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Large strain rate-dependent response of elastomers
at different strain rates: convolution integral vs. internal
variable formulations

J.-C. Petiteau · E. Verron · R. Othman · H. Le Sourne ·
J.-F. Sigrist · G. Barras

Abstract Two different viscoelastic frameworks adapted to large strain rate-dependent re-
sponse of elastomers are compared; for each approach, a simple model is derived. Within
the Finite Linear Viscoelasticity theory, a time convolution integral model based on an ex-
tension to solid of the K-BKZ model is proposed. Considering the multiplicative split of
the deformation gradient into elastic and inelastic parts, an internal variable model based on
a large strain version of the Standard Linear Solid model is considered. In both cases, the
strain energy functions involved are chosen neo-Hookean, and then each model possesses
three material parameters: two stiffnesses and a viscosity parameter. These parameters are
set to ensure the equivalence of the model responses for uniaxial large strain quasi-static and
infinitely fast loading conditions, and for uniaxial rate-dependent small strain loading con-
ditions. Considering their responses for different Eulerian strain rates, their differences are
investigated with respect to the strain rate; more specifically, both stiffness and dissipative
properties are studied. The comparison reveals that these two models differ significantly for
intermediate strain rates, and a closing discussion highlights some issues about their foun-
dations and numerical considerations.
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1 Introduction

Elastomers are often used for damping parts in industrial applications because of their
remarkable dissipative properties. Because they can undergo severe mechanical loading
conditions, i.e. simultaneous large strain and large strain rates, they are particularly well-
adapted to shock absorption applications. Nevertheless, in the case of dynamic loading con-
ditions that correspond to moderate or high strain rates, the mechanical response of elas-
tomers is not well-known: it can vary from purely rubber-like to glassy (Yi et al. 2006;
Sarva et al. 2007), but also exhibits wave propagation (Niemczura and Ravi-Chandar 2011a,
2011b, 2011c).

Modelling of elastomers has been a subject of numerous studies. On the one hand,
large strain hyperelastic constitutive equations are well-suited for static, but are also con-
sidered for very large strain rate responses as shown by Hoo Fatt and Bekar (2004),
for example. In both cases, classical hyperelastic models are employed (neo-Hookean,
Mooney–Rivlin, Ogden, etc.; see Holzapfel 2000; Marckmann and Verron 2006). On the
other hand, the rate-dependent small strain response of elastomers is usually predicted
in the general framework of linear viscoelasticity. In this case, integral models issued
from the Boltzmann superposition principle and the rheological Maxwell, Kelvin, Zener,
Poynting–Thomson models are equivalent (Ferry 1980; Christensen 1982; Tschoegl 1989;
Wineman and Rajagopal 2000). Modelling the large strain rate-dependent response of
rubber-like materials is highly more complex, and there is not a unique framework for large
strain viscoelasticity; then numerous models have been derived. Figure 1 summarizes those
different loading conditions.

Phenomenological viscoelastic rubber-like constitutive equations are derived following
two different frameworks. Here, only the basics of these approaches are recalled; for a
recent and comprehensive state of the art, the reader is referred to the remarkable intro-
duction proposed by Amin et al. (2006). The first approach is founded on the Green and
Rivlin (1957) expansion theory and the Finite Linear Viscoelasticity theory which extends
the Boltzmann superposition principle to finite strain (Coleman and Noll 1961). The total
stress is the sum of the long-term low strain rate response and the viscous overstress which
is expressed in terms of time convolution (or hereditary) integrals of the material history.
One of the most recognized model founded on this approach is the K-BKZ model which
has been widely used in rheology (Kaye 1962; Bernstein et al. 1963; Zapas and Craft 1965;
Tanner 1988). Solid models have also been proposed by Christensen (1980); Chang et al.
(1976); Morman (1988); Sullivan (1987); Holzapfel (1996); Haupt and Lion (2002). It is
to note that a comparison of hereditary integral models for viscoelasticity has been re-
cently proposed by Ciambella et al. (2010). The second approach is based on the semi-

Fig. 1 Applicability ranges of
models
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nal paper of Green and Tobolsky (1946) who derived the viscoelastic counterpart of the
neo-Hookean model. Their idea was rationalized by introducing internal variables: fol-
lowing the work of Lee (1969) for plasticity, authors introduced the internal variables
through the split of the deformation into an elastic and a viscous parts (Sidoroff 1974;
Lubliner 1985). Thanks to the development of relevant algorithms for finite element anal-
ysis (Simo and Hughes 1998), this approach has been extensively used in the bibliogra-
phy because of its thermodynamical consistency (Lion 1997; Reese and Govindjee 1998;
Huber and Tsakmakis 2000; Bonet 2001).

The aim of the present paper is the comparison of the two above-mentioned theories for
intermediate strain rates as depicted in Fig. 1. In this way, we derive two simple models for
large strain viscoelasticity: the first one referred to as a Convolution Integral Model (CIM) is
a solid extension of the K-BKZ model, and the second one, referred to as an Internal Variable
Model (IVM), is the large strain counterpart of the Zener model as proposed by Huber and
Tsakmakis (2000). Then, for equivalent sets of material parameters, their uniaxial responses,
i.e. their stiffness and associated dissipation, are compared and discussed with respect to the
strain rate.

2 Two simple models for large strain viscoelasticity of rubber-like materials

We consider an elastomeric material; it is assumed homogeneous, isotropic and incompress-
ible. We focus on the viscoelastic nature of its mechanical response and we consider two
simple models: the former based on the convolution integral approach, and the latter based
on internal variables theory.

2.1 A simple Convolution Integral Model (CIM)

2.1.1 General derivation

The model considered here is the sum of a large strain hyperelastic model for the elastic part
and a fluid K-BKZ model for the viscous part. It is to note that this model is different from
the solid version of the K-BKZ formulation that was proposed in the paper of Bernstein
et al. (1963).

The key mechanical quantity of the convolution integral approach is the relative defor-
mation gradient Ft (τ ), i.e. the deformation gradient at the current time τ in the current con-
figuration (Cτ ) with respect to the final deformed configuration (C) at time t , as described in
Fig. 2:

Ft (τ ) = F(τ )F−1(t). (1)

In a similar way, we define Fτ (t), the deformation gradient in (C) with respect to the defor-
mation gradient at the current time τ :

Fτ (t) = F−1
t (τ ) = F(t)F−1(τ ). (2)

Introducing the right Cauchy–Green strain tensor Cτ (t), and the Green–Lagrange strain
tensor Eτ (t):

Eτ (t) = 1

2

(
Cτ (t) − I

) = 1

2

(
FT

t (τ )Ft (τ ) − I
)
, (3)
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Fig. 2 Deformation gradient
with respect to current time
configuration

where I is the 3 × 3 identity tensor and (·)T stands for the transposition, the K-BKZ model
leads to the following expression of the Cauchy stress tensor (Bernstein et al. 1963)

σ (t) = −p(t)I +
∫ t

−∞

[
Fτ (t)

∂U1(Cτ (t), t − τ)

∂Eτ (t)
FT

τ (t)

]
dτ, (4)

in which p stands for the Lagrange multiplier due to the incompressibility constraint, re-
ferred to as the hydrostatic pressure, and U1 is a strain energy density per unit of volume
in the current configuration (Cτ ). Considering objectivity and incompressibility, this strain
energy is a function of the two first strain invariants of the right Cauchy–Green strain tensor
Cτ (t), ICτ (t) and IICτ (t). Thus

σ (t) = −p(t)I +
∫ t

−∞
2Fτ (t)

[(
∂U1

∂ICτ

+ ICτ

∂U1

∂IICτ

)
I − ∂U1

∂IICτ

Cτ (t)

]
FT

τ (t) dτ, (5)

where the two first invariants of a tensor X are

IX = trX and IIX = 1

2

(
(trX)2 − trX2

)
. (6)

Moreover, as the material is isotropic, the strain energy U1 can be written as a function of the
left Cauchy–Green strain tensor Bτ (t) that is equal to C−1

t (τ ), i.e. in terms of their invariants
IC−1

t
and IIC−1

t
. Finally, recalling that (see, for example, Eq. (5.93) in Holzapfel 2000)

B2
τ (t) = IBτ Bτ (t) − IIBτ I + B−1

τ (t) (7)

and after some simple algebraic manipulations,

σ (t) = −p′(t)I +
∫ t

−∞
2

[
∂U1

∂IC−1
t

C−1
t (τ ) − ∂U1

∂IIC−1
t

Ct (τ )

]
dτ (8)

in which p′(t) is the modified hydrostatic pressure that will be simply denoted p(t) in the
following.

Equation (8) represents the classical fluid K-BKZ constitutive equation. In order to con-
sider solids, we simply add a hyperelastic contribution defined by a strain energy function
written in terms of the two first strain invariants of the left Cauchy–Green strain tensor of the
whole deformation, B(t) = F(t)FT (t), U0(IB, IIB); finally, the corresponding Cauchy stress
tensor is:
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σ (t) = −p(t)I + 2

(
∂U0

∂IB
B(t) − ∂U0

∂IIB
B−1(t)

)

+ 2
∫ t

−∞

[
∂U1

∂IC−1
t

C−1
t (τ ) − ∂U1

∂IIC−1
t

Ct (τ )

]
dτ. (9)

2.1.2 A simple model

In order to define the simplest model based on the previous derivation, we consider that

– The elastic part obeys the neo-Hookean constitutive equation:

U0(B) = g0(IB − 3); (10)

– For the viscous part, the effects of time and strain are separable. Thus, the strain energy
U1 can be chosen as the product of a decreasing exponential time function with only one
relaxation time τR and of a neo-Hookean strain energy density in terms of C−1

t (τ )

U1

(
t − τ,C−1

t (τ )
) = g1

τR

exp

(
− t − τ

τR

)
(IC−1

t
− 3). (11)

Thus, our CIM involves only three material parameters: two stiffnesses g0 and g1 (in MPa),
and one relaxation time τR (in seconds); and the stress–strain relationship reduces to

σ (t) = −p(t)I + 2g0B(t) + 2
∫ t

−∞

g1

τR

exp

(
− t − τ

τR

)
C−1

t (τ ) dτ. (12)

This equation can be integrated by parts to explicitly introduce the influence of the strain
rate ∂C−1(τ )/∂τ :

σ (t) = −p(t)I + 2g0B(t) − 2F(t)

∫ t

−∞
g1 exp

(
− t − τ

τR

)
∂C−1(τ )

∂τ
dτ FT (t). (13)

2.2 A simple Internal Variable Model (IVM)

2.2.1 General derivation

The model is based on the multiplicative split of the whole deformation gradient F between
elastic, Fe , and inelastic, Fi , parts

F = FeFi . (14)

This split leads to the definition of an intermediate configuration (Ci ) between the refer-
ence undeformed configuration (C0) and the final deformed configuration (C), as shown in
Fig. 3(a). The intermediate configuration is assumed stress-free and represents the state of
the material once loading is infinitely fast removed.

The simplest internal variable constitutive equations for the viscoelastic elastomers were
derived by Huber and Tsakmakis (2000). The authors studied the two large strain counter-
parts to the classical Standard Linear Solids: model A stands for the Maxwell form of this
model, i.e. a Maxwell model and a dashpot in parallel, and model B for the Zener form, i.e.
a Kelvin–Voigt model and a spring in series. In the present paper, we consider the former
one, because the model B does not reduce to a hyperelastic model when strain rate tends
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Fig. 3 Multiplicative
decomposition of the
deformation gradient

to zero. Figure 3(b) shows the rheological representation of the model and the strain in its
components.

As rubber is assumed incompressible, det F = 1; moreover, we also consider that each
deformation is incompressible: det Fe = det Fi = 1. We now introduce the total strain energy
density per unit of undeformed volume Ψ ; it depends on both F and Fe . With the incom-
pressibility assumption, the volume in (C0) and (Ci ) remains the same and then Ψ can be
written as

Ψ (F,Fe) = Ψ1(F) + Ψ2(Fe), (15)

where Ψ1 is the strain energy involved in the deformation between (C0) and (C), and Ψ2

is the strain energy involved in the deformation between (Ci ) and (C); they correspond to
the two springs in Fig. 3(b). With the objectivity principle and the isotropic nature of the
material, these strain energy densities can be written as

Ψ1(F) = Ψ1(IB, IIB) (16)

and

Ψ2(Fe) = Ψ1(IBe , IIBe ), (17)

where Be is the left Cauchy–Green strain tensor associated with the elastic deformation, i.e.
FeFT

e . Application of the Second Principle of Thermodynamics leads to

Dint = σ : D − Ψ̇ ≥ 0, (18)

where Dint is the internal dissipation and D is the rate of deformation tensor. With the specific
form of the strain energy density, it leads to

σ : D − ∂Ψ1

∂B
: Ḃ − ∂Ψ2

∂Be

: Ḃe ≥ 0. (19)

After some algebraic manipulations, one establishes

Ḃ = LB + BLT , (20)
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where L is the velocity gradient defined as ḞF−1, and

Ḃe = LBe + BeLT − 2FeDiFT
e , (21)

where Di is the inelastic strain rate tensor defined as

Di = 1

2

(
Li + LT

i

)
with Li = ḞiF−1

i . (22)

With these expressions and basic algebraic manipulations, the second principle Eq. (19)
becomes

(
σ − 2

∂Ψ1

∂B
B − 2

∂Ψ2

∂Be

Be

)
: D + 2FT ∂Ψ2

∂Be

Fe : Di ≥ 0. (23)

Next we apply the Coleman and Noll (1963) procedure that consists in satisfying this in-
equality for all possible deformation processes, i.e. for all possible F and Fi which satisfy
the incompressibility constraints. It leads to the stress–strain relationship

σ = −pI + 2
∂Ψ1

∂B
B + 2

∂Ψ2

∂Be

Be, (24)

and the dissipation

2FT
e

∂Ψ2

∂Be

Fe : Di ≥ 0. (25)

Similarly as in Huber and Tsakmakis (2000), we consider the simplest sufficient condition
to satisfy Eq. (25):

Di = 1

η

(
FT

e

∂Ψ2

∂Be

Fe

)D

, (26)

where (·)D stands for the deviatoric operator, i.e. (·) − tr(·)I/3. This equation gives the
following evolution equation for the elastic strain

Ḃe = LBe + BeLT − 2

η
Be

(
∂Ψ2

∂Be

Be

)D

. (27)

Considering now the isotropic nature of the material, each strain energy density depends
on the two first invariants of the corresponding strain tensors and the model reduces to

σ = −pI + 2
∂Ψ1

∂IB
B − 2

∂Ψ1

∂IIB
B−1 + 2

∂Ψ2

∂IBe

Be − 2
∂Ψ2

∂IIBe

B−1
e (28)

and

Ḃe = LBe + BeLT − 2

η
Be

(
∂Ψ2

∂IBe

Be − ∂Ψ2

∂IIBe

B−1
e

)D

. (29)

2.2.2 A simple model

In order to define the simplest model based on the previous derivation, we consider that both
strain energy functions are of the neo-Hookean type

Ψ1(B) = C1(IB − 3) (30)
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and

Ψ2(Be) = C2(IBe − 3). (31)

Thus, our IVM involves only three material parameters: two stiffnesses C1 and C2 (in MPa)
and a viscosity η (in MPa.s); the stress–strain relationship reduces to

σ = −pI + 2C1B + 2C2Be, (32)

and the evolution equation of Be is

Ḃe = LBe + BeLT − 2C2

η

(
B2

e − 1

3
IBe Be

)
. (33)

2.3 Comparison of the models: choice of the material parameters

In order to compare the two above-mentioned simple models, it is necessary to consider
material parameters that render them comparable. In this way, we investigate three limit
responses of the material:

1. The quasi-static limit response, i.e. very low strain rates,
2. The infinitely fast limit response, i.e. very high strain rates,
3. The linear viscoelastic limit response, i.e. small strain.

These three limit responses will lead to three equations to relate the two sets of material
parameters, i.e. (g0, g1, τR) and (C1,C2, η).

2.3.1 Quasi-static response

We consider infinitely slow deformation processes such that the strain–stress path corre-
sponds to the static path of equilibrium states. For the CIM, we consider the method pro-
posed by Christensen (1980) that consists in simulating accelerated or decelerated strain
histories with a change in time scale of the strain: C(αt) with α > 1 corresponds to accel-
erated strain histories and α < 1 corresponds to decelerated strain histories. In this case, the
Cauchy stress tensor Eq. (13) is then

σ (t/α) = −p(t)I + 2g0B(t) − F(t)

[∫ t/α

−∞
2g1 exp

(
− t/α − τ

τR

)
∂C−1(ατ)

∂τ
dτ

]
FT (t), (34)

which can also be written as

σ (t/α) = −p(t)I + 2g0B(t) − F(t)

[∫ t

−∞
2g1 exp

(
− t − γ

ατR

)
∂C−1(γ )

∂γ
dγ

]
FT (t). (35)

Then, the quasi-static response is obtained by considering the infinitely decelerated strain
history, i.e. α → 0:

σ (t/α)|α→0 = −p(t)I + 2g0B(t). (36)

For the IVM, the quasi-static response is defined by the nullity of the strain rate tensor:

Ḟ = ḞeFi + FeḞi = 0. (37)
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As this equation must be satisfied for all possible deformation processes, i.e. for all possible
Fe and Fi , all strain rate tensors Ḟe, Ḟi ,L, Ḃe,. . . must be null. Thus, Eq. (33) reduces to

(Be)
D = 0, (38)

which means that Be is a spherical tensor

Be = qI, (39)

q being a scalar quantity. Thus, the quasi-static limit response of the IVM is

σ = −(p − C2q)I + 2C1B. (40)

Finally, comparing Eqs. (36) and (40) gives the following relationship between the ma-
terial parameters

C1 = g0. (41)

2.3.2 Infinitely fast response

We consider infinitely fast deformation processes such that viscous effects do not have time
to take place. For the CIM, we consider Eq. (35) with α → ∞; then the constitutive equation
Eq. (13) reduces to

σ (t/α)|α→∞ = −p(t)I + 2(g0 + g1)B(t). (42)

For the IVM, when the strain rate D tends to infinity, Ḟ tends also to infinity because F is
finite. As viscous effects do not take place, Fi tends to I and Ḟi tends to zero, thus Fe tends
to F, and Fe tends to infinity. Then, as Be tends to B, we have

σ |D→∞ = −pI + 2(C1 + C2)B. (43)

Finally, comparing Eqs. (42) and (43), and recalling Eq. (41) leads to the following rela-
tionship between the material parameters

C2 = g1. (44)

2.3.3 Linear viscoelastic response

In order to compare the small strain responses of the two models, we consider the uniaxial
extension defined by the deformation gradient

F = λe1 ⊗ e1 + 1√
λ

(e2 ⊗ e2 + e3 ⊗ e3), (45)

where λ is the stretch ratio, e1 is the extension direction, and e2 and e3 are the transverse
directions. With the small strain assumption, the kinematical (linearized) quantities are
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Fl = (1 + ε)e1 ⊗ e1 +
(

1 − ε

2

)
(e2 ⊗ e2 + e3 ⊗ e3), (46)

Ḟl = Ll = Dl = ε̇e1 ⊗ e1 − ε̇

2
(e2 ⊗ e2 + e3 ⊗ e3), (47)

Cl = Bl = (1 + 2ε)e1 ⊗ e1 + (1 − ε)(e2 ⊗ e2 + e3 ⊗ e3), (48)

C−1
l = (1 − 2ε)e1 ⊗ e1 + (1 + ε)(e2 ⊗ e2 + e3 ⊗ e3), (49)

where the subscript (·)l stands for the linearized counterpart of the given tensor and ε is
the true strain in the extension direction. Similar results apply to Fe . Once the linearized
quantities defined, we now consider dynamic processes and introduce the classical complex
notation for both strain and stress in the extension direction

ε = ε0 exp(iωt) and σ = σ0 exp
(
i(ωt + δ)

)
(50)

where ε0 and σ0 are the strain and stress amplitude, ω is the loading frequency and δ is the
phase angle.

Considering that the transverse stresses σ22 and σ33 are null, the CIM stress–strain rela-
tionship Eq. (13) reduces to

σ(t) = 6g0ε(t) +
∫ t

−∞
6g1 exp

(
− t − τ

τR

)
dε(τ )

dτ
dτ, (51)

or with the complex quantities, to

σ0 exp
(
i(ωt + δ)

) = 6g0ε0 exp(iωt) + iω6g1ε0

∫ t

−∞
exp

(
− t − τ

τR

)
exp(iωτ) dτ. (52)

Integrating the last right-hand side term

∫ t

−∞
exp

(
− t − τ

τR

)
exp(iωτ) dτ = 1

1
τR

+ iω
exp(iωt), (53)

we easily obtain the complex modulus E∗

E∗ = σ

ε
= 6g0 + iω6g1

1
1
τR

+ iω
. (54)

Thus, the storage and loss moduli, i.e. the real and imaginary parts of E∗, respectively, are

E′ = 6g0 + 6g1
ω2τ 2

R

1 + ω2τ 2
R

(55)

and

E′′ = 6g1
ωτR

1 + ω2τ 2
R

. (56)

With the aforementioned linearized quantities, the IVM stress–strain relationship
Eqs. (32) and (33) simplify into the following set of equations

σ = 6C1ε + 6C2εe, (57)
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ε̇e = ε̇ − 4C2

η
εe. (58)

Introducing the complex representation of the elastic deformation

εe = εe0 exp
(
i
(
ωt + δ′)) (59)

in which εe0 is the elastic strain amplitude and δ′ its phase angle with ε, Eq. (58) reduces to

iωεe0 exp
(
iδ′) = iωε0 − 4C2

η
εe0 exp

(
iδ′) (60)

and permits expressing the elastic strain in terms of the total strain:

εe0 exp
(
iδ′) = ε0

[
ω2

ω2 + (
4C2
η

)2
+ i

ω
4C2
η

ω2 + (
4C2
η

)2

]
. (61)

Reporting this equation into Eq. (57) leads to the expression of the complex modulus

σ0 exp(iδ) = E∗ε0 =
{

6C1 + 6C2

[
ω2

ω2 + (
4C2
η

)2
+ i

ω
4C2
η

ω2 + (
4C2
η

)2

]}
ε0, (62)

and then to the storage modulus

E′ = 6C1 + 6C2
ω2

ω2 + (
4C2
η

)2
, (63)

and to the loss modulus:

E′′ = 6C2

ω
4C2
η

ω2 + (
4C2
η

)2
. (64)

Finally, with the help of the previously established relationships between the material
parameters Eqs. (41) and (44), equalizing the storage moduli Eqs. (55) and (63), and of the
loss moduli Eqs. (56) and (64) gives

τR = η

4C2
. (65)

3 Results and discussion

In order to compare the two models, we study here their stress–strain responses in uniaxial
extension. First, we define the sets of material parameters that will permit this comparison.
By examining the two models and their response at low and high strain rates, it appears
that the parameters g0 in the CIM and C1 in the IVM represent the stiffness for quasi-static
loading conditions, and that the parameters g1 in the CIM and C2 in the IVM represent
the additional stiffness reached at high strain rates. The third parameters, respectively τR

for the CIM and η for the IVM, account for the dependence of the behaviour on the strain
rate: they drive the increase in stiffness at high strain rates, and both size and shape of
the hysteresis loop during loading–unloading response. In order to respect the previously
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Table 1 Material parameters of
the models CIM IVM

g0 (MPa) 1 C1 (MPa) 1

g1 (MPa) 9 C2 (MPa) 9

τR (s) 1/36 η (MPa.s) 1

established relationships between the parameters, Eqs. (41), (44), (65), we adopt the values
given in Table 1. These values are not founded on experimental measurements, and the
large values for g1 and C2 are chosen in order to emphasize the phenomena (hysteresis,
strengthening) and to highlight the differences between the two approaches.

As mentioned above, we consider uniaxial cyclic tension. In order to investigate the in-
fluence of strain rate on the models, we consider cycles at constant true strain rate, i.e. in
terms of the strain rate tensor D. In fact, we consider the strain rate that is actually borne by
the material in the actual deformed configuration. Noting λ(t) the stretch ratio in the exten-
sion direction e1 and recalling the incompressibility assumption, the deformation gradient
is

F(t) = λ(t)e1 ⊗ e1 + 1√
λ(t)

(e2 ⊗ e2 + e3 ⊗ e3), (66)

and the strain rate tensor defined as

D = 1

2

(
ḞF−1 + F−T ḞT

)
(67)

reduces to

D(t) = λ̇(t)

λ(t)
e1 ⊗ e1 − 1

2

λ̇(t)

λ(t)
(e2 ⊗ e2 + e3 ⊗ e3). (68)

Considering that this tensor is constant, we introduce the strain rate α that is equal to
λ̇(t)/λ(t); and then the prescribed stretch ratio is

λ(t) =
{

eαt during loading,

λmax e−α(t−tmax) during unloading,
(69)

where λmax is the maximum stretch during the cycle and tmax is the corresponding time given
by logλmax/α. Loading curves for λmax = 4 and different values of α are presented in Fig. 4.

The stretch history being defined, we now determine the stress for both models. In uni-
axial extension, the unique non-zero stress is σ11 and the equation σ22 = σ33 = 0 is used to
determine the value of the hydrostatic pressure p. Thus, recalling Eq. (13), the CIM stress–
strain response is

σ11(t) = 2g0

(
λ2(t) − 1

λ(t)

)

+
∫ t

−∞
2g1 exp

(
− t − τ

τR

)[
1

λ(τ)

∂λ(τ)

∂τ

(
2

λ2(t)

λ2(τ )
+ λ(τ)

λ(t)

)]
dτ, (70)

and recalling Eqs. (32) and (33), the IVM stress–strain response is

σ11(t) = 2C1

(
λ2(t) − 1

λ

)
+ 2C2

(
λ2

e(t) − 1

λe(t)

)
, (71)
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Fig. 4 Prescribed stretch ratio
vs. time for different strain rates

λ̇e(t) = λe(t)
λ̇(t)

λ(t)
− 4C2

3η

(
λ3

e(t) − 1
)
. (72)

The (Cauchy) stress–strain curves obtained for different strain rates α are shown in Fig. 5
for both the CIM and the IVM; the limit curves of quasi-static and infinitely fast loading
conditions are also shown in this figure.

At first sight, the two models exhibit the same response: strengthening and a change in
the hysteresis loop as the strain rate increases. Nevertheless, quantitative differences exist.
Firstly, strengthening differs: as an example the stress at λ = 4 is larger for the CIM than
for IVM for all strain rates but this is not the case at λ = 1.5. Secondly, the hysteresis loop
is larger for IVM than for CIM. These differences will be discussed in the two following
sections that focus on the stiffness of the models and on their dissipative properties, respec-
tively.

3.1 Comparison of the loading curves

In this section, only the loading part of the stress-strain curves are discussed. In order to
study the difference in the responses, we consider the ratio of stress of both models, i.e.
σ11IVM/σ11CIM, for different strain rates as shown in Fig. 6. First, it is to note that the quasi-
static and the infinitely fast ratios are equal to 1 for all stretch values because the models
coincide in these two cases; they are not shown in the figure. For intermediate strain rates,
the three curves differ with no similarity in their evolution. We can only mention that the
three curves tend to 1 as the stretch tends to 1, i.e. for small strain. This result is obvious
because we choose the material parameters such as the two models coincide for small strain.

As the two models cannot be easily compared, we choose to investigate the influence of
the strain rate on their responses, individually. Figure 7 presents the evolution of the reduced
Cauchy stress with respect to the stretch for CIM (Fig. 7(a)) and IVM (Fig. 7(b)); in order
to render comparable the results, the stress is normalized with respect to the quasi-static
(α = 0) stress of the same model. These curves lead to the following comments:

– For both models, all curves tend to 10 as the stretch tends to 1; it is easily explained
by recalling that the initial stiffness of the models is the one of the elastic infinitely fast
response which is ten times larger than the stiffness of the quasi-static response, i.e. (g0 +

13



Fig. 5 Stress–strain curves for
rubber-like viscoelastic models:
(a) CIM, (b) IVM

g1)/g0 = 10 for CIM and (C1 + C2)/C1 = 10 for IVM. For low strain rates, the stress
ratios of both models quickly decrease to attain the horizontal asymptote σ(α)/σ(0) = 1,
indeed the stress–strain response tends to the quasi-static limit response. As the strain rate
increases, the decrease in the response becomes less important, and CIM and IVM exhibit
different results that are emphasized in the following.

– For the CIM, all curves monotonically decrease without inflection point. This behavior
can be explained by the decreasing exponential function of time in the integral: for high
strain rates, the time scale is revealed very small as compared with the relaxation time,
and then the stress does not noticeably decrease in the range of stretch.

– For the IVM, all curves also decrease; nevertheless, we observe an inflection point on the
curve α = 100 s−1 at about λ = 1.5. This can be explained by the behavior of the dashpot
during stretching. At the beginning of loading, the dashpot is not stretched because a
certain duration is necessary before its activation, and the spring in series with the dashpot
is highly stretched (see Fig. 3(b)). Thus, the corresponding stress–strain curve tends to
the infinitely fast response. Afterwards, as the dashpot becomes active, the spring is not
stretched more, the stress in it remains constant and the corresponding elastic stretch ratio,
i.e. λe drops.

14



Fig. 6 Ratios of stress for
different strain rates

Fig. 7 Reduced Cauchy stress
for different strain rates: (a) CIM,
(b) IVM
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3.2 Dissipative properties

Dissipation of the models are quantified by the shape and size of the hysteresis loop be-
tween loading and unloading stress-strain curves. As emphasized above, both shape and
size change with the strain rate. Dissipation is null as the strain rate tends to zero and to in-
finity because the two models reduces to their hyperelastic counterparts. In order to discuss
the dissipation, we calculate the energy dissipated over one cycle as follow

D =
∫ te

0
σ (t) : D(t)dt (73)

where the time at the beginning of the cycle is set to 0 and te is the time of the end of the
cycle. Similarly, we define the elastic energy stored in the material during loading, i.e. the
area under the loading curve as

E =
∫ te/2

0
σ (t) : D(t)dt. (74)

Figure 8 presents the ratio D/E as a function of the strain rate for both models. First, we
notice that the maximum value of the ratio is about 1, which would mean that all the stored
energy is dissipated. Obviously, it is not representative of real elastomers; it is due to the
large value of the second stiffness parameters, i.e. g1 and C2, and also because the energy
stored during unloading has been neglected. Nevertheless, the ratio represents a relevant
measure of dissipation. As expected, the energy dissipated tends to zero for very low and
very high strain rates, and increases for intermediate strain rates. For strain rates smaller
than 5 s−1, the responses of the two models are nearly superimposed. For higher strain rates,
differences take place: the IVM exhibits more dissipation and over a wider range of strain
rate than the CIM.

We also investigate the influence of the maximum stretch λmax on the dissipative prop-
erties. As shown in Fig. 9, changing the maximum stretch of a cycles leads to different
ratios of dissipated energy for both the CIM (Fig. 9(a)) and the IVM (Fig. 9(b)). For a given
maximum stretch, the ratio is identical for both models; and for a given model, it differs as

Fig. 8 Adimensionalized energy
dissipated D/E
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Fig. 9 Dissipation ratio for
different maximum stretch λmax:
(a) CIM, (b) IVM

the maximum stretch changes. The maximum dissipation decreases as the maximum stretch
increases for both models. Nevertheless, there is an important difference between the two
approaches. For a given dissipation ratio, the CIM admits a limit value of strain rate, e.g.
D/E < 0.4 when α > 80 s−1. Oppositely, the curves of dissipation ratio for the IVM admit
a decreasing maximum value and are only shifted to the right as λmax increases.

4 Closing remarks

As a summary, we compare two large strain viscoelastic frameworks, i.e. convolution inte-
gral and internal variable models, by studying the response of two simple constitutive equa-
tions that are equivalent for very small and large strain rates, and small strain. It has been
shown that the responses of these models differ for intermediate strain rates. Nevertheless,
it is quite difficult to determine which model must be preferred for dynamic applications. To
help the choice, we can invoke two aspects that were not discussed previously: the founda-
tions of the approaches and numerical considerations.
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The convolution integral approach is based on the extension to large strain of the well-
established Boltzmann superposition principle: the time dependence is accounted for by a
decreasing time function in a convolution integral (Christensen 1982). This approach is the
most natural extension of linear viscoelasticity to large strain. A large relaxation spectrum
can be easily handled by considering multiple relaxation times and a Prony series for the
relaxation function. One of the major criticism is that it is not founded on the calculation of
the dissipation; thus the material functions must be carefully chosen and the second principle
of thermodynamics must be verified a posteriori. The internal variable approach is founded
on a completely different point of view: the split of the deformation gradient was proposed
by Sidoroff (1974) as a transposition to viscoelasticity of the plastic split due to Lee (1969).
Obviously, there is no problem with the dissipation: the constitutive equations are directly
derived from the application of the second principle of thermodynamics. Nevertheless, in the
case of viscoelasticity the split of the deformation gradient is questionable: the intermediate
reference configuration defined by Fi is not an equilibrium configuration, and thus it tends to
relax to the reference configuration. Indeed, it is considered as an equilibrium configuration
if the time scale of the phenomena is highly smaller than the relaxation time. Indeed, if the
time scale of the phenomena evolves, the inelastic part of the deformation gradient may
become elastic! Solutions have been proposed to consider large relaxation spectra for quasi-
static problems (Knauss and Emri 1981; Govindjee and Simo 1993; Holzapfel 2000).

From a numerical point of view, on the one hand, it is accepted that IVMs are well-suited
for implicit (static in most of the cases) finite element analysis considering similar methods
as those employed for plasticity (see, for example, Simo and Hughes 1998). On the other
hand, the CIMs approach is well-adapted to dynamic explicit finite element analysis, it is
quite easy to implement explicit recurrence formula for the computation of the convolution
integrals (Feng 1992; Shrivastava and Tang 1993; Verron et al. 2001; Marckmann et al.
2001).

Thus, with these remarks, the choice of a constitutive equation framework for large strain
viscoelasticity of rubber-like materials must be discussed in regards with the range of strain
rates that is involved in the problem; for dynamical applications, we believe that the CIM
framework provides the best compromise between theoretical requirements and numerical
efficiency.
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