

A ik = N α=1 l α i l α k ( 16 
)
Using the principle of energy balance, which states that the work done in a representative volume element is equal to the work done on all inter-particle planes within the element:

σ ij uj,i = 1 V N α=1 f α j δα j = 3 N N α=1 τ α j γα j (17) 
and using Eq.( 15), the local stress on the α th contact plane is derived as follows:

τ α j = N 3 σij B α ik n α k ( 18 
)
For the case of isotropic fabric, it can be derived that B ik = 3δ ik /N where δ ik is the kronic delta. Thus Eq.( 18) is reduced to the usual form τ α j = σij n α j . The stress increment σij can be obtained from the contact forces and branch vectors for all contacts [START_REF] Christofferson | A micromechanical description on granular material behaviour[END_REF][START_REF] Rothenburg | Micromechanical definitions of the Cauchy stress tensor for particular media[END_REF] . In terms of local stress, it is

σij = 1 V N α=1 f α j l α i = 3 N N α=1 τ α j n α i (19) 
Applying the defined local stress in Eq.( 18), Eq.( 19) is unconditionally satisfied. Using Eqs.( 14),( 15) and ( 18), the following relationship between stress and strain can be obtained: ui,j = C ijmp σmp (20) where

C ijmp = N 3 N α=1 kep jp -1 n α k n α n B α ik B α mn (21) 
The summation in Eq.( 21) can be expressed by a closed-form solution for some limited conditions such as the elastic modulus of randomly packed equal-size particles. However, in an elastic-plastic behaviour, due to the non-linear nature of the local constitutive equation, a numerical calculation with an iterative process is necessary to carry out the summation in Eq.( 21) (see Chang & Hicher [START_REF] Chang | An elastic-plastic model for granular materials with microstructural consideration[END_REF] ).

Summary of Parameters

The material parameters are summarised as follows: (1) Microstructural descriptions (2 parameters) -Contact number per unit volume, N/V and mean particle size, d (2) Inter-particle properties (9 parameters) -Inter-particle elastic constants: kn0 , k rR and n; -Inter-particle friction angle at phase transformation state: φ pt ; -Inter-particle friction angle at failure: φ 0 and m; -Inter-particle plastic compression index and plastic shear stiffness ratio: c p and k pR ; -Dilation constants: β (3) density state of the assembly (3 parameters) -Phase transformation state for the soil: λ and e pt0 -Reference void ratio, e 0 , on the isotropic compression line at p = 0.01 MPa. The size of mean particle d can be estimated from an electron microscopic scanning photograph (d 50 = 30 µm was assumed based on Fig. 3). The value of N/V is not easy to obtain directly from the clay experiments. According to the experimental data by Oda [START_REF] Oda | Co-ordination number and its relation to shear strength of granular material[END_REF] for three mixtures of spheres, the contact number per unit volume can be approximately related to the void ratio by

N V = 12 πd 3 (1 + e) e (22) 
Here we use this equation as a first-order approximation to estimate N/V for clay by treating d as the mean size of the particles. It is noted that the value of contact number per unit volume changes with void ratio. The evolution is accounted for during the deformation process.

IV. TEST SIMULATIONS

Calibration of Model Parameters

The model parameters for Pitea silt were calibrated using isotropically consolidated drained triaxial compression tests and an isotropic consolidation test:

-from the results of isotropic consolidation test with phase transformation states (Fig. 4(c)), the parameters λ, e 0 , e pt0 , c p , n, kn0 can be determined, where the value of c p was determined by keeping the isotropic consolidation line parallel to the critical state line, n = 0.5 was proposed by Biarez & Hicher [START_REF] Biarez | Elementary Mechanics of Soil Behaviour[END_REF] , and kn0 corresponds to the slope of unloading curve;

-from the drained stress paths (Fig. 4(a)), the parameters φ pt , φ 0 , m, β can be determined, where m and β were selected by the trial and error process with m determined first according to the decrease degree of FL and then going to β according to the stress-dilatancy;

-from the stress-strain curve of the drained triaxial tests, parameters k pR and k rR can be determined at the small strain level.

The values of model parameters are summarized in Table 1, and used for all simulations carried out in the subsequent sections. 

Model Performance for Macro Behaviour

Using the determined parameters (except for m and β), the model performance on the phase transformation behaviour was examined. Figure 8 shows that the model can predict the behaviour shown in Fig. 5 as expected for drained and undrained conditions. The dilatancy effect is mainly influenced by parameter β as expected while using Eq.( 6). The slope of the failure line can decrease by increasing the material constant m (m = 2 versus m = 0.1 in Fig. 8). Therefore, the general phase transformation behaviour can be captured by the model. Furthermore, Figs.9 and 10 present the comparisons between the experimental data and the model predictions for undrained and drained tests under different confining pressures on Pitea silt. For both drained and undrained conditions, the proposed model can well capture the phase transformation behaviour of Pitea silt, although there are some differences possibly due to natural sample variations. 

V. MICROMECHANICAL ANALYSIS

In this section, we investigate the predicted local stress-strain behaviour for contact planes. Since the applied loading is axi-symmetric about the x-axis, the orientation of a given contact plane can be represented by the inclined angle, θ, which is measured between the branch vector and the x-axis of the coordinate system as shown in Fig. 7. Seven contact planes selected for this investigation have inclined angles θ = 0 • , 18 • , 28 • , 45 • , 55 • , 72 • and 90 • (θ = 0 • corresponds to a horizontal contact plane), as shown respectively in the x-z plane in Fig. 11(a). The local behaviour of contact planes discussed here includes both undrained and drained conditions (Fig. 11(b)). Two tests under a confining pressure of 200 kPa are examined: (1) undrained compression; and (2) drained compression. In order to study the evolution of local stresses and strains, we have, in each test, selected 3 load steps (see Fig. 11(b)), which are marked by hollow circles with load step numbers. 

. Local stress-strain behaviour

We plot the simulated compression test results in Fig. 12. The local stress paths for the seven selected contact orientations are plotted in Fig. 12(a). Some of the planes (θ = 28 • , 45 • , 55 • , 72 • , 90 • ) behave dilation followed by contraction, while others (θ = 0 • , 18 • ) only behave contraction. The stress state closest to the internal friction line at failure is on the 55 • contact plane. Figure 12(b) shows local shear stress-strain curves, which clearly indicate that every contact plane is mobilized to a different degree. The planes with largest movements are near the orientation of 55 • (close to π/4 + φ 0 /2 = 62 • ). These active contact planes (θ = 28 • , 45 • , 55 • , 72 • ) contribute largely to the overall deformation of the specimen. Furthermore, these active contact planes exhibit phase transformation phenomenon, which agrees with the overall behaviour shown in Fig. 9.

Orientation distributions of local stresses and strains

Figure 13 shows the distributions of local stresses and strains on planes of different orientations (in rose diagram). They are plotted for the initial state marked as point 1 (same as the ending step of isotropic consolidation), for the phase transformation state at point 2 and for an axial strain of 14.5% at point 3 (see Fig. 11(b)). The evolution of the distributions of local stresses and strains is discussed:

(1) The distribution of normal stress σ at the initial state (corresponding to the end of isotropic consolidation) has a circular shape (see the bold line in Fig. 13(a)) which implies an isotopic distribution of normal stress for all plane contacts. From step 1 to 2, due to the contraction for contact orientations from 28 • to 90 • and dilation for contact orientations from 0 • to 18 • (as shown in Fig. 12(a)), the distribution shrinks in the horizontal direction and expands in the horizontal direction with the long axis in the vertical direction (i.e., reduction of normal stress at the contact planes of the horizontal orientation and increase for the vertical orientation). From step 2 to 3, due to the dilation for all contact orientations, the distribution expands keeping the long axis in the vertical direction (induced anisotropy).

(2) The distribution of shear stress τ expands from step 1 to 3 with a similar shape of distribution (Fig. 13(b)), which agrees with the local stress-strain curves in Fig. 12(b). The distribution agrees with the local shear stress in Fig. 12, where the stress τ is almost highest for the contact plane with θ = 45 • and τ = 0 for contact planes with θ = 0 • and 90 • .

(3) The distribution of stress ratio τ /σ expands from step 1 to 3 keeping the same shape of distribution (Fig. 13(c)), similarly to the distribution of shear stress.

(4) The distribution of normal strain ε at the initial state (the end of isotropic consolidation) is plotted as the bold line in Fig. 13(d). There are slight changes for the distribution from step 1 to 2. From step 2 to 3, normal strains increase significantly for contact planes with θ < 55 • , but decrease for contact planes with θ > 55 • due to the reduction of normal stress.

(5) The distribution of shear strain γ in Fig. 13(e) shows that very large strains have occurred at step 3 for the contact planes near the orientation of 55 • , which agrees with the local stress-strain curves in Fig. 12 We plot the predicted local stress-strain behaviour for drained compression tests shown in Fig. 10. The local stress paths in Fig. 14(a) show different slopes from one contact plane to another. Under an increase of the vertical stress, the planes oriented near the horizontal direction (i.e., small values of θ) are subjected mainly to a normal stress component ∆σ. The shear component becomes more significant when the planes are inclined. The local τ -γ (shear stress versus shear strain) and ε-γ (normal strain versus shear strain) curves (Fig. 14(b)) show that every plane is mobilized to a different degree. The contact plane with largest movement has an orientation of 55 • , similar to the behaviour observed in the undrained compression case. Other planes are inactive with small movement. It clearly indicates that the local strains do not uniformly conform to the overall strain of the specimen.

Orientation distributions of local stresses and strains

Figure 15 shows the distributions of local stresses and strains for contact planes of different orientations (in rose diagram). Similarly to undrained condition, they are plotted for the initial state, the phase transformation state and for an axial strain of 14.5% (see Fig. 11(b)). The evolution of the distributions of local stresses and strains is discussed: (1) The distribution of normal stress σ at the initial state is isotropic (see the bold line in Fig. 15(a)). From step 1 to 3, the distribution expands with the long axis in the vertical direction (i.e., more increase of normal stress at the contact planes of the horizontal orientation).

(2) The distributions of shear stress τ (Fig. 15(b)), of stress ratio τ /σ (Fig. 15(c)) and of shear strain γ (Fig. 15(e)) are similar to those for undrained condition.

(3) The distribution of normal strain ε at the initial state (the end of isotropic consolidation) is isotropic as plotted with the bold line in Fig. 15(d). From step 1 to 2, the distribution expands with the long axis in the vertical direction mainly influenced by the distribution of normal stress. From step 2 to 3, there are slight changes for contact planes, but significant decrease for contact planes with θ around 55 • , due to a significant dilation for these active planes.

VI. CONCLUSIONS

Experimental observations have indicated that silts and silty soils behave contraction followed by dilation during drained and undrained shearing and the slope of failure line decreases at very large strains, which is termed as the phase transformation behaviour. Based on this experimental evidence, a new micromechanical stress-strain model has been developed. In this model, the overall strain includes plastic sliding and plastic compression among silt grains. The phase transformation line has been implemented to describe changes from contraction to dilation. A state variable e pt /e has been employed to describe the decrease of the slope of failure line at very large strains.

The proposed model has been used to simulate undrained and drained triaxial compression tests performed on isotropically consolidated samples of Pitea transitional soils under different confining pressures. The predictive ability of this model has been evaluated by comparing the predicted value with measured experimental values, which demonstrates that the present micromechanical approach is capable of modelling the phase transformation behaviour of transitional soils.

The local stress-strain behaviour for contact planes of various orientations has shown the nonhomogeneous deformation in the representative element. It has been shown from the rose diagrams that the shape of contact stress distribution changes throughout the triaxial test, which clearly indicates the development of anisotropy induced by the externally applied load, since the properties on each contact plane are stress-dependent. The local stress-strain response on contact planes has shown that every contact plane is mobilized to a different degree. A few active contact planes contribute largely to the deformation of the assembly, while most contact planes are inactive and have small movement. Therefore, the local strains are highly non-uniform.

Laboratory tests on different transitional soils will be carried out for further validation of the proposed model.
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 2 Drained Condition 5.2.1. Local stress-strain behaviour

Fig. 14 .

 14 Fig. 14. Local stresses and strains on planes of various orientations for drained test on Pitea silt.

Fig. 15 .

 15 Fig. 15. Rose diagram for the distribution of local stresses and strains for drained test.

Table 1 .

 1 Values of model parameters for Pitea silt

		Global parameters				Inter-particle parameters
	e0	λ	ept0	n	m	β	cp	φpt( • ) φ0( • ) kn0(MPa) krR kpR
	0.79 0.029 0.78 0.5 0.1 0.7 0.012	31	34	1000	0.1 0.15
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