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Large Amplitude Folding in Finely Layered

Viscoelastic Rock Structures

HANS-BERND MÜHLHAUS,1 LOUIS MORESI,1

BRUCE HOBBS,1 and FRÉDÉRIC DUFOUR1

Abstract—We analyze folding phenomena in finely layered viscoelastic rock. Fine is meant in the

sense that the thickness of each layer is considerably smaller than characteristic structural dimensions. For

this purpose we derive constitutive relations and apply a computational simulation scheme (a finite-element

based particle advection scheme; see MORESI et al., 2001) suitable for problems involving very large

deformations of layered viscous and viscoelastic rocks. An algorithm for the time integration of the

governing equations as well as details of the finite-element implementation is also given. We then consider

buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer

dimension we consider a stiff, layered plate. The domain is compressed along the layer axis by prescribing

velocities along the sides. First, for the viscous limit we consider the response to a series of harmonic

perturbations of the director orientation. The Fourier spectra of the initial folding velocity are compared

for different viscosity ratios.

Turning to the nonlinear regime we analyze viscoelastic folding histories up to 40% shortening. The

effect of layering manifests itself in that appreciable buckling instabilities are obtained at much lower

viscosity ratios (1:10) as is required for the buckling of isotropic plates (1:500). The wavelength induced by

the initial harmonic perturbation of the director orientation seems to be persistent. In the section of the

parameter space considered here elasticity seems to delay or inhibit the occurrence of a second, larger

wavelength.

Finally, in a linear instability analysis we undertake a brief excursion into the potential role of couple

stresses on the folding process. The linear instability analysis also provides insight into the expected modes

of deformation at the onset of instability, and the different regimes of behavior one might expect to observe.

Key words: Folding, instability, viscoelasticity, layered material, cosserat continuum, finite elements,

particle in cell.

1. Introduction

A common feature of mechanical systems producing infrequent, catastrophic

releases of free energy such as earthquakes or rockbursts is a shared capacity to store

energy over prolonged periods. This capacity is absent from models with purely

dissipative, viscous rheologies which have conventionally been used to simulate

1 CSIRO Division of Exploration and Mining, 39 Fairway, Nedlands WA 6009, Australia.

E-mails: hans@ned.dem.csiro.au; l.moresi@ned.dem.csiro.au; bruce.hobbs@per.dem.csiro.au;

frederic@ned.dem.csiro.au

1



large-deformation geodynamic processes such as mantle convection, large amplitude

folding, necking and so on. On the largest scale, catastrophic transitions in plate

motion may occur when accumulated gravitational potential energy in the cool

thermal boundary layer is released when the yields strength of the lithosphere is

exceeded. On a smaller scale, the vigor and the geometric nature of the buckling

event depend crucially on the capacity of the folding structure to store and release

elastic energy.

Overview

In the following section we develop a mechanical model including a large

deformation formulation for viscoelastic, multi-layered rock. The formulation is

devised with the goal of describing materials with fine internal layering, which can

be described by a single director orientation. This constitutive model is new;

specifically designed for geological deformation problems involving very large

deformations. Although there are more general descriptions possible, this formula-

tion is, in fact, very broadly applicable to crustal rocks, where the preponderance of

layering arises from deposition of one rock type onto another under the inescapable

control of gravity. Indeed, one of the most enduring tenets of geology is the existence

of an organized stratigraphy in the rock record. Another generalization we might

make about the mechanical origins of geological formations is that deformation is

almost certain to involve very high strain. For example, Figure 1 shows the large-

amplitude folding of multi-layered rock on the scale of a few tens of centimeters. The

macroscopic deformation is assumed volume preserving for convenience.

In the following two sections we turn to a computational method capable of

following the evolution of elastic stresses, macroscopic interfaces and the internal

layering direction introduced in the constitutive relationship of section 2. The

method needs to be able to deal with very large strains associated with large-

amplitude folding, while faithfully tracking material history and interfaces. Versa-

tility and robustness are usually associated with the various formulations of the

Finite Element Method (FEM). The need to track material history strongly suggests

a Lagrangian formulation, which provides a reference frame, locked with the

material itself. Unfortunately, large deformations are quite difficult to handle within

the FEM because mesh distortion and remeshing are required to maintain optimal

element configurations.

In section 3 we revisit the basic finite element formulation for viscous materials

and demonstrate how the standard element vectors and matrices can be extended to

include anisotropy and elasticity. In section 4 we describe an extension to standard

finite element methods, which incorporates moving integration points to carry

director orientation and other history variables.

The Particle-In-Cell (PIC) finite element method, as this technique is known, is a

hybrid scheme which falls somewhere between the Finite Element Method (FEM)
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and a purely Lagrangian particle method such as the Discrete Element Method

(DEM). The PIC scheme attempts to combine the versatility of the continuum FEM

with the geometrical flexibility of DEM.

In Section 5, we explore scenarios from global to internal buckling and from

elastic to purely viscous folding in nonlinear finite element studies. It turns out that

the characteristic length scale of the emerging folding pattern tends to zero with

increasing relaxation time. An explanation for this is attempted in section 6 within

the framework of a linear stability analysis.

2. Mathematical Formulation

Layered materials are ubiquitous in geological formations. Accordingly, virtually

every mathematically-minded structural geologist has, at some stage, contributed to

this field (CHAPPLE, 1969; FLETCHER, 1974, 1982; JOHNSON and FLETCHER, 1994;

SCHMALHOLZ and PODLADCHIKOV, 1999; HUNT et al., 1997; VASILYEV et al., 1998).

Layering may be caused by purely mechanical, hydro-mechanical or chemo-

mechanical means (e.g., WILLIAMS, 1972; ROBIN, 1979; ORTOLEVA, 1994). From a

mechanical point of view, the salient feature of such materials is that there exists a

distinguished orientation given by the normal vector field niðxk; tÞ of the layer planes,
where ðx1; x2; x3Þ are Cartesian coordinates, and t is the time. Initially we assume

linear viscous behavior and designate with g the normal viscosity and gS the shear

viscosity in the layer planes normal to ni. The orientation of the normal vector, or

director as it is sometimes called in the literature on oriented materials, changes with

Figure 1

Large-amplitude folding in a multilayered rock.
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deformation. Using a standard result of continuum mechanics, the evolution of the

director of the layers is described by

_nni ¼ W n
ij nj where W n

ij ¼ Wij � ðDkikkj � DkjkkiÞ and kij ¼ ninj ð1Þ

where L ¼ DþW is the velocity gradient, D is the stretching and W is the spin. The

superscripted n distinguishes the spin Wn of the director n (the unit normal vector of

the deformed layer surfaces) from the spin W of an infinitesimal volume element dV

of the continuum. The 2-D matrix representation of (1) as needed for our

computational applications is represented in Appendix A.2 for easy reference. We

define a corotational stress rate as:

_rrn
ij ¼ _rrij � W n

ikrkj þ rikW n
kj : ð2Þ

Again the superscripted n distinguishes the stress rate _rrn as observed by an material

observer corotating with the director n from the material stress rate _rr observed by a

spatially fixed observer.

Specific Viscous and Viscoelastic Constitutive Relations

We consider layered, viscous and viscoelastic materials. The layering may be in

the form of an alternating sequence of hard and soft materials or in the form of a

superposition of layers of equal width of one and the same material, which are

weakly bonded along the interfaces. We designate the normal shear modulus and the

normal shear viscosity as l and g, respectively; the shear modulus and the shear

viscosity measured in simple, layer parallel shear we designate as lS and gS .
In the following simple model for a layered viscous material we correct the

isotropic part 2gD0ij of the model by means of the K tensor (see Appendix A.1 for

derivation) to consider the mechanical effect of the layering; thus

rij ¼ 2gD0ij � 2ðg� gSÞKijlmD0lm � pdij ; ð3Þ

where a prime designates the deviator of the respective quantity, and

Kijkl ¼
1

2
ðninkdlj þ njnkdil þ ninldkj þ njnldikÞ � 2ninjnknl

� �
: ð4Þ

Similarly, a viscoelastic constitutive relationship for a layered medium may be

written as:

D0ij ¼
1

2l
_rrn0
ij þ

1

2g
r0ij þ

1

2lS
� 1

2l

� �
Kijkl _rr

n0
kl þ

1

2gS
� 1

2g

� �
Kijklr

0
kl ; ð5Þ

where _rrn
ij is the corotational stress rate introduced at the beginning of this section.

We could have equally well used the Jaumann derivative of r which is obtained by

replacing Wn in (2) by the spin of an infinitesimal element of the continuum W. The

present choice seems more natural in the context of layered continua and also leads
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to algebraically simpler expressions in the linear stability analysis in section 6. A

remark on the notation: We use index notation which is less ambiguous than

symbolic notation when vectors, second and fourth-order tensors (such as Kijkl)

appear simultaneously in the equations.

3. Finite Element Formulation

The constitutive relationships derived in the previous section translate naturally

into standard finite element matrix formulation for almost incompressible materials

as follows:

K G

GT 0

� �
u

p

� �
¼

F

0

� �
: ð6Þ

K is the so-called global stiffness matrix which contains all the material property

parameters, G is the divergence expressed in matrix form, u and p are the unknown

velocities and pressure respectively, and F is a vector of driving terms comprising

body forces and surface tractions.

The matrices K and G are global matrices composed in the usual way of elemental

matrices; in the following we designate element matrices and vectors by a

superscripted E. The components of an element stiffness matrix may be written as

KE ¼
Z
XE

BT ðxÞCðxÞBðxÞdX : ð7Þ

The matrix B consists of the appropriate gradients of interpolation functions which

transform nodal point velocity components to strain-rate pseudo-vectors at any

point in the element domain.

The constitutive operator corresponding to (3) is composed of two parts

C ¼ Ciso þ Clayer representing the isotropic part of the constitutive model and a

correction term considering the influence of layering an. In two dimensions,

Ciso ¼ 2g

1

1
1
2

2
4

3
5; Clayer ¼ �2g

gS
g
� 1

� � �D0 D0 �D1

D0 �D0 D1

�D1 D1 � 1
2þ D0

2
4

3
5 ð8Þ

in which D0 ¼ 2n21n
2
2 and D1 ¼ ðn1n32 � n31n2Þ.

A viscoelastic equivalent of the viscous equations can be obtained by inserting the

corotational rate (2) into (5) and subsequently replace the time derivative by the

corresponding first-order difference quotient. After rearranging, the constitutive

equations can be written in the form (3) with the viscosities replaced by effective

viscosities and an additional termwhich we define below representing the stress history

and the influence of the stress rotation (see equations (10) and (11)). The result reads:
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rtþDt
ij ¼ 2geff D

0tþDt
ij � 2ðgeff � geffS ÞKijlmD

0tþDt
ij þ sij � pdij ð9Þ

where

stkl¼
geff

lDt
1

2
ðdkidljþdkjdliÞþ

geffS l
gefflS

�1

!
Kklij

" #
rt
ijþDt W ntþbDt

ik rt
kj�rt

ikW
ntþbDt

kj

� �� � !
:

ð10Þ

Details of the derivation of (9) are represented in the Appendix 3. The effective

viscosities read:

geff ¼ g
Dt

aþ Dt
and geffS ¼ gS

Dt
gS
lS
þ Dt

¼ gS
Dt

aS þ Dt
; ð11Þ

where the superscripted t refers to the previous time step and Dt is the time increment.

The time increment is limited by a Courant condition ensuring that during one time

step a particle does not travel further than a typical element dimension (this limitation

ensures that changes to the stiffness matrix, K, are small during a time step). In

MORESI et al. 2001 the time increment for the advection of the material points usually

differs from the time increment used for the integration of the stress history. This is

necessary to ensure time scale of interest for elastic processes is determined by the

physics of the problem and not by the mesh dependent Courant conditon. The

parameters a ¼ g=l and aS ¼ gS=lS are the relaxation times for pure and simple

shear, respectively. The superscripted parameter 0 � b � 1 in the corotational term in

(10) was introduced to provide flexibility in the numerical treatment of the problem:

during a predictor step we put b ¼ 0 and during subsequent iterations we put b ¼ 1.

Furthermore, we need to modify the force vector FtþDt for elasticity and also

correct for the observer rotation (see section 2 equations (1, 2)). To achieve this we

introduce the auxiliary vector s as defined by (10) and write:

FEtþDt ¼ FEtþDt

ext �
Z
XE

BT st dX ; ð12aÞ

where FE
ext is the external load vector. After each time step the incremental solution

may be improved iteratively. In this case, for t fixed, we replace st by stþDt, which

during iteration is defined by stþDt  rtþDt
ij as defined by (9). During iteration the

director spin, particle positions etc. are replaced by their values at t þ Dt and are

continuously updated until the increment of the velocities between two successive

iterative steps are sufficiently small in the sense of a suitable norm. The above

strategy allows one to modify existing codes for viscous materials without major

interference with the rest of the code. There are many possibilities for refinement but

for the purpose of this paper, for the examples presented in section (5), this simple

formulation is perfectly applicable.
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4. The Particle-in-Cell Finite Element Method

Some difficulties arise in devising a practical implementation of the finite element

formulation described in section 3 for the large deformation modeling of layer

folding. In particular, since the C matrix is a continuously evolving function of

position through its dependence on director orientation, it is necessary that we are

able to track an evolving vector function of the material during deformation.

4.1. Possible Numerical Schemes

In fluid dynamics, where strains are generally very large, but do not appear in the

constitutive relationship of the material, it is common to transform the equations to

an Eulerian mesh and deal with convective terms explicitly. Problems arise whenever

advection becomes strongly dominant over diffusion since an erroneous numerical

diffusion dominates. In our case, the advection of material boundaries and the stress

tensor are particularly susceptible to this numerical diffusion problem. Mesh-based

Lagrangian formulations alleviate this difficulty, but at the expense of remeshing and

the eventual development of a less-than optimal mesh configuration. This increases

complexity and can hinder highly efficient solution methods such as multigrid

iteration. The Natural Element Method eliminates remeshing difficulties but is

associated with considerable complexity of implementation, particularly in 3-D. A

number of alternatives are available which dispense with a mesh entirely: smooth

particle hydro dynamics and discrete element methods are common examples from

the fluid and solid mechanics fields, respectively. These methods are extremely good

at simulating the detailed behavior of highly deforming materials with complicated

geometries (e.g., free surfaces, fracture development), and highly dynamic systems.

They are, in general, formulated to calculate explicitly the interactions between

individual particles which ultimately means that a great many time steps would be

required to study creeping flow where the time scales associated with inertial effects

are very many orders of magnitude smaller than typical flow times. We have

therefore developed a hybrid approach – a particle-in-cell finite element method that

uses a standard Eulerian finite element mesh (for fast, implicit solution) and a

Lagrangian particle framework for carrying details of interfaces, the stress history, etc.

4.2. The Particle-in-Cell Approach

Our particle-in-cell finite element method is based closely on the standard finite

element method, and is a direct development of the Material Point Method of

SULSKY et al. (1995). The standard mesh is used to discretize the domain into

elements, and the shape functions interpolate node points in the mesh in the usual

fashion. The problem is formulated in a weak form to give an integral equation, and

the shape function expansion produces a discrete (matrix) equation. For the

discretized problem, these integrals occur over subdomains (elements) and are
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calculated by summation over a finite number of sample points within each element.

For example, in order to integrate equation (7), over the element domain XE we

replace the continuous integral by a summation

KE ¼
X
p

wpB
T ðxpÞCpðxpÞBðxpÞ : ð12bÞ

In standard finite elements, the positions of the sample points, xp, and the weighting,

wp are optimized in advance. In our scheme, the xp’s correspond precisely to the

Lagrangian points embedded in the fluid, and wp must be recalculated at the end of a

time step for the new configuration of particles. Constraints on the values of wp come

from the need to integrate polynomials of a minimum degree related to the degree of

the shape function interpolation, and the order of the underlying differential

equation (e.g., HUGHES, 1987). These Lagrangian points carry the history variables

including the director orientation and corotational stress rate, which are therefore

directly available for the element integrals without the need to interpolate from nodal

points to fixed integration points.

We therefore store an initial set of wp’s based on a measure of local volume and

adjust the weights slightly to improve the integration scheme. MORESI et al. (2000)

give a full discussion of the implementation of the particle-in-cell finite element

scheme used here including full details of the integration scheme and its assumptions.

They also discuss the specific modifications to the material point method required to

handle a convecting fluid.

Figure 2

Schematic of Particle-in-Cell Method for representing large deformation in materials with interfaces and

material history (including storing/transport of tensorial information such as stress). Mesh points remain

fixed; particles move relative to the mesh and carry interface information via their relative positions and

directional information directly on the particles.
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5. Numerical Simulations

We present an example of a simulation of folding of a layer of anisotropic

viscoelastic material sandwiched between two isotropic viscous layers of equal

viscosity. To accommodate the shortening of the system, one of the isotropic

layers is compressible. In benchmarking of viscous folding, this sandwich of

incompressible and compressible embedding material was found to give good

agreement with analytic results assuming an infinite domain (MORESI et al., 2000).

Throughout, we deal with a special case where the relaxation time for the normal and

shear components of the rheology are always identical (i.e., a ¼ g=l ¼ as ¼ gs=ls).

We first examine the viscous limit (a! 0, aS ! 0) for infinitesimal deformation

of an embedded layer with a normal viscosity contrast of g=gM ¼ 1, 10 or 100 to the

embedding medium. The boundary conditions in this case are slippery, undeforming

boundaries on the vertical sides and the base. No density variations are assumed. For

reference, in an isotropic sample with a viscosity contrast of 1 or 10 between the layer

and the embedding material no appreciable folding occurs during shortening by

50%, as predicted by linear instability analysis (e.g., BIOT (1965a); see also section 6

in which we explore the potential influence of couple stresses within the framework of

a linear instability analysis).

The initial orientation of the internal layering is approximately parallel to the

macroscopic layering of the system with a small harmonic perturbation, introduced

particle-by-particle:

dhp ¼ ðp=100Þ sinðqxpÞ : ð13Þ

Figure 4 plots the dominant components of the Fourier transform of the vertical

velocity along the mid-line of the embedded layer in each of three cases at a time

t ¼ 0. Case 1 has no normal viscosity contrast to the embedding medium (g ¼ gM ),
and a shear-to-normal viscosity contrast of 100 (g ¼ 100gs). The growth rate is

strongly peaked for a perturbation wavenumber q ¼ p. Case 2 has a normal viscosity

contrast of 10 between the embedding and embedded materials (g ¼ 10gM ) and

g ¼ 10gs. There are two strong signals in the Fourier transform of the vertical

velocity: one at the wavenumber of the director perturbation and another, stronger

signal at q ¼ p=2. The low wavenumber signal has a growth rate which is almost

independent of the perturbation wavenumber. Growth at the wavenumber of the

director perturbation falls off with increasing q, but reaches a plateau by around

q ¼ 8p. At a higher contrast between embedded and embedding materials, Case 3,

g ¼ 100gM , g ¼ 10gs shows a similar pattern to case 2, except that the growth rates

are amplified.

The initial growth rates described in Figure 4 correspond to infinitesimal

deformation of the layer. At finite shortening, the initial deformation pattern may be

modified. For each of the three cases above, we plot the finite amplitude response to

shortening in Figure 5.
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For case 1 (Fig. 5a), the small growth rates observed at the outset produce only

very small deflection of the layer interfaces after 40% shortening. Of interest,

however, is the fact that a perturbation with wavenumber q ¼ 10p produced a

corresponding layer deflection of larger magnitude than a perturbation at q ¼ 2p,
suggesting that the growth rate remains flat as a function of q even at finite amplitude

deformation.

Figure 3

Initial geometry for the folding experiment. Layer 1 is compressible, viscous (gM ) background material,

layer 2 is identical to layer 1 but incompressible (see text for an explanation), layer 3 is the test sample:

viscoelastic ( g; gs; l;ls ) with a director orientation (n). The anisotropic layer contains small perturbations

to the otherwise horizontal internal layering. V ¼ 10 is constant during any given experiment and

unchanged between different experiments.

Figure 4

Rate of growth at wavenumbers introduced through perturbation to the director orientation expressed as

Fourier coefficients of vertical velocity at the mid-line at time t ¼ 0 for purely viscous cases (g=l! 0).

Isotropic embedding material has viscosity 1. Case 1, no contrast in normal viscosity

(g=gs ¼ 100; g=gM ¼ 1). Case 2, g=gs ¼ 10; g=gM ¼ 10 Case 3, g=gs ¼ 10; g=gM ¼ 100.
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For case 2 (Fig. 5b), the growth rate is higher for smaller wavenumber in the

infinitesimal deformation limit, and this persists with finite amplitude deformation.

Growth at wavenumber q ¼ 2p is significantly more developed after 40% shortening

than growth at q ¼ 10p.
For case 3 (Fig. 5c), we observe the same overall trend as case 2: high

wavenumber perturbations do not grow as fast as low wavenumber. However, we

also observe that low wavenumber modes are excited in the finite deformation limit

irrespective of the perturbation wavenumber. The perturbation causes a secondary

variation in the interface deflection.

Shortening by 40% is examined in Figure 6 for a viscoelastic layer. This case

corresponds to case 3 of the purely viscous simulations, but with finite relaxation

time: g ¼ 100gM , g ¼ 10gs, l ¼ 100–100000. The introduction of elasticity strongly

reduces the tendency to generate long-wavelength buckling modes in the layer. For

example, when l ¼ 1000, the perturbation wavenumber is dominant even for

q ¼ 10p, and the amplitude of the deformation is considerably larger for small

wavenumber than the corresponding deformation for the viscous case.

The linear instability analysis predicts a strong tendency to generate very high

wavenumber (short wavelength) folds. The numerical simulations uphold this

prediction, amplifying the deformation at the finest available wavelength: the one

provided by the finite element mesh. The anisotropic layer itself shortens almost

uniformly, but the internal layering direction develops an extremely strong

periodicity in the shortening direction. Couple stresses (neglected in our numerical

analysis) would stabilize the solution at a finite wavenumber and, thus, at least

ameliorate the mesh-sensitivity of the result (MÜHLHAUS, 1993). In the viscous

simulations, the natural development of low-wavenumber buckling of the anisotropic

layer from initially fine-scale perturbations suggests that the role of couple stresses is

considerably less important. We conclude the main body of this paper with a brief

excursion into the potential role of couple stresses within the framework of a linear

instability analysis.

6. Couple Stresses and Linear Instability Analysis

Here we restrict ourselves to an incrementally elastic constitutive relation for

the couple stress, partially for algebraic convenience but also because the

numerical difficulties mentioned above seem to occur only in connection with

significant elastic deformations. Couple stresses may be significant in situations

where the gradient of ni changes strongly over a short distance (limiting case:

disinclination).

In such cases we have to take the variations of the normal stresses across the layer

cross sections into consideration (e.g., MÜHLHAUS, 1993). The couple stress theories

(see e.g., MINDLIN and THIERSTEN, 1962; MÜHLHAUS, 1993; MÜHLHAUS and
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Figure 5a

Evolution of folding in anisotropic viscous layer. Isotropic embedding material has viscosity 1, layer has

shear viscosity 0.01, normal viscosity 1. Results are shown for perturbation to the director orientation with

wavenumber q ¼ 2p and q ¼ 10p.

Figure 5b

Evolution of folding in anisotropic viscous layer. Isotropic embedding material has viscosity 1, layer has

shear viscosity 1, normal viscosity 10. Results are shown for perturbation to the director orientation with

wavenumber q ¼ 2p and q ¼ 10p.
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AIFANTIS, 1991a,b) provide a convenient framework for the consideration of stress

fluctuations on the layer-scale without having to abandon the homogeneity

properties of the anisotropic standard continuum approach. In the present case

the couple stress enhancement leads naturally to the superposition of viscoelastic

bending stiffness on our standard continuum model. In connection with layered

materials the internal length scale introduced by the couple stresses is proportional to

the layer thickness (ranging from microns to kilometers in geological applications)

and to the differences between the viscosities and shear moduli governing pure and

simple shear respectively (see e.g., MÜHLHAUS, 1993). In layered materials the

explanation why the stress tensor is nonsymmetric in couple stress materials is

straightforward: In a continuum description the stresses represent average values

over multiples of the layer thickness. In bending the shear stress obtained by

averaging normal to the layering is different in general from the shear stress parallel

to the layering. The latter is even zero for instance in the case of a stack of perfectly

smooth cards (a standard continuum model would break down in this case). Within

the framework of a couple stress theory one considers the variation of the normal

stress across the layer thickness (in much the same way as in the standard engineering

beam and plate theories), introduces statically equivalent couple stresses balancing

the difference between the shear stresses.

As usual in plate theories the couple stresses (moment per unit area) are conjugate

in energy to a suitable measure for the rate of curvature. We assume that in the

reference configuration the layer normal is parallel to the Cartesian x3 axis. Without

going into details we mention the following definition of the curvature rate, which is

suitable in the context of layered materials

j ¼ symmððgradðn
 uÞð1� kÞÞ where u ¼ n
 _nn ; ð14Þ

which upon linearization, and nothing else is required for our linear instability

analysis, reduces to the familiar expression

j11 ¼ v2;11 : ð15Þ

All other components of j vanish in the linear case. In (14) symm(.) means the

symmetric part of the argument and k ¼ nnT (see equation (1)).

We assume the simplest possible constitutive relationship for the couple stress by

putting _mmn
11 ¼ _mm11 ¼ Hlh2j11. The corotational rate is equal to the material rate

because m11 ¼ 0 in the ground state; H is a dimensionless scalar typically smaller

than unity and h is the width of a periodic cell of the layered material. In the linear

instability analysis (see Appendix 4 for details) we assume one-dimensional modes of

Figure 5c

Evolution of folding in anisotropic viscous layer. Isotropic embedding material has viscosity 1, layer has

shear viscosity 10, normal viscosity 100. Results are shown for perturbation to the director orientation with

wavenumber q ¼ 2p and q ¼ 10p.

b
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Figure 6

Layered viscoelastic case. Isotropic embedding material has viscosity 1, layer has shear viscosity 10, normal

viscosity 100. Results are shown for a range, l and for perturbation to the director orientation with

wavenumber q ¼ 4p and q ¼ 10p. The ratio of elastic moduli is constant throughout: l=ls ¼ 10.
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the form

du2 ¼ U expðxtÞ cos 2p
L
x1 ¼ U expðxtÞ cos qx1; du1 ¼ 0 ð16Þ

reflecting the fact that typical folding scenarios are usually one-dimensional (Fig. 2),

at the onset at least, depending only on the coordinate parallel to the layer surfaces,

x1 (e.g., BIOT, 1964, 1965a,b, 1967; HILL and HUTCHINSON, 1975). The one-

dimensionality itself does not represent an assumption per se; it does however in the

context of our specific problem: Here and in the computational examples we consider

a multilayered structure embedded in an isotropic, incompressible viscous medium of

infinite extent. Again, within the context of this specific problem, the assumption of

one-dimensionality expressed in (16) precludes gross changes in layer thickness

during folding as is observed in many natural folds.

Next in our stability analysis we insert (16) into the constitutive relations and

the result into the incremental equilibrium conditions (see Appendix 4). Because

of the one-dimensionality of our problem equilibrium needs to be considered in

the x2 direction only. The resistance of the embedding medium against the folding

(see Fig. 7) of the structure is considered BIOT-style (1965a) by the traction

2Q ¼ �4gMxq expðxtÞU cosðqx1Þ. Again, details of this derivation are included in

the Appendix.

Insertion of (A.18) into (A.23) and nondimensionalising leads to the following

characteristic equation for the dimensionless growth coefficient of the folding

instability:

Figure 7

Moment equilibrium diagram for a slice of the layered structure. The macroscopic bending moment M (a);

couple stress m11 (b); the traction 2Q represent the resistance of the embedding medium against the

deformation of the layered structure.
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x̂x2 � x̂x

�
ðr̂r� 1Þq̂q� 1�Hl

lS

4gM
gS

� �2 h
d

� �2

q̂q3
�
� r̂rq̂qþHl

lS

4gM
gS

� �2 h
d

� �2

q̂q3 ¼ 0 :

ð17Þ

where d is the thickness of the folding plate (Fig. 7) and

x̂x ¼ xaS ¼ x
gS
lS

; q̂q ¼ gS
4gM

tq; r̂r ¼ r
lS

: ð18Þ

For h=d ! 0 we recover the standard continuum case (equation (A.19)).

However, unlike in the case of the standard continuum (Fig. 9) the positive branch

of (17) tends to zero as q!1 i.e., the ill-posed nature of the folding problem is

removed.

A maximum of xðqÞ exists as long as h > 0. For illustration we consider the

extreme case gS ¼ 0. From (17) we obtain:

x ¼ 1

4gM
ðrdq�Hlh2dq3Þ : ð19Þ

Unstable modes are obtained for q � ðr=ðHlh2ÞÞ1=2 and the maximum growth rate

xmaxðqmaxÞ is obtained as:

xmax ¼
r

6gM

ffiffiffiffiffiffiffiffiffiffi
r

3Hl

r
d
h

and qmax ¼
1

h

ffiffiffiffiffiffiffiffiffiffi
r

3Hl

r
: ð20Þ

Figure 8

Multilayered structure embedded in an infinite, isotropic medium of viscosity gM ; t is the width of the

layered structure.
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The wavelength predicted by (20) for the extreme case gS ¼ 0 ranges between 15

to 20 times the thickness h (which is well within the ranges of wavelength observed in

real rocks) if the stress ratio r=l ranges between 1/10 and 1/20. The maximum shifts

to the longer wavelength side with increasing magnitude of the coefficient of q̂q3 in

(20). If h ¼ 0 the maximum degenerates to a boundary maximum at q!1. In this

case the perturbations with the shortest wavelength grow fastest, are dominant, and

we have to expect a strong dependency of finite element solutions on the mesh size. A

similar situation occurs in connection with strain localisation and strain softening (DE

BORST et al., 1993). However, in many cases the maximum occurs at wavenumbers,

which are beyond the applicability of the concept of equivalent (or homogenized)

continua and prior to the maximum, the situation is usually satisfactorily described

as a standard continuum.

7. Conclusions and Future Research

We have presented a simple formulation for the consideration of viscoelasticity in

deforming layered systems. The combination of the basic model with a large

deformation, particle-in-cell finite element method allows the simulation of a diverse

range of crustal deformation problems.

Our demonstration examples include a realistic treatment of folding which

includes the mechanical influence of fine-scale laminations and viscoelasticity. The

model is relatively simple in its present form but still gives a useful insight into the

physical processes involved in certain types of folding.

While we have noted the importance of considering couple stresses for the elastic-

dominated simulations, the story will not be complete unless we also consider that

Figure 9

Dispersion function for viscoelastic, layered material with bending resistance, gM = viscosity of embedding

material, gS and lS are the shear viscosity and the weak shear modulus, t and h are the width of the

structure and the individual layer, respectively, L = wavelength, x = growth coefficient. The growth

coefficient x is bounded if r=lS < 1 (see Appendix 3).
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the large couple stresses produced by layer bending could also lead to failure of the

rock. The consideration of layered materials with couple stresses and a yield criterion

in large deformation is the subject of ongoing research, however, we would predict

that yielding within the layering will produce a localized band structure with a strong

discontinuity in the director orientation.

One of the most interesting results occurs for purely viscous, layered

simulations where low-wavenumber folding is induced even for very low viscosity

contrasts between embedded and embedding media. In the past, the very large

viscosity contrasts required to produce Biot-type folding in purely viscous media

have led people to discount the possibility that viscous buckling occurs at all in

geology.

Viscoelastic layered buckling tends to emphasize the finest scale imposed by

explicitly assumed perturbations as well as discretization artifacts. The latter implies

mesh-dependency not at all uncommon in numerical simulation but unwelcome all the

same. The possible cure would be to extend the numerical representation to include

terms which, in nature, become dominant at large wavenumber (in this case

consideration of the bending stiffness of the individual layers).

The particle-in-cell formulation for including couple stresses is conceptually no

different from the one presented here though more complicated in detail.

Linear instability analysis gives a good insight into the expected modes of

deformation at the onset of instability, and the different regimes of behavior one

might expect to observe.

Appendix A

A.1. Derivation of the Anisotropy Tensor K

In preparation for the derivation of constitutive relations for our layered material

we define some auxiliary relationships. The corotational simple shearings (spin:W) in

the layer orthogonal to n read:

di ¼ Diknk � Dklnknlni : ðA:1Þ

We define

s ¼ d

jdj : ðA:2Þ

Note that sT n ¼ 0.

Dnsðnisj þ sinjÞ ¼ Djknink þ Diknjnk � 2Dklnknlninj

¼ ðninkdlj þ njnkdil � 2ninjnknlÞDlk : ðA:3Þ
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Symmetry ðijÞ ! ðlkÞ
Dnsðnisj þ sinjÞ ¼ ðninkdlj þ njnkdil � 2ninjnknlÞDlk

¼ 1

2
ðninkdlj þ njnkdil þ ninldkj þ njnldikÞ � 2ninjnknl

� �
Dlk

¼ KijklDlk ðA:4Þ

A.2. Matrix Representations of Constitutive Relations

We assume plane deformations in the ðx1; x2Þ plane. The matrix representations of

(1) reads:

_nn1
_nn2

� �
¼ 0 �ðv1;1 � v2;2Þn1n2 � v2;1n22 þ v1;2n21
ðv1;1 � v2;2Þn1n2 þ v2;1n22 � v1;2n21 0

" #
n1
n2

� �
:

ðA:5Þ

½K� ¼
2n21n

2
2 �2n21n22 ðn1n32 � n2n31Þ

�2n21n22 2n21n
2
2 ðn2n31 � n1n32Þ

ðn1n32 � n2n31Þ ðn2n31 � n1n32Þ 1
2� 2n21n

2
2

2
64

3
75 : ðA:6Þ

In the ground state we have

½K� ¼
0 0 0

0 0 0

0 0 1
2

2
64

3
75 ; ðA:7Þ

thus:

½dK� ¼
0 0 dn1
0 0 �dn1

dn1 �dn1 0

6664
7775 ¼ 0 0 �u2;1

0 0 u2;1
�u2;1 u2;1 0

6664
7775 ðA:8Þ

A.3. Inversion of Constitutive Operators

The tensor relating the stretching to the stress in (3) may be written symbolically

as

C ¼ 1þ ða� 1ÞK ; ðA:9Þ

where a is an arbitrary real scalar. From the definition of K (see A.4) it follows that

K2 ¼ K. Furthermore

C�1 ¼ 1þ 1

a
� 1

� �
K : ðA:10Þ
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A.4. Linear Instability Analysis

The calculations in this section are based on three simplifying assumptions:

1) The characteristic time scale of the instability is much shorter then the time scale

of the deformation of the ground state (the general case was treated e.g., by HOBBS

et al., 2001). In the present, simplified case we have:

dDij � 1
2ðui;tj þ uj;tiÞ :

2) The viscosity gS and the shear modulus lS are much smaller than the normal

viscosity g and the normal shear modulus l. Thus:

1

gS
� 1

g
� 1

gS
and

1

lS
� 1

l
� 1

lS

3) In the linear instability analysis we assume one-dimensional modes of the form

du2 ¼ U expðxtÞ cos 2p
L
x1 ¼ U expðxtÞ cos qx1; du1 ¼ 0 :

Neglecting couple stresses in the first instance;

First we write down the perturbed form of the constitutive relations (5). Neglecting

couple stresses in the first instance, we find

dD0ij ¼
1

2l
d _rrn0

ij þ
1

2g
dr0ij þ

1

2lS
� 1

2l

� �
ðKijkld _rr

n0
kl þ dKijkl _rr

n0
klÞ

þ 1

2gS
� 1

2g

� �
ðdKijklr

0
kl þ Kijkldr0klÞ ðA:11Þ

Using the results of appendix two, (A.11) becomes

dD011 ¼
1

2l
d _rr011 þ

1

2g
dr011

dD022 ¼
1

2l
d _rr022 þ

1

2g
dr022

dD12 ¼
1

2lS
ðd _rr12 þ rv2;1Þ þ

1

2gS
dr12 þ

1

2gS
� 1

2g

� �
u2;1r :

ðA:12Þ

The incremental form of the equilibrium conditions read:

dr11;1 þ dr12;2 ¼ 0

dr21;1 þ dr22;2 ¼ 0 ;
ðA:13Þ
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where dr12 ¼ dr21 if couple stresses are neglected. We integrate the second line of the

equations (A.11) over the width of the layered structure. Thus:

Zd=2
�d=2

dr21;1 dx2 þ dr22

���
d=2
� dr22

���
�d=2
¼ 0 : ðA:14Þ

For the normal traction we assume BIOT’s (1965) result for an isotropic viscous half

space (see Fig. 3 in the main part of the paper):

dr22

���
d=2
� dr22

���
�d=2
¼ 2Q ¼ �4gMqxU cos qx1 : ðA:15Þ

Next we consider 1-D instability modes of the form:

du2 ¼ U expðxtÞ cos 2p
L
x1 ¼ U expðxtÞ cos qx1; du1 ¼ 0 : ðA:16Þ

Insertion into (A.12) yields the modal form of the constitutive relations:

dr11 � dr22 ¼ 4ĝgxu1;1

dr12 ¼ dr21 ¼ ĝgSxu2;1 � ru2;1
ðA:17Þ

where

ĝg ¼ g
1þ x g

l

and ĝgS ¼
gS

1þ x gS
lS

: ðA:18Þ

Substitution of (A.17) into (A.15) and insertion of the result into (A.14) gives:

ðð4gM þ ĝgSdqÞx� rdqÞ ¼ 0 : ðA:19Þ

From this, we obtain the dispersion relation as

x ¼ rdq
4gM þ ĝgSdq

: ðA:20Þ

We use the notations a ¼ g=l and aS ¼ gS=lS for the normal and shear relaxation

times, respectively. If x� 1=aS then the dispersion relationship reduces to the one

for a viscous layer in a viscous matrix, i.e.:

x ¼ rdq
4gM þ gSdq

: ðA:21Þ

Conversely, if x� 1=aS , we obtain

x ¼ lS

4gM
dq

r
lS
� 1

� �
: ðA:22Þ
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Finally, in the presence of couple stresses we have dr21 ¼ dr12 � dm11;1. With

dm11 ¼ Hlh2u2;11 and inserting into (A.14) yields the modified momentum balance

equation:

4gM þ ĝgSdqþH
l
x
h2dq3

� �
x� rdq

� �
¼ 0 : ðA:23Þ
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DE BORST, R., SLUYS, L. J., MÜHLHAUS, H.-B., and PAMIN, J. (1993), Fundamental Issues Finite Element

Analyses of Localization of Deformation, Engin. Comput. 10, 99–121.

CHAPPLE, W. N. (1969), Fold Shape and Rheology: The Folding of an Isolated Viscous-Plastic Layer,

Tectonophysics 7, 97–116.

FLETCHER, R. C. (1974), Wavelength Selection in the Folding of a Single Layer with Power Law Rheology,

Am. J. Sci. 274, 1029–1043.

FLETCHER, R. C. (1982), Coupling of Diffusional Mass Transport and Deformation in Tight Rock,

Tectonophysics 83, 275–291.

GREEN, A. E. and ZERNA, W., Theoretical elasticity. 2nd Edition (Oxford at the Clarendon Press 1968).

HILL, R. and HUTCHINSON, J. W. (1975), Bifurcation Phenomena in Plane Tension Test, J. Mech. Phys. Sol.

23, 239–264.
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