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Isotropic and anisotropic descriptions of damage in concrete
structures

Stéphanie Fichant, Christian La Borderie and Gilles Pijaudier-Cabot 
Laboratoire de Mécanique et Technologie, ENS Cachan/CNRS/Universite& P. et M. Curie, 61 avenue du Président Wilson, 

F-94235 Cachan cedex, France

Scalar damage models are very often implemented in computational analyses in order to predict the 
response and failure modes of concrete and reinforced concrete structures. In most situations, however, 
damage is not isotropic but has preferential directions. Therefore, there have been many questions about the 
pertinence and range of applicability of isotropic, scalar, damage models for describing a degradation 
process which is strongly geometrically oriented. In order to assess what are the limitations of such 
a simplifying assumption, a comparative study is presented. The constitutive relations used for this purpose 
derive from the same class of models with a gradual enhancement of the description of damage. The scalar 
damage model is compared to another model where damage-induced orthotropy is described, with the 
possibility of rotation of the principle axes of orthotropy. Both models incorporate crack closure e!ects and 
a plasticity damage coupling. Structural analyses on bending beams, compression-shear and tension-shear 
concrete panels are presented. Although it may appear to be simplistic, the scalar damage model provides 
accurate predictions when failure is mainly due to uniaxial extension. Crack closure introduces an additional 
anisotropy which is important in compression-shear problems. Finally, damage-induced anisotropy seems 
important when failure is due to multiaxial extensions, such as in shear-tension problems. 

KEY WORDS: continuum damage; anisotropy; isotropy; failure analysis

1. INTRODUCTION

Quasi-brittle materials such as concrete exhibit a non-linear stress}strain response mainly
because of microcracking. In most cases, these microcracks are oriented with respect to the
applied stress history:1,2 in uniaxial tension, microcracks develop perpendicularly to the tensile
stress; in compression, splitting cracks parallel to the direction of the compressive stress appear.
The development of microcracks results in a progressive degradation of the elastic sti!ness of the
material. If the material is initially isotropic, the degraded elastic operator is not expected to
remain isotropic but to become gradually anisotropic. This phenomenon is called damage-
induced anisotropy because anisotropy of the elastic response of the material evolves with
damage.

The damage variable de"ned "rst by Kachanov was essentially one-dimensional although it
has been extensively applied in the three-dimensional context, assuming that damage does not
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induce anisotropy.3 Several anisotropic damage models have been developed for quasi-brittle
materials. Among many proposals, Krajcinovic and Fonseka4 used damage vectors, Sidoro!,5
Chaboche et al.,6 Mazars and Pijaudier-Cabot,7 Dragon and Mroz,8 Berthaud et al.,9 and
Valanis10 used a second-order tensor, Ortiz,11 Simo and Ju,12 Yazdani and Schreyer,13 and
recently Carol et al.14 and Govindjee et al.15 proposed to consider that damage is a fourth-order
tensor. Note that smeared crack models such as those devised by Rots16 could be also considered
as damage models where the damage variable is a fourth-order tensor.

The variety of such proposals is somewhat puzzling because (i) the relation between each model
is di$cult to establish (except may be when damage is indeed isotropic) and (ii) it is di$cult to
compare the predicted type of damage-induced anisotropy with experimental data and therefore
to provide a proper method for choosing the most appropriate type of damage variable. A full
characterization of the damage-induced anisotropy of the material requires three-dimensional
experimental facilities and means of analysis which are, to our knowledge, only in the process of
being developed.17

It seems appropriate that rational methods for the derivation of the type of damage variable
should be devised in order to achieve a proper understanding of the type of damage variable to be
used for a given material. Ladeveze18 proposed a general technique of approximation of the
elastic sti!ness of a damaged material. The method introduces two damage surfaces which
characterise the unidirectional sti!ness and the compressibility of the material for any loading
direction. The elastic moduli are derived using an approximation technique which is similar to
a weighted residual method. In Ladeveze's proposal, it is already stated that the de"nition of the
damage surfaces should be envisioned with respect to experimental observations: without any
other discriminating data, the simple knowledge of a uniaxial response of the material (axial
strain}axial stress) cannot provide anything but a one scalar isotropic damage model. For the
same experiment, the additional knowledge of the axial strain vs. transverse strain curve yields
a two scalar isotropic damage model.

Although it is purely phenomenological, this method relates the local state of damage in each
direction to the overall mechanical response of the material. Another interesting method is the
microplane approach proposed for quasi-brittle materials e.g. by Bazant and Ozbolt.19 The
elastic (or tangent) sti!ness of the material is obtained from the relationship between the stress
and the strain vectors for any arbitrary microplane direction. The construction of the sti!ness
results from an energy-based equivalence. Damage is de"ned at the microplane level and the
relation with the global elastic sti!ness of the material was elucidated by Carol et al.20,21 They
arrived at the de"nition of a fourth-order damage tensor where the damage variables at the
microplane level appear. Hence, it is possible to relate the local directional damage to the global
degradation of the elastic properties of the material. Fichant et al.22 combined the simple features
of the microplane approach with the approximation of damage surfaces in the same spirit as
Ladeveze's approach. They derived a simpli"ed microplane-type model where the behaviour of
the damaged material is discretized along a "nite set of directions and interpolated in between
them. The elastic behaviour of the damaged material depends on the interpolation used for the
distribution of damage in each direction of the material. With an in"nite number of discretization
directions, the microplane model is recovered.

In view of the simplicity of implementation of a scalar model, it can be appealing to disregard
the crack orientation, provided the numerical prediction does not really di!er from those of
a more realistic model which incorporates damage-induced anisotropy. In this paper, we will
focus attention on this issue and we will try to sort out the cases where a simple, scalar approach
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yields su$ciently accurate results. The approximation method devised by Fichant will provide
a preferential setting for an objective comparison because di!erent approximation levels can be
considered on the basis of the same model parameters which are given by the same experiments.
After having brie#y recalled the principles of this approximation, we shall "rst present the
constitutive model with damage-induced anisotropy which will be considered. Crack closure
e!ects and the inherent sti!ness recovery will be also introduced because we will see that they
yield an additional kind of anisotropy. The remaining part of the paper will be devoted to
comparisons between the isotropic and anisotropic damage models from the viewpoint of
structural analysis.

2. PRINCIPLE OF THE CONSTITUTIVE MODEL

The models that are going to be compared are based on the approximation of the relationship
between the overall stress (later simply denoted as stress) and the e!ective stress in the material
de"ned by the equation:
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assumed to be isotropic, linear and elastic. Let us de"ne the relationship between the stress and
the e!ective stress along a "nite set of directions of unit vectors n at each material point:
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where p and q are the normal and tangential components of the stress vector, respectively, and
two damage surfaces are introduced:

S
d
(n): nPd(n) and Sd(n): nPd(n) (3)

d(n) and d(n) are scalar valued quantities which introduce the e!ect of damage. The basis of the
model is the numerical interpolation of these surfaces which are approximated by the knowledge
of d (n) and d(n) for a "nite set of directions.22,23

The stress is solution of the virtual work equation:

"nd p
ij

such that ∀e*
ij

4n
3

p
ij
e*
ij
"P

s

([(1!d (n))n
k
pt
kl
n
l
n
i
#(1!d (n)) (pt

ij
n
j
!n

k
pt
kl
n
l
n
i
)] ) e*

ij
n
j
)d) (4)

The model is similar to a microplane model which is kinematically constrained.19 The most
important di!erence with the microplane model is that in the absence of damage, equation (4)
yields exactly the sti!ness matrix of an isotropic material, without the need for integrating. From
now on, we will consider that the two damage surfaces are identical: d (n)"d (n) . If the damage
surface remains spherical, isotropy of the material is preserved. The simplest approximation
which does not yield isotropy corresponds to an ellipsoidal damage surface: this surface is
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characterized by three principal directions and by the values of three damage scalars d
i
along

these directions.
We are now going to detail the anisotropic damage model. In this model we will assume that

the damage surface is ellipsoidal. The isotropic damage model will be deduced from the
anisotropic one simply by assuming that the damage surface is spherical instead of being
ellipsoidal.

3. ANISOTROPIC PLASTIC-DAMAGE MODEL

Degradation of the sti!ness due to progressive microcracking is one among several important
features of the behaviour of concrete. The sti!ness degradation occurs mainly for tensile loads.
Hence, the evolution of damage will be indexed on tensile strains. In compression or
tension-shear problems, plastic strains are also of importance and will be added in the model.
When the loading history is not monotonic, damage deactivation occurs due to microcrack
closure. Since we intend to investigate and to compare the response of damage models to di!erent
loading histories, it seems important to describe this phenomenon.

3.1. Evolution of damage

The evolution of the elastic constants due to damage growth is given by the evolution of the
damage surfaces. Initially, the damage surface (Equation (3)) is reduced to a point d(n),0. Once
damage starts to grow, it becomes an ellipsoidal surface. The evolution of damage is controlled by
a loading surface f:

f (n)"ne%n!e
$
!s (n) (5)

where e% denotes the elastic strain, s is a hardening softening variable which is interpolated in the
same fashion as the damage surface. The threshold of damage is given by the strain e

$
. The

evolution of the damage surface is de"ned by an evolution equation inspired from that of an
isotropic model:7

if f (n*)"0 and n*de%n*'0

then G
dd(n*)"C

e
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(n*e%n*)2
exp(!a(n*e%n*!e
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ds(n*)"n*de%n*

else dd(nN *)"0, ds(n*)"0 (6)

The model parameters are e
$
and a. Note that the vectors n* are the three principal directions of

the incremental strain whenever damage grows. The new damage surface is the combination of
two ellipsoidal surfaces: the one corresponding to the initial damage surface, and the ellipsoid
corresponding to the incremental growth of damage. Hence, the principal directions of the overall
stress are not necessarily the same as the principal directions of the strain.

In the isotropic damage model, the same evolution of damage will be implemented, with
a di!erent, spherical, approximation of the damage surface (the radius of the sphere grows with
damage). It is important to remark that the model parameters in the evolution laws of damage do
not depend on the level of interpolation. In the comparisons, this characteristic will be essential
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because any discretisations of the damage surface provide exactly the same uniaxial material
response in tension.

3.2. Coupling with plasticity

Plasticity can be introduced at several levels. In the microplane approach, plasticity is coupled
to damage at the microplane level.24 In other phenomenological models,25,26 the coupling
between damage and plasticity is introduced in the de"nition of the free energy of the material.
Because we wish to separate the approximation of damage from plasticity, we will use the second
technique. Locally, plasticity (microcracks sliding) and damage (microcrack opening) are
assumed to be uncoupled as far as their evolution is concerned. This assumption introduces also
a great simplicity in the computational implementation.25,27

We decompose the strain increment in an elastic and plastic one:
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Damage is introduced in the elastic part of the stress}strain response
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and the elastic strain is substituted to the total strain in equation (1). We assume that the
evolution of the plastic strain is controlled by a yield function which is expressed in terms of the
e!ective stress in the undamaged material. Among the various possibilities in the choice of a yield
function, we have chosen to implement a yield function due to Nadai28 inspired from the
Drucker}Prager criterion. This choice is somewhat arbitrary and may not be totally realistic. We
do not intend, however, to focus on a speci"c elastoplastic damage model which would be as
general as possible but rather to compare two of them. As we will see further, this yield function
provides a su$ciently accurate approximation of the response of the material to uniaxial
tension/compression loads. The Nadai yield function is the combination of two Drucker}Prager
functions F

1
and F

2
with the same hardening evolution:
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are the second invariant of the deviatoric e!ective stress and the "rst invariant of
the e!ective stress, respectively. w is the hardening variable and (A

i
, B
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(i" 1, 2) which are related to the ratios of the tensile strength to the compressive strength
denoted c and of the biaxial compressive strength to the uniaxial strength denoted b:
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Because damage may also a!ect the overall response of the material in the hardening regime, the
meaning of the ratios c and b is slightly changed. For instance, damage may have already
developed when the material peak stress is reached, e.g. in compression and can modify its value.
In the models, these two ratios will be kept constant: b"1)16 and c"0)4.

The evolution of the plastic strain is associated to these surfaces. The hardening rule is given by

w"qpr#w
0

(11)
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where q and r are model parameters, w
0

de"nes the initial reversible domain in the stress space,
and p is the e!ective plastic strain.

3.3. Crack closure ewects

Crack closure e!ects are of importance when the material is subjected to alternated loads.
During load cycles, microcracks close progressively and the tangent sti!ness of the material
should increase while damage is kept constant.

A decomposition of the stress tensor into a positive and negative part is introduced:

p"SpT`#SpT~ (12)

where SpT` and SpT~ are the positive and negative parts of the stress tensor (for a scalar
SxT`"x if x'0 and SxT`"0 if x(0). This decomposition was "rst used by Ladeveze18 and
Ortiz11 in order to introduce damage deactivation and the in#uence of the sign of the stresses on
the material response. The relationship between the stress and the e!ective stress de"ned in
equation (2) of the model is modi"ed:
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d
#
(n) de"nes a new damage surface which describes the in#uence of damage on the response of the

material in compression. Because this new variable refers to the same physical state of
degradation as in tension, there is a relation between d

#
(n) and d(n). The new damage surface

de"ning d
#
(n) is directly deduced from the damage surface d(n). It is de"ned by the same

interpolation as d(n) and along each principal direction i, we have the relation:
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where d
ij

is the kronecker symbol and a is a model parameter.

3.4. Response of the model and computational aspects

For the isotropic and anisotropic models, the constitutive relations contain six parameters in
addition to the Young's modulus of the material and the Poisson's ratio. The "rst series of three
parameters (e

$
, a, a) deals with the evolution of damage. Their determination bene"ts from the

fact that in tension, plasticity is negligible, hence e
$

and a are directly deduced from a uniaxial
tension test. If we assume that in uniaxial tension damage starts once the peak stress is reached,
e
$

is the uniaxial tensile strain at the peak stress. a is much more di$cult to obtain because the
model exhibits strain softening. In order to circumvent some of the di$culties involved with
softening in the computations, we have chosen to control that the energy dissipation due to
cracking in uniaxial tension be constant whatever the "nite element size.16,29 Therefore,
a becomes an element related parameter and it is computed from the fracture energy. For a linear
displacement interpolation, a is solution of the following equality where the states of strain and
stresses correspond to uniaxial tension:
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Figure 1. Uniaxial tension-compression response of the anisotropic model (longitudinal, transverse and volumetric
strains as a function of the compressive stress)

/ is the energy dissipation per unit volume, G
&
is the fracture energy and h is related to the element

size (square root of the element surface in a two-dimensional analysis with a linear interpolation
of the displacements). According to equation (6), a appears in the rate of damage in (15). It is the
only unknown in this equation. All the other parameters in equation (15) are known (damage
threshold and strain path).

The third model parameter a enters in the in#uence of damage created in tension on the
compressive response of the material. Once the evolution of damage in tension has been "tted,
this parameter is determined by plotting the decrease of the uniaxial unloading modulus in
a compression test vs. the growth of damage in tension according to the model. In a log}log
co-ordinate system, a linear regression yields the parameter a.

The second series of three parameters involved in the plastic part of the constitutive relation is
(q, r,w

0
). They are obtained from a "tting of the uniaxial compression response of concrete once

the parameters involved in the damage part of the constitutive relations have been obtained.
Figure 1 shows a typical uniaxial compression}tension response of the model corresponding to

a standard concrete with a tensile strength of 3MPa and a compressive strength of 40MPa. The
set of model parameters is

E"30 000MPa, l"0)2, a"1000, a"12, e
$
"10~4, r"0)5, q"7000MPa, w

0
"26)4MPa
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The anisotropic model reproduces quite well (qualitatively) the evolution of the longitudinal and
of the transverse strains with the stress. With the isotropic model, that is assuming that the
damage surface in equation (3) is a sphere, the same good description of the axial stress}axial
strain curve would be obtained with the same model parameters. The axial stress}transverse
strain curve would be, however, di!erent because the elastic Poisson's ratio of the material would
not be a!ected by damage.

The anisotropic model and the isotropic model have been implemented in the "nite element
code Castem 2000. Given the strain and the strain increment, the plastic strain increment is
computed "rst. Because it depends on the e!ective stress only, the plastic strain increment is
independent of damage. We have used for this a classical return mapping algorithm.30,31 The
plane stress constraint is added in the computation of the plastic multiplier.32 Once the increment
of plastic strain has been computed, the incremental damage is computed explicitly from equations
(5, 6) and the new state of stress is obtained from equation (4). It is important to note that the plane
stress conditions holds for the stress and the e!ective stress at the same time: let us assume that the
plane stress constraint is p

33
"0. Equation (4) provides the relationship between the e!ective

stress and this stress component which can be computed with a speci"c choice of the strain tensor:
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Therefore, if the plane stress constraint is satis"ed for the e!ective stress, it is automatically
satis"ed for the stress in the damaged material.

The "nite element code Castem 2000 uses a modi"ed Newton}Raphson algorithm for the
iterations towards equilibrium at the structural level. Therefore, it was not necessary to compute
a consistent tangent operator for each constitutive relation as the sti!ness used during the
iterations is always the initial sti!ness matrix of the structure. This computational algorithm may
not be the optimal choice in terms of robustness and speed, however the issue of deriving
a consistent tangent operator for this type of plastic-damage model has not been treated in this
study.

4. FINITE ELEMENT COMPUTATIONS AND COMPARISONS

We are now going to compare the isotropic and anisotropic models on three types of structural
analyses. At the level of the constitutive relations, a comparison has already been performed by
Fichant et al.22 revealing that the shear response of the anisotropic damage model di!ers
substantially from that of the isotropic one. This observation was based on the analysis of the
material response to a strongly non-radial loading history proposed by William et al.33 For
situations where the loading history does not yield severe non-radial stress or strain histories, we
will see that the situation may be quite di!erent.

4.1. Single-edge notched beam

The "rst comparison deals with the single-edge notched concrete beam tested by Schlangen.34
This type of experiment has been simulated in the literature using smeared crack models and
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Figure 2. Single-edged notched beam: (a) geometry and loads (dimensions in mm); (b) "nite element mesh

plasticity based models.16,35 The geometry of the beam and loading apparatus are schematized in
Figure 2a. The notch depth in the centre of the beam is 20mm and the notch width is 5mm. The
load F is applied on the testing apparatus so that the point load close to the notch is F

1
"10/11F

and the point load near the beam end is F
2
"1/11F. The material properties used in the

simulations are the same as those chosen in Feenstra's analysis.35 They are indicated along with
the model parameters in Table I. Figure 2b shows the "nite element mesh used for the analysis. It
is composed of constant strain triangles. Figure 3 shows the plot of the applied load F vs. the
crack mouth sliding displacement (CMSD). We have plotted in this "gure the experimental data,
the computations performed with the isotropic and anisotropic plastic damage models and with
the rotating crack model.35 Considering the experimental dispersion, the three predictions are
quite equivalent, except for the tail of the curve which could not be reproduced with the damage
models. Figure 4 shows the distribution of damage at the end of the computations. For the
anisotropic damage model, we have plotted in Figure 4b and in further calculations the measure
of damage D de"ned as

D"J1
3

[d2
11

#d2
22

# d
12

2] (17)

which provides an indication of the overall intensity of damage that is not attached to a speci"c
direction. The two models predict a curved crack propagation with a small di!erence. The
distribution of damage is more aligned with the vertical axis with the isotropic model than with
the anisotropic one. It should be noted that, the two models are sensitive to mesh alignment when
damage localises to form a crack. The regularisation employed here avoids mesh size dependence
but not mesh alignment e!ects. Therefore, it is di$cult to compare with the experiments. The
"nite element mesh, however, has been designed so that the actual crack path is approximately
recovered by both computations.
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Table I. Material properties in the single-edged notched specimen

Concrete:
Young's modulus: E"35 000MPa
Poisson's ratio: l"0)15
Tensile strength: f

t
"2)8MPa which yields e

$
"0)76]10~4

Fracture energy: G
&
"0)07 N/mm

Compressive strength: f
#
"36)5Mpa

Other model parameters:
a"12
c"0)5, q"7000MPa, w

0
"26)4MPa

Loading Apparatus (steel beam):
Young's modulus: E"200 000MPa
Poisson's ratio: l"0)3

Figure 3. Single-edged notched beam: load vs. CMSD response

In this experiment, damage essentially occurs due to extensions. The two damage models
provide the same material response in uniaxial tension, therefore it is not surprising that the
models provide close results.

4.2. Compression-shear experiments

Compression-shear experiments have been performed on plain concrete I-shaped panels.36 The
geometry of the panels and the loading system are shown in Figure 5a. The panel thickness is
60mm. Notches were cut on the specimens in order to control crack propagation and to avoid
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Figure 4. Single-edged notched beam: (a) distribution of damage with the isotropic model; (b) distribution of damage with
the anisotropic model

Figure 5. Compression-shear test: (a) specimens tested (dimensions in mm); (b) applied shear displacement history (the
compression force is constant)

multiple cracking as much as possible. The tests were designed so that diagonal shear cracks
propagate in the specimens subjected to alternated shear loads.

The biaxial load system shown in Figure 5a has been used. The vertical load, denoted M
1

in
Figure 5a was applied with two hydraulic jacks and the lateral loads denoted as M

0
were applied

with another pair of jacks. The vertical compression force was constrained to remain constant
(75 kN). The horizontal loads were applied under displacement (stroke) controlled conditions
according to a history of displacements shown in Figure 5b. Loads and displacements were
monitored with the load cells on each jack, the internal LVDTs in each jack, and additional

11



Table II. Material properties in the compression shear specimen

Concrete:
Young's modulus: E"35 000MPa
Poisson's ratio: l"0)15
Tensile strength: f

t
"2)8MPa which yields e

$
"0)76]10~4

Fracture energy: G
&
"0)07 N/mm

Compressive strength: f
#
"36)5MPA

Other model parameters:
a"12
c"0)5, q"7000MPa, w

0
"26)4MPa

Loading Apparatus (steel beam):
Young's modulus: E"200 000MPa
Poisson's ratio: l"0)3

Figure 6. Compression-shear test: testing system and location of the transducers

transducers measuring the vertical and horizontal displacements of the specimen top and bottom
faces. Figure 6 shows a schematic view of testing system and location of the LVDTs.

Table II shows the material properties of concrete and the corresponding model parameters.
The plate was discretized with four-noded quadrilaterals. Only one-half of the plate was
considered with the central symmetry of the displacements. Figure 7 shows the comparison of the
horizontal load vs. applied (stroke) displacement between the experiment and the two predictions
of the isotropic and anisotropic damage models. Again, the numerical predictions are quite
similar. Figure 8 shows the distributions of damage. Figure 8a shows the distribution of damage
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Figure 8. Compression-shear test: (a) map of damage at point B of the loading history with the anisotropic model; (b) map
of damage at the end of the loading history with the anisotropic model; (c) map of damage at the end of the loading history

with the isotropic model

Figure 7. Compression-shear test: experimental and predicted load vs. displacement responses

computed with the anisotropic model at point B of the loading history and Figures 8b and 8c
show the distribution of damage at the end of the load cycle for the two models. In both
simulations, two independent diagonal crack systems develop in the plate, same as in the
experiments. The "rst one when the horizontal load is negative and the second one when it
becomes positive.

Although the isotropic damage model does not contain any directional information, it provides
the same prediction of the crack system. This is, no doubt, due to the crack closure e!ect. Recall

13



Figure 8. Continued

that the plate is subjected to a constant in plane vertical compression. When the horizontal load
changes sign, the principal stresses show change of sign too. The principal directions of the
stresses rotate with an expected amplitude of 453 (from pure compression to pure shear). The
change of sign of the principal stresses is much more important than damage induced anisotropy
because it occurs under compressive loading where damage does not a!ect the response of the
specimen. Damage deactivation occurs and the material sti!ness is locally restored. Crack closure
and damage deactivation confer in fact some directional information to the isotropic material
model. Substitution of equation (13) in equation (4) yields to foregoing relation between the stress
and the e!ective stress with the isotropic model:

p
ij
"(1!d)Sp

ij
Tt
`
#(1!d

#
)Sp

ij
Tt
~

(18)

If we consider a simple shear problem where the (positive) e!ective shear stress is p
t
, we obtain

under plane stress conditions:

p"C
(1!d)p

t
0 0

0 !(1!d
#
)p

t
0

0 0 0D (19)
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Figure 9. Double-edged notched specimen: (a) geometry and loads; (b) "nite element mesh

Clearly, the elastic sti!ness of the material will be isotropic only if d"d
#
which is never the case

according to equation (14), except when d
i
"1 (material completely damaged). Therefore, crack

closure e!ect, in the isotropic damage model, yields an orthotropic elastic sti!ness operator which
contains the loading directions. In this example, the isotropic and anisotropic models provide
close predictions because of crack closure and of the inherent damage deactivation.

4.3. Double-edged notched specimen

On tension-shear problems, the predictions of the two models should not be as close because
damage deactivation may not occur. In order to investigate this possibility, computations on the
double edged notched specimens tested by Nooru-Mohamed37 have been performed. Figure 9a
shows the specimen geometry of the plain concrete panels tested. Their thickness was 50mm. The
panels were loaded by a shear force denoted as P

4
"rst. This load was kept constant while uniaxial

tension was applied to the specimen. The tensile force P was controlled by the relative tensile
displacement d measured in between two points A and A@ as shown in the "gure.

In order to focus on the di!erences between the two damage models, we have removed
plasticity from the constitutive relations. Since plasticity is essentially intended to capture the
inelastic strain which develop in mainly compression, it should not be important in the present
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Table III. Material properties in the double-edged notched specimen

Concrete:
Young's modulus: E"30 000MPa
Poisson's ratio: l"0)2
Tensile strength: f

t
"3MPa which yields e

$
"1]10~4

Fracture energy: G
&
"0)01N/mm

Compressive strength: f
#
"36)5MPA

Other model parameters:
a"12

Loading Apparatus (steel beam):
Young's modulus: E"200 000MPa
Poisson's ratio: l"0)3

Figure 10. Double-edged notched specimen: (a) tensile load vs. vertical displacement for P
4
"5 kN; (b) P

4
"10 kN

Figure 11. Double-edged notched specimen: (a) cracking observed for P
4
"5 kN (after Nooru-Mohamed, 1992);

(b) damage according to the isotropic model for P
4
"5kN; (c) damage according to the anisotropic model for

P
4
"5kN
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Figure 11. Continued
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case where tension is the principal source of material non linearity. Table III shows the material
properties of concrete and the model parameters used in the computations. Figure 9b shows the
"nite element discretization. Note that the steel loading platens employed in the test were also
represented in the "nite element model.

Two tests have been considered with di!erent values of the shear force: P
4
"5 kN and

P
4
"10 kN. Figure 10 shows the predictions according to the two constitutive relations. The

maximum tensile loads are quite similar for the lowest shear force and the predictions of the two
models di!er when shear is increased. It is much demonstrating to compare the evolution of the
maximum tensile force: the experimental data indicate that the maximum tensile force should

Figure 12. Double-edged notched specimen: (a) cracking observed for P
4
"10 kN (after Nooru-Mohamed, 1992); (b) 

damage according to the isotropic model for P
4
"10 kN; (c) damage according to the anisotropic model for P

4
"10 kN 
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Figure 12. Continued

decrease by 15% as shear is increased. The computations with the isotropic damage model yield
exactly the contrary. With the anisotropic model, there is a very slight decrease of the tensile load.
The reason for these di!erences is better illustrated on the maps of damage (Figures 11 and 12).
For the smallest shear load, horizontal cracks develop in the centre of the plate. Both models
provide reasonably accurate predictions compared to the experiments. When P

4
"10 kN, two

curved cracks should develop according to the experimental observation. Still, the isotropic
model predicts that horizontal cracks should propagate while the curved crack propagation is
better approached with the anisotropic damage model. The di!erence observed on the failure
modes explains that the maximum tensile force be di!erent in the two computations. It is in this
situation, on tension shear problems, where we found that the anisotropic model provides
a substantially better prediction compared to the isotropic one.

5. CONCLUSIONS

Isotropic (scalar) damage models are simple to develop and can be easily "tted from uniaxial
experiments. At the same time, damage-induced anisotropy is too delicate to characterize
experimentally. It increases the number of model parameters to be experimentally determined, at
least in the context of phenomenological model where damage is a second- or a fourth-order
tensor. Although it is legitimate to argue that the de"nition of a damage variable should
incorporate some directional information, it is interesting to sort out situations where an
isotropic model may yield equally good predictions in structural analyses.
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In order to perform comparisons, we have started from a generic damage model which is
a simpli"ed version of the microplane model. Damage is de"ned through the relationship between
the overall stress and the e!ective stress in the material. This relation is approximated through
damage surfaces whose interpolation is "xed in advance and can be re"ned if there is a necessity.
In order to avoid a potential bias due to the "tting of the model parameters, the isotropic and
orthotropic damage model considered are based on the same set of parameters, identi"ed from
the same data. Plasticity is coupled to damage in order to capture inelastic residual strains which
occur essentially when the material is subjected to compression. Damage deactivation is also
incorporated in the models.

In structural analyses and when the failure mode is essentially controlled by uniaxial tension,
we found that damage-induced anisotropy is not really required. In fact, damage deactivation due
to crack closure is more important as it introduces anisotropy of the elastic sti!ness. Damage
induced anisotropy seems important when the material is locally subjected to multiaxial
extension, e.g. in shear-tension problems. It is also expected that anisotropy is of central
importance in situations where the loading history is severely non radial with an incremental
growth of damage. This particular point remains to be validated with comparisons on structural
analyses. In this contribution, we intended to compare models with the same evolution of
damage. It should be pointed out that other types of damage growth relations might yield better
descriptions of the tension-shear response of the material within the assumption of isotropic
damage.
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