
HAL Id: hal-01007033
https://hal.science/hal-01007033

Submitted on 2 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Methodological approach to efficient modeling and
optimization of thermal processes taking place in a die:

application to pultrusion
Chady Ghnatios, Francisco Chinesta, Elías Cueto, Adrien Leygue, Piotr

Breitkopf, Pierre Villon

To cite this version:
Chady Ghnatios, Francisco Chinesta, Elías Cueto, Adrien Leygue, Piotr Breitkopf, et al.. Method-
ological approach to efficient modeling and optimization of thermal processes taking place in a die:
application to pultrusion. Composites Part A: Applied Science and Manufacturing, 2011, 42 (9),
pp.1169-1178. �10.1016/j.compositesa.2011.05.001�. �hal-01007033�

https://hal.science/hal-01007033
https://hal.archives-ouvertes.fr


Methodological approach to efficient modeling and optimization of thermal 

processes taking place in a die: Application to pultrusion
Ch. Ghnatios a, F. Chinesta a, E. Cueto b, A. Leygue a, A. Poitou a, P. Breitkopf c, P. Villon c
a GEM: UMR CNRS-Centrale de Nantes-Université de Nantes, 1 rue de la Noe, BP 92101, F-44321 Nantes Cedex 3, France
b Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, Marı́a de Luna, 3, E-50018 Zaragoza, Spain
c UTC-Roberval, UMR 6253, F-60200 Compiègne, France
s involv
oice of
aluated
be up

in for th
process
thodolo

place
ial flow
rns the
eling an
izing th
Optimization of manufacturing processe
strategies proceed by defining a trial ch
Then, an appropriate cost function is ev
reached, the process parameters should
and then the model must be solved aga
solution is needed for each choice of the
ing time. In this work we propose a me
optimization of thermal processes taking
and composites processing where mater
example of such kind of processes conce
described an original approach for mod
once the thermal model, and then, optim

tions of the thermal model. For this purpose we
dinates in the thermal model. The solution of t
temperature field for any choice of the temperat
is circumvented by invoking the Proper Genera
works but never until now used in the framew
Keywords:
Proper Generalized Decomposition
Model reduction
Optimization
Separated representations

es the optimal choice of many process parameters. Usual
those parameters and then solving the resulting model.

and its optimality checked. While the optimum is not
dated by using an appropriate optimization procedure,
e updated process parameters. Thus, a direct numerical
parameters, with the subsequent impact on the comput-
gical approach to the efficient numerical modeling and

in a die. This scenario is usually encountered in polymer
s inside a die equipped with different heating devices. An
pultrusion of composites. The main aim of this work is to
d then optimizing the thermal process by solving only
e process without the necessity of performing new solu-
introduce the temperatures of the heaters as extra-coor-
he resulting multi-dimensional heat equation gives the
ure prescribed in the heaters. The curse of dimensionality
lized Decomposition – PGD – introduced in our former

ork of process optimization.
1. Introduction

The main aim of this work is proposing an original methodolog-
ical approach to efficient numerical modeling and optimization.
More specifically we are focusing on thermal processes taking
place in a die, although the methodology proposed in this paper
could easily be extended to many other processes.

In general optimization implies the definition of a cost function
and the search of the optimum process parameters (e.g. tempera-
tures of the heaters, temperature of the material coming to the
die, flow rate, . . . in the case of materials flowing into a heated
die) defining the minimum of that cost function. The process starts
by choosing a tentative set of process parameters. Then the process
is simulated by discretizing the equations defining the model of
the process. The solution of the model is the most costly step of
1

the optimization procedure. As soon as that solution is available,
the cost function can be evaluated and its optimality checked. If
the chosen parameters do not define a minimum (at least local)
of the cost function, the process parameters should be updated
and the solution recomputed. The procedure continues until reach-
ing the minimum of the cost function. Obviously, nothing ensures
that such minimum is global, so more sophisticated procedures ex-
ist in order to explore the domain defined by the parameters and
escape from local minimums traps. The parameter updating is car-
ried out in a way ensuring the reduction of the cost function. Many
techniques update the model parameters in order to move along
the cost function gradient. However, for identifying the direction
of the gradient one should compute not only the fields involved
in the model but also the derivatives of such fields with respect
to the different process parameters. The evaluation of these deriv-
atives is not in general an easy task. Conceptually, one could imag-
ine that by perturbing slightly only one of the parameters involved
in the process optimization and then solving the resulting model,
one could estimate, using a finite difference formula, the derivative
of the cost function with respect to the perturbed parameter. By
perturbing sequentially all the parameters we could have access



1 For interpretation of color in all figures, the reader is referred to the web version
of this article.
to the derivatives of the cost function with respect to all the pro-
cess parameters (that is, the sensibilities) that define the cost func-
tion gradient, on which the new trial set of parameters should be
chosen. There are many strategies for updating the set of process
parameters and the interested reader can find most of them in
the books focusing on optimization procedures.

Our interest here is not the discussion on particular optimiza-
tion strategies, but pointing out that standard optimization strate-
gies need numerous direct solutions of the problem that represents
the process, one solution for each tentative choice of the process
parameters. The solution of such models is a tricky task that de-
mands important computational resources and usually implies ex-
tremely large computing times.

In this paper we propose a radically different approach, to the
authors’ knowledge never explored. The approach here proposed
considers the unknown process parameters as new coordinates
of the model. In fact, coordinates, or space dimensions, represent
the (non-necessarily physical) locations at which the solution is
to be represented. Thus, strictly speaking, one could compute the
solution of the problem for any value of the unknown parameters
(in a bounded interval). This converts those unknown parameters
in new dimensions of the space in which the model is defined. This
idea seems exciting but it involves a major difficulty.

This strategy faces a challenging problem if the number of
parameters of the model increases. It is well known that the num-
ber of degrees of freedom for a mesh-based discretization tech-
nique (say, finite element, finite difference, . . .) increases
exponentially with the number of dimensions. Thus, for a hypercu-
bic domain, the number of degrees of freedom scales with the
number of nodes along each spatial direction to the power of the
number of dimensions. For instance, in 2D and considering 100
nodes along each direction with a single degree of freedom per
node, the resulting number of degrees of freedom becomes 1002.
In 3D, the number of degrees of freedom rises to 1003 and so on.
This exponential increase of the number of degrees of freedom
can be literally out of reach for nowadays computers even if the
number of dimensions increases only moderately. This phenome-
non is known as curse of dimensionality.

Of course, to efficiently deal with this problem a strategy differ-
ent of mesh-based discretization methods should be employed.
Although efficient techniques exist for moderate number of spatial
dimensions, such as sparse grid methods [4], they fail when the
dimensionality increases. Here, we consider the use of Proper Gen-
eralized Decompositions (PGD) [1,2,7,8]. PGD techniques construct
an approximation of the solution by means of a sequence of prod-
ucts of separable functions. These functions are determined ‘‘on
the fly’’, as the method proceeds, with no initial assumption on
their form.

The PGD method, while it can be considered as a model reduc-
tion technique (and hence its name, a generalization of the Proper
Orthogonal Decomposition – POD –) can deal very efficiently with
highly multi-dimensional problems, since only a sequence of low-
dimensional problems is solved. Details of the technique are pro-
vided in Section 2 of this paper.

Once an efficient strategy of dealing with high-dimensional
solutions has been defined, the numerical solution of problems
with unknown data becomes straightforward. As mentioned be-
fore, the strategy here proposed consists of considering the un-
known parameters as new coordinates of the model. Thus, the
solution is computed only once and it allows to have access to
the unknown field, as well as to the explicit expression of its deriv-
atives, for any possible choice of the model parameters by a simple
particularization of the parametric solution, that is, by a simple
postprocessing.

As can be readily noticed, the potential of the technique for in-
verse identification, optimization, etc. seems to be huge. In this pa-
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per we propose a methodological approach in this direction. In
what follows we are considering a thermal model of a material
moving through a die equipped with some heating devices on
the die walls. We could consider as process parameters the tem-
peratures prescribed in the different heaters, the flow rate, the
temperature of the material coming into the die, etc. For the sake
of simplicity in what follows we are restricting the parametric
space to the heating devices temperatures. The choice of the cost
function depends on each particular process. There are many
choices and because in this work we are more interested in propos-
ing and illustrating a new methodological modeling and optimiza-
tion approach than in analyzing deeply a particular process, we
will restrict our analysis to a simplified model of pultrusion pro-
cesses. Pultrusion is a continuous process to produce constant
cross-sectional profile composites. During this process, fiber rein-
forcements are saturated with resin, which are then pulled through
a heated die. The resin gradually cures inside the die while gener-
ating heat. At the exit, pullers draw the composite out and a trav-
eling cut-off saw cuts it at the designed length. We consider the
process conditions described in [5] and sketched in Fig. 1.1

For decades, engineers have relied on experience to define opti-
mal parameters for pultrusion processes, pushed by the populari-
zation of this technique in industry [10,12]. Nowadays, this
process has been extended to thermoplastic resins as well as to
reactive systems, in which the monomers polymerize inside the
die, an efficient route for considering high viscosity thermoplastic
resins. In these scenarios new efficient optimization procedures are
urgently needed. Standard optimization approaches and others
based on the use of genetic algorithms have been recently pro-
posed and applied (see for example [5] and the references therein.
However the efficiency of those approaches seems to be limited to
a reduced number of process parameters because one must solve a
thermal model for each choice of the process parameters, and it is
well known that when the dimension of the parametric space in-
creases the exploration of the space defined by the process param-
eters becomes more and more arduous, needing for numerous,
sometimes excessive, solutions of the model governing the
process.

If we consider the thermal model related to the pultrusion pro-
cess sketched in Fig. 1, whose parametric space reduces to the tem-
peratures prescribed at the three heating devices, h1, h2 and h3, we
could summarize traditional optimization procedures as follows:

� Until reaching a minimum of the cost function Cðh1; h2; h3Þ proceed
by:
1. Computing the temperature field related to the trial choice of

the process parameters, i.e. u(x;h1,h2,h3).
2. Computing the cost function Cðh1; h2; h3Þ from the just calcu-

lated thermal field.
3. Checking the optimality. While the optimum is not reached,

update the process parameters by using an appropriate strat-
egy and comeback to step 1 for another solution of the ther-
mal model for the process parameters just updated.

In the approach that we propose in this work the procedure is
substantially different. It proceeds as follows:

� Compute the thermal field for any possible choice of the process
parameters: u(x, h1, h2, h3) (here the heaters temperatures play
the same role that the space coordinates), the problem becom-
ing multi-dimensional.



Fig. 1. Pultrusion process.
� Until reaching a minimum of the cost function Cðh1; h2; h3Þ proceed
by:
1. Particularizing the parametric solution to the considered val-

ues of the process parameters.
2. Computing the cost function Cðh1; h2; h3Þ from the just calcu-

lated thermal field.
3. Checking the optimality. While the optimum is not reached,

update the process parameters by using an appropriate strat-
egy and comeback to step 1 for another particularization of
the parametric solution.

Thus, in our proposal the thermal model is solved only once and
then it is particularized for any choice of the process parameters.
The price to pay is the necessity of solving a multi-dimensional
thermal model that now has as coordinates the physical space x
and all the process parameters, i.e. the three heaters temperatures
in the example addressed here.

Obviously, the solution of the resulting multi-dimensional mod-
el is a tricky task if one consider a standard mesh based discretiza-
tion strategy because the number of degrees of freedom increases
exponentially with the dimensionality of the model. To circumvent
this serious difficulty, also known as curse of dimensionality, we
consider a separated representation of the temperature field in
the PGD framework, in which the temperature reads:

uðx; h1; h2; h3Þ �
Xi¼N

i¼1

FiðxÞ �H1 iðh1Þ �H2 iðh2Þ �H3 iðh3Þ ð1Þ

To build up such separated representation we only need to compute
the functions defined in the space domain Fi(x) and the one-dimen-
sional functions Hji(hj), j = 1,2,3, defined in the intervals in which
the heaters temperatures can evolve.

In Section 2 we revisit the main ideas involved in the construc-
tion of such separated representation. In Section 3 we describe the
procedure to include the boundary conditions as extra-coordi-
nates. In Section 4 a simplified pultrusion model is addressed.
Then, in Section 5 we consider one possible optimization strategy
based on the combination of the already computed parametric
solution with a minimization strategy based on the use of moving
least squares on the response surface. Due to the methodological
purposes of this paper a simple cost function will be considered,
enforcing a constant temperature of the flowing material on die
outlet. Despite the simple scenario here addressed the reader can
appreciate the huge potentialities that such approach represents.
2. Illustrating the solution of multi-dimensional parametric
models by using the PGD

Imagine for example that you are interested in solving the
heat equation but that you do not know the material thermal
conductivity, because it has a stochastic nature or simply be-
3

cause prior to solve the thermal model you should measure it.
You have three possibilities: (i) you wait to know the conductiv-
ity before solving the heat equation (a conservative solution!);
(ii) you solve the equation for many values of the conductivity
(a sort of Monte Carlo) and then the work is done (a sort of
brute force approach!); or (iii) you solve the heat equation only
once for any value of the conductivity (the cleverest alterna-
tive!). Obviously the third alternative is the most exciting one.
To compute this ‘‘magic’’ solution it suffices to introduce the
conductivity as an extra coordinate, playing the same role than
the standard space and time coordinates, even if the model does
not involve derivatives with respect to this extra-coordinate. This
procedure runs very well, and can be extended for introducing
many other extra-coordinates: the source term, initial condition,
etc. It is easy to understand that after performing this type of
calculations, a posteriori inverse identification or optimization
can be easily handled, but we will come back to these potential
applications later.

In what follows, we illustrate the construction of the Proper
Generalized Decomposition [11,1,2,7,14] of the solution by consid-
ering the following simple parametric heat transfer equation:

@u
@t
� kDu� f ¼ 0 ð2Þ

where ðx; t; kÞ 2 X� I � I. X � Rd is the physical space in which the
model is defined, I is the time interval in which the solution is found
and finally I represents the interval in which the conductivity could
take its value.

For the sake of simplicity the source term is assumed to be con-
stant, i.e. f = cte. Because the conductivity is considered unknown,
it is assumed to be a new coordinate defined in the interval I. Thus,
instead of solving the thermal model for different values of the
conductivity parameter we are introducing it as a new coordinate.
Therefore, we solve a more general problem, but obviously the
price to pay is the increase of the model dimensionality. However,
as the complexity of PGD scales only linearly (and not exponen-
tially) with the space dimension, the consideration of the conduc-
tivity as a new coordinate still allows one to obtain a fast and cheap
solution. Thus, in this case, the solution of Eq. (2) is searched under
the form:

uðx; t; kÞ �
Xi¼N

i¼1

XiðxÞ � TiðtÞ � KiðkÞ ð3Þ

To start the PGD algorithm, we assume that the approximation at
iteration n is already known:

unðx; t; kÞ ¼
Xi¼n

i¼1

XiðxÞ � TiðtÞ � KiðkÞ ð4Þ

and that at the present iteration we look for the next functional
product Xn+1(x)�Tn+1(t)�Kn+1(k) that for alleviating the notation will



be denoted by R(x)�S(t)� W(k). Before solving the resulting non-lin-
ear model related to the calculation of these three functions, a mod-
el linearization is performed. The simplest choice consists in using
an alternating-directions fixed-point algorithm. First of all, we pro-
ceed by assuming S(t) and W(k) given at the previous iteration of
the non-linear solver and then computing R(x). From the just up-
dated R(x) and the previously used W(k) we can update S(t). Finally
from the just computed R(x) and S(t) we update W(k). The proce-
dure continues until reaching convergence. The converged func-
tions R(x), S(t) and W(k) allow us to define all the needed
functions: Xn+1(x) = R(x), Tn+1(t) = S(t) and Kn+1(k) = W(k). The expli-
cit form of each one of the just referred steps is widely described in
the Appendix A.

Remark 1. The construction of each term in Eq. (3) needs a certain
number of iterations because of the non-linearity of the problem
related to the approximation given by Eq. (4). Denoting by mi the
number of iterations needed for computing the ith sum in Eq. (3),
let m ¼

Pi¼N
i¼1 mi be the total number of iterations involved in the

construction of the separated approximation, Eq. (3). It is easy to
note that the solution procedure involves the solution of m dD
(d = 1,2,3) problems related to the construction of the space
functions Xi(x), i = 1,. . ., N; m 1D ordinary differential equations
related to the construction of functions Ti(t) and, finally, m linear
systems related to the definition of functions Ki(k). In general mi

rarely exceeds ten. On the other hand the number N of sums
needed to approximate the solution of a given problem depends on
the solution regularity itself, but all the experiments carried out so
far reveal that this number ranges from few 10s to slightly more
than one hundred. Thus, we can conclude that the complexity of
the solution procedure is of some tens of solutions defined in the
dD space (the cost related to the one dimensional time problems
being negligible with respect to the one related to the space
problems [6]). On the contrary, if we follow a classical approach,
we should solve a dD problem at each time step and for each value
of the parameter k. In usual applications the complexity can easily
reach millions of space solutions. In [8] the authors proved that the
CPU time savings by applying the PGD can be of several orders of
magnitude.
Remark 2. Note also that another possibility exists consisting in
the separation of the three-dimensional physical space into a
sequence of one-dimensional ones:

uðx; y; z; t; kÞ �
Xi¼N

i¼1

XiðxÞ � YiðyÞ � ZiðzÞ � TiðtÞ � KiðkÞ ð5Þ

This possibility further reduces the complexity mentioned before,
allowing to solve models with some 109 degrees of freedom in
few minutes in a laptop. Techniques to cope in this framework with
non-paralelepipedic domains in three or more dimensions have
been analyzed in [9], in which a domain penalization strategy was
proposed.
3. Parametric boundary conditions

Very often, in the optimization of an industrial process, it is nec-
essary to solve the problem for different boundary conditions.
Boundary conditions do not behave as any other parameter in
the PGD, and therefore deserve some additional comments. In gen-
eral, it is needed to perform a change of variable to introduce the
boundary condition into the differential equation and then define
it as an extra coordinate. To illustrate this procedure we consider,
for the sake of simplicity and without any loss of generality, the
following simple problem:
4

�Du ¼ f in X ð6Þ

subjected to the boundary conditions:

u ¼ g – 0 on C � @X ð7Þ

Let us assume that we are able to find a function w, continuous in
the closure of X, X, such that �D w 2 L2(X) verifying Eq. (7). Then,
the solution of the problem given by Eqs. (6), (7) can be obtained
straightforwardly by

u ¼ wþ z; ð8Þ

where we thus face a problem in the z variable

� Dz ¼ f þ Dw in X ð9Þ
z ¼ 0 on C ð10Þ

easily solvable by the PGD method presented before. This procedure
was deeply analyzed in [9].

The introduction of the value of the boundary condition (g in Eq.
(7)) as an extra-coordinate generates an extra dimension in the
problem, which means dramatically increasing the computation
cost of the problem solution in classical mesh-based numerical
methods for discretizing partial differential equations.

3.1. Illustrating the main ideas from a numerical example

To fix the ideas, let us start by considering the one dimensional
differential equation that follows:

� @
2u
@x2 ¼ 1 ð11Þ

to be solved in the domain x 2X = (0,L = 10) and for the following
boundary conditions:

uð0Þ ¼ 0
uðLÞ ¼ y

�
ð12Þ

where y is a parameter taking values within the interval a. To pre-
scribe non-homogeneous boundary conditions in the framework of
the PGD, it is a common practice, as just argued, to perform a
change of variable to transform the non-homogeneous boundary
conditions into homogeneous ones [9]. To this end, often simple
procedures suffice. For instance, the following function g(x,y) satis-
fies all the prescribed boundary conditions (12):

gðx; yÞ ¼ x � y
L

ð13Þ

Since, as we have seen in Section 2, the problem solution u(x,y) can
be written in the separated form:

uðx; yÞ �
Xi¼N

i¼1

XiðxÞ � YiðyÞ ð14Þ

we can introduce the function verifying the essential boundary con-
ditions, g(x,y), as the first mode of the solution X1(x)� Y1(y). In other
words,

X1ðxÞ � Y1ðyÞ ¼
x � y

L
ð15Þ

and

uðx; yÞ � X1ðxÞ � Y1ðyÞ þ
Xi¼N

i¼2

XiðxÞ � YiðyÞ ð16Þ

Now we proceed as shown in Section 2. The trial function after n
iterations reads:

uðx; yÞ ¼ X1ðxÞ � Y1ðyÞ þ
Xi¼n

i¼2

XiðxÞ � YiðyÞ þ RðxÞ � SðyÞ ð17Þ



By replacing Eq. (17) into the weak form of Eq. (11), and repeating
the same procedure used in Section 2 and the Appendix A we have:

� Computing R(x) from S(y). In this case the test function is writ-
ten as:
Fig. 2.
possible
u	ðx; yÞ ¼ R	ðxÞ � SðyÞ ð18Þ
and the resulting weak form reads:
Fig. 3. Domain geometry and boundary conditions.
Z
X

Z
a

R	 � S � Y1 �
d2X1

dx2 þ R	 � S �
Xi¼n

i¼2

d2Xi

dx2 � Yi

!

þR	 � S � d
2R

dx2 � Sþ R	 � S
!

dy � dx ¼ 0 ð19Þ
As functions involving the parametric coordinate y are assumed
known in the present step, integrals in the parametric domain a
can be calculated, leading to a problem defined in the space domain
X whose solution is precisely the searched unknown function R(x).
� Computing S(y) from R(x). In this case the test function is:
u	ðx; yÞ ¼ RðxÞ � S	ðyÞ ð20Þ
and the weak function now reads:
Z
X

Z
a

S	 � R � Y1 �
d2X1

dx2 þ S	 � R �
Xi¼n

i¼2

d2Xi

dx2 � Yi

!

þS	 � R � d
2R

dx2 � Sþ S	 � R
!

dy � dx ¼ 0 ð21Þ
As functions involving the space coordinate x are assumed known in
the present step, integrals in the domain X can be calculated, lead-
ing to a problem defined in the parametric domain a whose solution
is precisely the searched unknown function S(y).

Functions R and S vanish in the boundary of the domain. That is
mandatory, because the boundary conditions are already satisfied
by the first mode. The new modes improve the solution inside
the domain. The reconstructed solution is depicted in Fig. 2 for
any value of y 2 [0,5].
Solution of the parametric Eq. (11). The solution u(x) is depicted for any
boundary condition y 2 [0,5].

5

3.2. Boundary conditions as parameters

Once the main ingredient of the method has been introduced,
we are generalizing the procedure for treating more complex mod-
els. For the sake of simplicity, we describe the solution of a two
dimensional model defined in X = (0,L1 = 3) � (0,L2 = 1). Let us
consider the basic steady-state heat transfer equation:

�K � @2u
@x2 þ

@2u
@y2

!
¼ q ð22Þ

On the domain boundary C � oX either the temperature or the heat
flux are enforced, the first one on the part of the boundary CD and
the second one on the remaining part CN = C � CD. Fig. 3 shows a
sketch of the domain geometry and the boundary conditions.

We assume the prescribed temperatures given by:

uð0; yÞ ¼ U0

uð� 6 x 6 L1 � �; y ¼ 0Þ ¼ h

uð� 6 x 6 L1 � �; y ¼ L2Þ ¼ h

8><
>: ð23Þ

where � = 0.2 m, U0 = 300 K is a constant value and h any value de-
fined in a certain interval a.

A null heat flux is enforced in the remaining part of the domain
boundary, i.e. ru � njCN

¼ 0, where n represents the outward unit
vector defined on the domain boundary.

Traditionally, this type of problems is solved by considering dif-
ferent values of that parameter and solving the resulting model for
each one of these values, with the consequent impact on the com-
puting time. Here we propose to introduce this parameter h as a
new extra-coordinate, and then solving only once the resulting
multi-dimensional model. The solution u(x,y,h) allows one to have
access to the value of the field u at each space position (x,y) and for
each value of the parameter h in the interval a in which it is defined
(h 2 (300,500) in this example).

Prior to solve the problem it is necessary to find a function sat-
isfying the essential boundary conditions, in order to perform the
change of variable illustrated in the previous section. For arbi-
trarily-shaped domains a somewhat more sophisticated technique
was introduced by the authors in [9] and will not be reproduced
here. The interested reader can refer to this reference.

Therefore, the solution is assumed to be of the form:

uðx; y; hÞ �
Xi¼N

i¼1

Fiðx; yÞ �HiðhÞ ð24Þ

In the present case, it is difficult to find a single function satisfying
all boundary conditions, unlike the previous example. Two initial
modes have been considered in the separated representation of
the solution. The first mode fixes the value of the solution at x = 0
by prescribing the nodal values at that location, and vanishing else-
where. The second one fixes the boundary conditions at y = 0 and
y = L2, also vanishing at the remaining nodes of the domain. This
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Fig. 4. Temperature field for h = 400 K.
ad hoc procedure is not always easy to implement. For more sophis-
ticated cases, a special type of transfinite interpolation was intro-
duced in [9].

After applying the change of variable related to the imposition
of essential boundary conditions, we solve Eq. (22) with homoge-
neous Dirichlet boundary conditions. The solution is represented
in Fig. 4 for h = 400 K.

Comparing this solution to the standard finite element one,
which is computed for the precise boundary conditions mentioned
before to avoid the increase of the dimensionality, a very small dif-
ference is found, lower than 10�12 using the L2-norm. For more de-
tails on the accuracy of the technique in general settings, we
address the reader to [7].

4. Parametric thermal model of a heated die in pultrusion
processes

In modeling the pultrusion process, as sketched in Fig. 1, we
consider the thermal process within the die as modeled by the fol-
lowing two-dimensional convection–diffusion equation:

q � C @u
@t
þ v @u

@x

� �
¼ kDuþ q ð25Þ

where k is the thermal conductivity, q is the internal heat generated
by the resin curing reaction, q is the density, C is the specific heat
and v is the extruded profile speed. The material flowing inside
the die is in contact with the die wall. Thus, conduction is the only
heat transfer mechanism taking place.

The die is equipped with three heaters as depicted in Fig. 5
whose temperatures constitute the process parameters to be opti-
mized. For the sake of simplicity we consider constant profile
velocity v and inlet temperature U0, all of them assumed known.
The curing kinetics was coupled with the thermal field as described
in [15].

Thus, the temperature field u depends on five different coordi-
nates, the two space coordinates (x,y) and the three temperatures
prescribed in three regions on the die wall. In fact u = u(x,y,
h1,h2,h3), where h1, h2 and h3 are the temperature of the heaters I,
II and III, depicted in Fig. 5 respectively. The separated representa-
tion of u reads:

uðx; y; h1; h2; h3Þ �
Xi¼N

i¼1

Fiðx; yÞ �H1 iðh1Þ �H2 iðh2Þ �H3 iðh3Þ ð26Þ

Temperatures are assumed prescribed as Dirichlet boundary condi-
tions on CD whereas a null flux is prescribed on the complementary
part CN = C � CD, i.e. ru � njCN

¼ 0.
6

The prescribed temperatures write:

uðx ¼ 0; y; h1; h2; h3Þ ¼ U0

uðx 2 L1; y ¼ 0 or y ¼ h; h1; h2; h3Þ ¼ h1

uðx 2 L2; y ¼ 0 or y ¼ h; h1; h2; h3Þ ¼ h2

uðx 2 L3; y ¼ 0 or y ¼ h; h1; h2; h3Þ ¼ h3

8>>><
>>>:

ð27Þ

where L1, L2 and L3 are the intervals of the x-coordinate related to
heaters I, II and III respectively. L = 0.5 m is the length of the die
and h = 0.04 m its width. The parameters h1, h2 and h3 take values
in the intervals I1, I2 and I3 respectively.

To solve this problem, we need to define some functional prod-
ucts in order to introduce the boundary conditions (27) into the
partial differential equation (four modes suffices for this end)
and then proceed by applying the Proper Generalized Decomposi-
tion as described in Section 2 and the Appendix A.

5. Optimization strategy

In this section we consider the parametric solution already
computed:

uðx; y; h1; h2; h3Þ �
Xi¼N

i¼1

Fiðx; yÞ �H1 iðh1Þ �H2 iðh2Þ �H3 iðh3Þ ð28Þ

The objective of the optimization procedure consists of the
determination of the process parameters h1, h2 and h3 in order to
minimize an appropriate cost function depending on the consid-
ered physics. In this work we are only interested in describing
the main ingredients involved in the proposed optimization strat-
egy, and for this reason, in what follows, we consider a cost func-
tion without any particular physical significance.

The cost function is defined from the difference between the
temperature on the outflow boundary x = L, u(x = L,y; h1,h2,h3),
and the desired one uðyÞ. Thus, the cost function writes:

Cðh1; h2; h3Þ ¼
1
2

Z h

0
uðx ¼ L; y; h1; h2; h3Þ � uðyÞð Þ2dy ð29Þ

We look for a uniform profile of temperatures on the outlet. This
kind of condition is quite difficult to fulfill due to the heat conduc-
tion mechanism as well as the internal heat generation. We con-
sider this cost function only to prove the robustness of the
proposed optimization approach.

The parametric domain is defined by I ¼ I1 �I2 �I3 in
which the optimal solution is sought. The optimal solution consti-
tutes a minimum of the cost function (29). We denote points in the
parametric domain by h with components (h1,h2,h3).

The algorithm starts by considering an arbitrary point within I.
Then, the gradient and Hessian defined by the cost function are
computed in order to apply a Newton strategy. For computing
both, we need to define an appropriate approximation of the cost
function in the vicinity of the evaluation point. By defining a qua-
dratic approximation we could compute the gradient and the Hes-
sian, and because the approximation is quadratic the Newton
algorithm is an appropriate choice for performing the
minimization.

Let h0 2 I be the starting point. We consider a small paralepipe-
dic volume P0 in the parametric space centered at that point in
which the cost function will be approximated using a polynomial
approximation of a certain order, and whose edges lengths l1, l2
and l3, in the directions of the axes h1, h2 and h3 respectively, de-
pend on the desired order of the approximation as well as on the
mesh used for discretizing the intervals I1, I2 and I3 in which
h1, h2 and h3, respectively, are defined. Then, a number of points
h0

i , i = 1,. . .,nLH, are considered within P0 according to the LATIN
hypercube technique.



The cost function C0
i , i = 1,. . .,nLH is computed at those points h0

i ,
i = 1,. . .,nLH. Now, a quadratic approximation of Cðh1; h2; h3Þ could
be defined in P0;Chðh 2 P0Þ, and then both the gradient and the
Hessian computed.

Obtaining a smooth enough, quadratic approximation of a field
given by scattered data is not always easy. For this purpose we
make use of a centered moving least square (MLS) strategy that
we revisit in the next section.

5.1. The Moving Least Squares approximation revisited

In this section we revisit the Moving Least Squares – MLS –
approximation introduced by Nayroles et al. [13] that will be then
used for defining the optimization strategy.

We look for a local approximation of a generic function u(x) at
point x, uh(x), based on the nodal values ui of the function u(x) at a
limited number n of points xi close to x. Thus, the unknown field is
approximated in the vicinity of x by:

uhðxÞ ¼ pðxÞ � aðxÞ ð30Þ

with p(x) a polynomial basis, i.e. pT(x) = [1,x1,x2,x1�x2] and
pTðxÞ ¼ ½1; x1; x2; x1 � x2; x2

1; x2
2
 for a bilinear and quadratic basis,

respectively, in 2D, and a(x) a vector of unknown coefficients. In or-
der to determine a(x), we define the functional J(a) that must be
minimized with respect to a(x):

JðaÞ ¼ 1
2

Xn

i¼1

wiðxÞðpðxiÞ � aðxÞ � uiÞ2 ð31Þ

where ui are the nodal unknowns associated with the neighboring
nodes xi of point x and wi(x) is a weighting function whose value
decreases as the distance between xi and x increases. The weight
function wi(x) vanishes at a finite distance from xi, called radius
of influence. In general it is positive, takes its maximum value (usu-
ally unit) at position xi and decreases continuously over the domain
of influence. There are many choices according to the problem to be
solved. The reader can refer to [3] for more details on the properties
of this function and the most used ones. The minimization of J(a)
with respect to the unknown coefficient aj(x) leads to:

@JðaÞ
@ajðxÞ

¼
Xn

k¼1

ak

Xn

i¼1

wiðxÞpjðxiÞpkðxiÞ
" #

�
Xn

i¼1

wiðxÞpjðxiÞui ¼ 0 ð32Þ

which leads to the linear system:

AðxÞaðxÞ ¼ BðxÞu ð33Þ

where matrices A(x) and B(x) are defined by:
Fig. 5. Domain geometry an
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AjkðxÞ ¼
Xn

i¼1

wiðxÞ � pjðxiÞ � pkðxiÞ ð34Þ

BijðxÞ ¼ wiðxÞ � pjðxiÞ ð35Þ

Substituting a(x) in Eq. (30), results in:

uhðxÞ ¼ pTðxÞA�1ðxÞBðxÞu ð36Þ

The difference between the diffuse finite element and the ele-
ment free Galerkin schemes comes from the evaluation of the
shape function derivatives. In the first scheme only the term p(x)
in Eq. (30) is derived

duhðxÞ
dxi

¼ @pðxÞ
@xi

� aðxÞ; i ¼ 1;2 ð37Þ

whereas all terms depending on x are derived in the element free
Galerkin approach, according to:

@uhðxÞ
@xi

¼ @pðxÞ
@xi

� aðxÞ þ pðxÞ � @aðxÞ
@xi

; i ¼ 1;2: ð38Þ
5.2. Centered moving least squares

We define the polynomial basis q centered at the evaluation
point x. For a node xi we have

qTðxi � xÞ ¼ 1; xi
1 � x1

� �
; xi

2 � x2
� �

; xi
1 � x1

� �
� xi

2 � x2
� �

; � � �
� �

ð39Þ

For the sake of clarity, and without loss of generality, from now on
we consider the bilinear basis qT ¼ 1; xi

1 � x1
� �

; xi
2 � x2

� �
;

�
xi

1 � x1
� �

� xi
2 � x2

� �

.

It is easy to verify the relationship

Q ðxÞ � pðxiÞ ¼ qðxi � xÞ ð40Þ

with the matrix Q(x) given by:

Q ðxÞ ¼

1 0 0 0
�x1 1 0 0
�x2 0 1 0

x1 � x2 �x2 �x1 1

0
BBB@

1
CCCA ð41Þ

Because matrix Q(x) is nonsingular (it corresponds to a change of
basis in a polynomial vector space), we can write:

pðxiÞ ¼ Q�1ðxÞqðxi � xÞ ð42Þ

from which the approximation u(xi) reads:

uðxiÞ ¼ pðxiÞ � aðxÞ ¼ qTðxi � xÞQ�TðxÞaðxÞ ¼ qTðxi � xÞaðxÞ ð43Þ

where
d boundary conditions.



ð44ÞaðxÞ ¼ Q �T ðxÞaðxÞ  

with

Q�TðxÞ ¼

1 x1 x2 x1 � x2

0 1 0 x2

0 0 1 x1

0 0 0 1

0
BBB@

1
CCCA ð45Þ

Now, defining the functional

JðaÞ ¼ 1
2

Xn

i¼1

wiðxÞ qðxi � xÞ � aðxÞ � uið Þ2 ð46Þ

and proceeding as described in the previous section, we can com-
pute a(x) from

aðxÞ ¼ A�1ðxÞBðxÞu ð47Þ

where

AjkðxÞ ¼
Xn

i¼1

wiðxÞ � qjðxi � xÞ � qkðxi � xÞ ð48Þ

BijðxÞ ¼ wiðxÞ � qjðxi � xÞ ð49Þ

Now, by computing the matrix–vector product (44) we obtain:

a1 ¼ a1 þ a2 � x1 þ a3 � x2 þ a4 � x1 � x2

a2 ¼ a2 þ a4 � x2

a3 ¼ a3 þ a4 � x1

a4 ¼ a4

8>>><
>>>:

ð50Þ

that corresponds to

a1 ¼ pðxÞ � aðxÞ � uhðxÞ
a2 ¼ @pðxÞ

@x1
� aðxÞ � duhðxÞ

dx1

a3 ¼ @pðxÞ
@x2
� aðxÞ � duhðxÞ

dx2

a4 ¼ @2pðxÞ
@x1@x2

� aðxÞ � d2uhðxÞ
dx1dx2

8>>>>>><
>>>>>>:

ð51Þ
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Thus, by employing a centered basis, we have a direct access to
the different diffuse derivatives that could be used within an opti-
mization algorithm for computing the gradient vector and the Hes-
sian matrix.
5.3. Numerical example

In order to illustrate the above presented procedure, we con-
sider the geometry shown in Fig. 5 and the following material
and process parameters: v = 0.26, q = 1560, C = 1700 and k = 3.7�
10�7, all these values expressed in the metric system.

First, proceeding as indicated in the previous sections, we com-
pute the solution for all possible boundary conditions:

uðx; y; h1; h2; h3Þ �
Xi¼N

i¼1

Fiðx; yÞ �H1 iðh1Þ �H2 iðh2Þ �H3 iðh3Þ ð52Þ

This parametric solution can then be particularized for any choice of
the temperatures of the heaters. One of the possible solutions re-
lated to a particular choice of the heaters temperatures is depicted
in Fig. 6.

If we compare the solution represented in Fig. 6 to the one ob-
tained by the finite element method for the same values of the
heaters temperatures, the difference (still using the L2-norm) is
found to be lower than 10�5 for N as little as 30 modes.

Now, we are considering the optimization process with respect
the cost function given by Eq. (29), where the target temperature at
the outflow is fixed to �u ¼ 150�C.

The temperature distribution in the whole die for these opti-
mized values is shown in Fig. 7, for the optimal temperatures of
the three heaters:

hopt
1 ¼ 211:9 �C

hopt
2 ¼ 89:3 �C

hopt
3 ¼ 150:2 �C

ð53Þ

The value of the associated cost function when the three opti-
mal temperatures were considered was of 3.1 � 10�7.
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Remark 3. Note that the values taken in this academic example do
not correspond to any physically meaningful ones. The obtained
temperatures could have an impact on the resin viscosity and
therefore in its thermal conductivity. We are here mostly inter-
ested in introducing the optimization strategy.

The technique here proposed could allow impressive computing
efficiencies, however it is too early for quantifying the reachable
computing time savings. The present technique only needs one
solution of a multi-dimensional model, that thanks to the PGD fea-
tures can be performed easily and very fast. As soon as this para-
metric solution is known we can imagine a panoply of
optimization problems, involving different cost functions and
numerical strategies, performed on-line without the necessity of
solving the model again. The optimization described above was
carried out by using Matlab and a standard laptop in 0.0015 s.

6. Conclusion

In this paper we have presented the abilities of the Proper Gen-
eralized Decomposition for solving a multi-dimensional problem
in which parameters involved in optimization procedures are
introduced as extra-coordinates in the model. Using the PGD the
solution complexity scales linearly with the dimension of the
space. The method seems to be able to deal with optimization
problems whose deterministic solutions were a dream until now.

Advanced modeling of thermal processes taking place in a
heated die, as encountered in pultrusion processes, is achieved
by introducing the heating devices temperatures as extra-coordi-
nates. This fact allows by solving once the resulting multi-dimen-
sional model, to have access to the solution for any choice of the
process parameters. For circumventing the resulting curse of
dimensionality a PGD based discretization was applied, whose
computational complexity scales linearly with the dimension of
the space, instead of the exponential growing characteristic of
mesh-based discretization strategies.

The potentialities of such procedure seem extraordinary, but at
present it is too early to conclude on its advantages and its limita-
tions. The coupling of parametric off-line solutions with most opti-
mization strategies could be suitable because we only need to
particularize the pre-computed parametric solution for any choice
9

of the process parameters. Thus, optimization can be performed
on-line and by using very light computing platforms, as for exam-
ple smartphones.
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Appendix A. Alternating directions separated representation
constructor

A.1. Computing R(x) from S(t) and W(k)

We consider the global weak form of Eq. (2):Z
X�I�I

u	
@u
@t
� kDu� f

� �
dxdt dk ¼ 0 ð54Þ

where the trial and test functions write respectively:

uðx; t; kÞ ¼
Xi¼n

i¼1

XiðxÞ � TiðtÞ � KiðkÞ þ RðxÞ � SðtÞ �WðkÞ ð55Þ

and, assuming S and W known from the previous iteration,

u	ðx; t; kÞ ¼ R	ðxÞ � SðtÞ �WðkÞ ð56Þ

Introducing (55) and (56) into (54) it results:Z
X�I�I

R	 � S �W � R � @S
@t
�W � k � DR � S �W

� �
dxdt dk

¼ �
Z

X�I�I

R	 � S �W �Rndxdt dk ð57Þ

where Rn defines the residual at iteration n that reads:

Rn ¼
Xi¼n

i¼1

Xi �
@Ti

@t
� Ki �

Xi¼n

i¼1

k � DXi � Ti � Ki � f ð58Þ

Once all functions involving time and conductivity have been deter-
mined, we can integrate Eq. (57) along its respective domains I � I,
and by taking into account the following notations:



w1 ¼
R

I
W2 dk s1 ¼

R
I S2 dt r1 ¼

R
X R2 dx

w2 ¼
R

I
kW2 dk s2 ¼

R
I S � dS

dt dt r2 ¼
R

X R � DRdx
w3 ¼

R
I

W dk s3 ¼
R

I Sdt r3 ¼
R

X Rdx

wi
4 ¼

R
I

W � Ki dk si
4 ¼

R
I S � dTi

dt dt ri
4 ¼

R
X R � DXi dx

wi
5 ¼

R
I

kW � Ki dk si
5 ¼

R
I S � Ti dt ri

5 ¼
R

X R � Xi dx

2
66666664

3
77777775
; ð59Þ

Eq. (57) is reduced to:Z
X

R	 � w1 � s2 � R�w2 � s1 � DRð Þdx

¼ �
Z

X
R	 �

Xi¼n

i¼1

wi
4 � si

4 � Xi �
Xi¼n

i¼1

wi
5 � si

5 � DXi �w3 � s3 � f
!

dx

ð60Þ

Eq. (60) defines an elliptic steady-state boundary value problem
that can be solved by using any discretization technique operating
on the weak form of the problem (finite elements, finite volumes,
. . .). Another possibility consists in coming back to the strong form
of Eq. (60):

w1 � s2 � R�w2 � s1 � DR

¼ �
Xi¼n

i¼1

wi
4 � si

4 � Xi �
Xi¼n

i¼1

wi
5 � si

5 � DXi �w3 � s3 � f
!

ð61Þ

that could be solved by using any classical collocation technique (fi-
nite differences, SPH, . . .).

A.2. Computing S(t) from R(x) and W(k):

In the present case the test function is written as:

u	ðx; t; kÞ ¼ S	ðtÞ � RðxÞ �WðkÞ ð62Þ

Now, the weak form becomes:Z
X�I�I

S	 � R �W � R � @S
@t
�W � k � DR � S �W

� �
dxdt dk

¼ �
Z

X�I�I

S	 � R �W �Rndxdt dk ð63Þ

Integrating in the space X� I and by taking into account the nota-
tion (59) gives:Z

I
S	 � w1 � r1 �

dS
dt
�w2 � r2 � S

� �
dt

¼ �
Z

I
S	 �

Xi¼n

i¼1

wi
4 � ri

5 �
dTi

dt
�
Xi¼n

i¼1

wi
5 � ri

4 � Ti �w3 � r3 � f
!

dt ð64Þ

Eq. (64) represents the weak form of the ODE defining the time evo-
lution of the field Sthat can be solved by using any stabilized dis-
cretization technique (SU, Discontinuous Galerkin, . . .). The strong
form of Eq. (64) reads:

w1 � r1 �
dS
dt
�w2 � r2 � S

¼ �
Xi¼n

i¼1

wi
4 � ri

5 �
dTi

dt
�
Xi¼n

i¼1

wi
5 � ri

4 � Ti �w3 � r3 � f
!

ð65Þ

Eq. (65) can be solved by using backward finite differences, or high-
er order Runge–Kutta schemes, among many other possibilities.

Computing W (k) from R (x) and S (t):
In this part of the algorithm, the test function is written as:

u	ðx; t; kÞ ¼W	ðkÞ � RðxÞ � SðtÞ ð66Þ

Now, the weak form becomes:
10
Z
X�I�I

W	 � R � S � R � @S
@t
�W � k � DR � S �W

� �
dxdt dk

¼ �
Z

X�I�I

W	 � R � S �Rndxdt dk ð67Þ

Integrating the weak form, Eq. (67), in X � I and considering the
notations given by Eq. (59) leads to:Z

I

W	 � r1 � s2 �W � r2 � s1 � k �Wð Þdk

¼ �
Z

I

W	 �
Xi¼n

i¼1

ri
5 � si

4 � Ki �
Xi¼n

i¼1

ri
4 � si

5 � k � Ki � r3 � s3 � f
!

dk

ð68Þ

Eq. (68) does not involve any differential operator. The strong form
of Eq. (68) is:

ðr1 � s2 � r2 � s1 � kÞ �W ¼ �
Xi¼n

i¼1

ri
5 � si

4 � ri
4 � si

5 � k
� �

� Ki � r3 � s3 � f
!

ð69Þ

Therefore, Eq. (69) represents an algebraic equation. Despite the
introduction of parameters as additional model coordinates, the
change of computational cost will not be noticed. In fact, the origi-
nal equation does not contain derivatives with respect to those
parameters, so obviously solving this equation will not affect the to-
tal computation time in a dramatic way.

Note that other strategies for constructing the separated repre-
sentation are available in the literature, leading to sometimes more
robust and faster convergence [6,14].

References

[1] Ammar A, Mokdad B, Chinesta F, Keunings R. A new family of solvers for some
classes of multidimensional partial differential equations encountered in
kinetic theory modelling of complex fluids. J Non Newton Fluid Mech
2006;139:153–76.

[2] Ammar A, Mokdad B, Chinesta F, Keunings R. A new family of solvers for some
classes of multidimensional partial differential equations encountered in
kinetic theory modelling of complex fluids. Part II: transient simulation using
space-time seperated representations. J Non Newton Fluid Mech
2007;144:98–121.

[3] Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an
overview and recent developments. Comput Meth Appl Mech Eng
1998;139:3–47.

[4] Bungartz H-J, Griebel M. Sparse grids. Acta Numer 2004;13:1–123.
[5] Chen X, Xie H, Chen H. Optimisation for CFRP pultrusion process based on

genetic algorithm-neutral network. Int J Mater Form 2010;3:927–30.
[6] Chinesta F, Ammar A, Cueto E. Recent advances and new challenges in the use

of the proper generalized decomposition for solving multidimensional models.
Arch Comput Method Eng 2009;17:327–50.

[7] Chinesta F, Ammar A, Cueto E. Recent advances in the use of the proper
generalized decomposition for solving multidimensional models. Arch Comput
Method Eng, in press.

[8] Chinesta F, Ammar A, Cueto E. Proper generalized decomposition of multiscale
models. Int J Numer Meth Eng 2010;83:1114–32.

[9] Gonzalez D, Ammar A, Chinesta F, Cueto E. Recent advances on the use of
separated representations. Int J Numer Meth Eng 2010;85(5):637–59.

[10] Jacob A. Globalisation of the pultrusion industry. Reinf Plast
2006;50(5):38–41.

[11] Ladeveze P. Nonlinear computational structural mechanics. NY: Springer;
1999.

[12] Martin J. Pultruded composites compete with traditional construction
materials. Reinf Plast 2006;50(5):20–7.

[13] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse
approximation and diffuse elements. Comput Mech 1992;10:307–18.

[14] Nouy A. A priori model reduction through proper generalized decomposition
for solving time-dependent partial differential equations. Comput Meth Appl
Mech Eng 2010;199(23-24):1603–26.

[15] Pruliere E, Ferec J, Chinesta F, Ammar A. An efficient reduced simulation of
residual stresses in composites forming processes. Int J Mater Form
2010;3(2):1339–50.


	Methodological approach to efficient modeling and optimization of thermal  processes taking place in a die: Application to pultrusion
	1 Introduction
	2 Illustrating the solution of multi-dimensional parametric models by using the PGD
	3 Parametric boundary conditions
	3.1 Illustrating the main ideas from a numerical example
	3.2 Boundary conditions as parameters

	4 Parametric thermal model of a heated die in pultrusion processes
	5 Optimization strategy
	5.1 The Moving Least Squares approximation revisited
	5.2 Centered moving least squares
	5.3 Numerical example

	6 Conclusion
	Acknowledgement
	Appendix A Alternating directions separated representation constructor
	A.1 Computing R(x) from S(t) and W(k)
	A.2 Computing S(t) from R(x) and W(k):

	References




