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Investigation of the interactions between the numerical and 
the modeling errors in the Homogenized Dirichlet 

Projection Method 

Nicolas Moes*, J. Tinsley Oden, Tarek I. Zohdi 
The Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, Taylor Hall 2400, 

Austin, TX 78712, USA 

The Homogenized Dirichlet Projection Method, HDPM. was developed in [1,2] as a systematic technique for analyzing highly­
heterogeneous elastic structures. The method can provide an analysis of structures composed of composite materials with very 
complex microstructure at a fraction of the cost of solving the full fine-scale model. In the present investigation, the HDPM 
is revisited to take into account the unavoidable numerical errors produced in finite element approximations of the associated 
boundary value problems. 

The total error of the HDPM, which now takes into account both for the modeling and numerical errors, is split into several 
terms, each accounting for a parameter in the method. The parameters are: the choice of the homogenized material property, the 
partition into subdomains, the coarse finite element mesh used to solve the homogenized problem and the fine meshes used to 
solve the subdomain problems. Numerical experiments are carried out on 1-D problems for which the exact solutions are easily 
calculated. The experiments reveal that the influence of the coarse and fine meshes are very different. 

When free of numerical error the HDPM is based on four main results. We rewrite these in the framework of the error in 
the constitutive law. This leads to a clear mechanical interpretation of the results. Moreover, it allows us to extend the results to 
nonlinear constitutive laws and to find new properties of the HDPM. Some of the theoretical results are validated for specific 
cases involving known numerical error. 

Finally. explicit a posteriori upper bounds are derived for the total and numerical error. A simple adaptive strategy is presented for 
choosing the fine mesh and the subdomain partition. The strategy is tested on a 1-D model problem. 

1. Introduction 

The Homogenized Dirichlet Projection Method (HDPM) [1,2] is an efficient method for solving large
heterogeneous elastic problems. Basically, the method consists first in solving a homogenized problem 
with uniform material properties. Then, by computing an explicit error bound, the distance between the 
homogenized and exact solution is estimated. On subdomains where this distance is too large, a local 
analysis is performed using the homogenized solution as boundary conditions on the subdomains. This 
produces a perturbation of the homogenized solution which is closer to the exact solution. We refer as 
HDPM solution, the perturbation of the homogenized solution. Thus, the method introduces two types 
of problems: a regularized one with a uniform material property and a local analysis on subdomains 
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with the real fine-scale material properties. In practice, these two problems cannot be solved exactly, 
therefore numerical errors are introduced. 

This paper is the first experimental investigation on the interactions between the numerical and mod­
eling errors in the HDPM. Some theoretical results were already presented in [2]. We consider that 
the homogenized solution is obtained through the classical finite element method using a coarse mesh 
(H-mesh), and that the local solutions, over the subdomains, are obtained with fine meshes (Ii-meshes). 
In this investigation, we neglect the error introduced by the use of iterative solvers and numerical in­
tegration of the stiffness matrices. In order to isolate the numerical influence, we split the total error 
into several terms. Numerical experiments are then carried out on 1-D problems, for which the exact 
solutions are easily calculated. 

The HDPM is based on four results [1 ,2]: 
• an explicit upper bound of the distance between the homogenized solution and the exact fine-scale

solution in the energy norm; 
• the fact that the HDPM solution is closer in the energy norm to the exact solution than the original

homogenized solution; 
• a local bound on the difference between the HDPM and the homogenized solutions;
• an upper bound on the difference between the HDPM and exact solution in the energy norm.

These four results hold when the method is free of numerical errors. An important question then is 
to determine what can be said in the case of numerical errors. This question is also addressed in the 
present paper. 

The exact and homogenized solutions differ because they do not satisfy the same constitutive law. Thus, 
the quality of the homogenized solution may be estimated by the way it satisfies the exact constitutive law. 
This fact makes it possible to rewrite all the main results of the HDPM using the error-in-the-constitutive­
law concept [3], thereby leading to a clear mechanical interpretation of these results. Moreover, written 
in this framework, the HDPM may be extended to problems involving nonlinear constitutive laws. 

Since the modeling error may be expressed as an error in the constitutive law. we are naturally led to 
estimate the numerical error in the same way [3]. Computable a posteriori upper bounds are obtained 
for the total and numerical errors. The estimates are then used in a simple adaptive strategy to adapt 
the h-mesh size and the subdomain size. 

The paper is organized as follows. In Section 2, an outline of the HDPM is given, which takes into 
account the numerical approximations. A decomposition of the total error is also presented. Jn Section 3. 
numerical experiments are carried out on a 1-D problem to analyze the influence of the numerical 
errors. In Section 4, the main results of the HDPM are restated in the error-in-the-constitutive-law 
framework. They are then studied in the presence of numerical errors in Section 5 .  Finally, a posteriori 
error estimation and a simple adaptive strategy for choosing the mesh for the local problems and the 
subdomain partition are proposed and tested on 1-D problems in Section 6. 

2. HDPM with finite element approximation 

2.1. The reference problem

We consider a material body composed of a linearly-elastic material in static equilibrium under the 
action of given body forces/g and surface tractions tg. The domain, fl, occupied by the material body is
considered regular: a simply-connected domain with Lipschitz boundary fJ{l. The boundary f){l consists
of a portion r u where displacements u g are prescribed and a portion rt where tractions tg are prescribed,

8fl =I'uUI'1, I'u n I't = 0. 

The problem to be solved on {l is to find a triple (u, E, u) such that the kinematic constraints (1), the
equilibrium equation (2) and the constitutive law (3) hold: 

2



1E = l( \7u + ( \7u)1) On {1 and U = Ug on I' u; 

\7. <T =-Jg on n and <T. n = tg on rt; 

u =EE on D. 

(1) 

(2) 

(3) 

Here u, E and u are the displacement, strain and stress, respectively and n is the outward normal to
the boundary. The elasticity tensor E is a function of the position x i .e. E = E(x), and describes the
microstructure of the material. 

We remark that by eliminating E and u in (1)-(3), and by taking into account the symmetries of E, 
we have the classical elasticity problem for the displacement field, 

-\7 · ( E'Vu) =Jg on D, U = Ug On I' u, 

A weak formulation of (4) is as follows: 

Find u E V such that B(u, v) = :F( v) \fv E V0• 
where 

E'Vu · n = tg on I' t· 

V = {v E H1(D): v = Ug on I' u } , V0 = {v E H1(D): v = 0 on I' u} , 

B(u, v) = l ( E'Vu): 'Vv dx, :F( v) = r Jg. v dx+ r tg. v ds.
Jn lr t 

2.2. The Homogenized Dirichlet Projection Method

(4) 

(5) 
(6) 

(7) 

Taking into account the unavoidable numerical errors, the HDPM can be summarized by four steps. 
The presentation which follows is valid for any space dimension but is illustrated for the 1-D problem, 
Fig. 1 .  

• Step 1 :  The so-called fine-scale problem, that is characterized by a highly heterogeneous material,
Fig. 1, is replaced by an homogenized problem, Fig. 2, written: 
Find a triple ( u 0, Eo, u0) such that

1 EO = l( \7u0 + ( \7u0n on {1 and UO = Ug on I' u; 

\7. u0 =-Jg on n and u0 ·n = tg on I't; 

u0 = E0E0 on n. 

(8) 

(9) 

(10) 

E0 is the homogenized elasticity tensor, which, for convenience, is assumed to be constant over 
the domain. We note that a weak form of (8)-(10) analogous to (5) can be obtained with B(u, v)
replaced by l30(u0, v) = fn( E0'Vu0): 'Vv dx.

• Step 2: In general, the homogenized problem cannot be solved exactly, so numerical approximations
are introduced. For example, using the finite element method on a mesh parameterized by a mesh
size H (Fig. 3), the finite element solution is denoted by (u0H, Eo,H, u0·H) and satisfies

1 EO,H = l( \7uO,H + ( \7uO,Hn on {1 and UO,H = Ug On I' u; 

f(x) 

t 4 um 1�1rf!!1mmmm1mm1mmm1m111111mm1111111 � El E2 � 

f(x) 

Fig. 1. The reference problem: geometry, loading and material property. The exact solution is denoted by (u, E, u). 

Fig. 2. The homogenized problem whose exact solution is denoted by (u0, E0, u0).
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{ <TO.Ii : V'v dx - { f · V dx - { lg · V ds = 0 V V E yo.//; Jn Jn g lrt ( 11) 

( 12) 

where yo.H c Y0 is an admissible finite element displacement space parameterizcd by the mesh
size H. We assume that yo// belongs to a family of subspaces constructed so that u OJI --+ u 0 E Y 
as H --+ 0. Also note that the finite element strain and stress are only well defined on the interior 
of each element. In other words, there are jumps in the tractions. 

• Step 3: Once the homogenized problem is solved, the domain is partitioned into N subdomains flk ,
k = 1,2, . . . ,N, 

N LJ nk = n, 
k�I 

Fig. 4 shows a uniform partition of the domain in subdomains of size .1. The subdomains are
considered regular, simply connected, with Lipschitz boundary. On each subdomain it is possible 
to estimate the quality of the homogenized solution [1]. On subdomains where the quality of the 
homogenized solution is poor compared with the exact solution, a local analysis is performed. The 
local problem on the k1h subdomain, nk- reads: 
F. d h 

. 1 (-OH -OH -011) h th tm t e tnp e uk· ,Ek' ,uk· sue a 

-0,H _ !(,,-0,1/ + ("-0.lf)t) Ek - 2 
v Uk v Uk 

-OH ')" I' u k. = u g on c Hk n u; 
V' · iT�.11 = -Jg on nk and

and ii �.H = u o.H (13) 

(14) 

(15) 

( 16) 

where fJ[lk denotes the boundary of Dk. The homogenized displacements, u o.1-1, arc imposed on the
boundary of the subdomain, except on the boundary, fJfl, where the actual boundary conditions are
satisfied. Note also that the local analysis is solved with the actual microstructure described by E. 

For the sake of simplicity, we assume that the local analysis is performed on every subdomain, 
but this is seldom the case in application of the HDPM. The final solution (u0·11, €0.H, u0.H) over
the domain is then constructed in the following manner 

N 
u0.H = u0.H + L Ek(ii�.H - u0·11);

k=1 
N 

EO,H = EO.H + '"""' [ (E'l.H - E0,11). L.., k k ' 
k=1 

N 
iTO.H = <TO,H + L Ek ( iT�.H - <T0,11).

k=1 

where Ek is a scalar function defined on fl with a value of unity on fh and zero elsewhere.
Let us define lint as the union of the boundaries of all the subdomain modulo the boundary of

the domain 
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 f(x) 

p --- --- --- �,J u m 1n111 m 1 u m 1 m 1111 mm 1 u LlhiiL:filL:ifil:i;,r/ 
; O.H�----'"- O.H O.H ; ' U LI U U 

Fig. 3. The finite element problem associated with the homogenized problem. The mesh size is H and the finite element solution 
is (u0.H, E

O,H, u0.H). 

Fig. 4. The subdomain problems. The subdomain size is L1. The finite element displacements uO.H are applied at the boundaries 
of the subdomains, in the interior of the domain. The exact solution of the subdomain problems is denoted by (u O.H, "EO,H, u0·H). 

By construction, the displacement field ii o,H is continuous across lint. The normal stresses u0·H n 
are not in general continuous across rint· Let D1 and f2z be two subdomains having a common
boundary. The traction jump [ u0·H · n] on this boundary is defined by

[iT0·H · n] = iT�,H · n1 + iT�.H · n2 

where n; is the outward normal to the boundary for the subdomain i and iT�.H is the stress state in
the subdomain i on the boundary (i = 1, 2). 

Finally, if we assume that no numerical error was introduced in Step 2, the solution of the Step 
3 just described will be denoted (ii2, €2, u2) for each subdomain and (ii0, €0, u0) on the whole
domain. The solution (ii2, €2, u2) satisfies problem (13)-(16) with all the H superscripts removed.

• Step 4: In fact, as in the case of the homogenized problem, the subdomain problems cannot be
solved exactly, introducing further error components. On each subdomain, nk, the exact solution, 
(ii�.H , E�.H , iT�'H ), of the problem (13)-(16) is approximated by a finite element solution parameter­

ized by a mesh size h (Fig. 5). This approximate solution is denoted by (ii�·H ·\ €�.H ·\ iT�.H ,h) and
satisfies 

- O,H ,h E -0,H ,h 
<Tk = Ek 

where 

VZ'h = {v E Vt: v = 0 on 8f2k\I't } . 

(17) 

(18) 

(19) 

(20) 

v; is a finite element displacement space parameterized by the mesh size h on subdomain nk. 

I 
. . . . 

I /11111111111111111111111111111 I 1111111111111111111111111111111 111111111111111111111111111111 I 111111111111111111111111111111 
OH . OH O,H � 

u ' mesh size h u ' u 
Fig. 5. The finite element problems associated to the subdomain problems. The mesh size is h and the finite element solution is 

denoted by (uO,H,h' EO,H,h' iTO.H,h). 
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(iio,H,h, £o,H,h, iTo,H,h) and is defined in the following The final solution of the HDPM is denoted by 

manner: 
N iiO,H,h = UO,H + L Ek(ii�,H,h -UO,H); k=I 

N EO,H,h = EO,H + L Ek(E�,H,h - EO,H); k=l 
N uo.H,h = uo.H + L Ek ( u�·H,h _ uo·H). k=1 

As before, we assume that v: c Vk are members of appropriate families of subspace constructed

SO that ii�,H,h --4 ii�,H in Vk as h --4 0, where

vk = {v E H1(flk): v = u0·H on ank \8[} and v = Ug on ank n r u}·

2.3. Decomposition of the error 

Let us summarize the various solutions and their finite element approximations: 
• (u, E = E(u ), u =EE) = the exact solution, also called fine-scale solution;
• (u0, Eo = E(u0), u0 = E0E0) =the homogenized solution; 
• (u0,H, Eo,H = E(u0·H), u0,H = E0Eo,H) = the coarse-mesh finite element approximation of the

homogenized solution; 
• (ii0, £0 = E(ii0), u0 = E£0) =the perturbed solution defined on N subdomains on which the exact
u0 is prescribed as boundary data, on the interior; 

• (iio,H, £o,H = E(u0.H), iTo,H = E£0·H) = the perturbed solution defined on the N subdomains on
which the approximate homogenized solution u o,H is prescribed as boundary data, on the interior;

• (iio,H,\ £o,H,h = E(iio,H,h), iTo,H,h = E£o,H,h) =the fine-mesh approximation of (u0.H, £0.H, u0.H). (iio,H,h, £o,H,h, iTO,H,h) is referred as the HDPM solution. The error in the energy norm associated to this
solution reads: 

where llvllhai = l E\lv: \lv dx. (21 )  

This error depends on  four factors. Two are modeling-related: the homogenized material tensor E0 and
the partition in subdomains; and two are numerically-related: the H-mesh to solve the homogenized 
problem and the h-meshes to solve the subdomain problems. 

We first separate the error into a modeling and a numerical part: 

PROPERTY I. If iio,H,h = u0·H on lint then 

e2 = llu -iiollhni + lliio -iio,H,hllhni + 2 fr [iTo. n] . (uo,H -uo) ds . � r;., ---���� ......... ����--' mode ling numerical 
coupling 

PROOF Owing to the definition of the norm II· 11£(£!) in (21 ) ,  we have 

e2 = llu -iioll�(fl) + lliio -iio,H,hllhni + 2 fn E(\liio -\lu): (\liio,H,h -\liio) dx. 

The third term of the right hand side can be transformed as follows: 

(22) 
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= - 1 (V . iTO -v. u).(iiO,H,h -iio) dx[} 
0 

+ h [(iTo - u). n] . (iio,H,h -iio)ds
Tint 

= { [iTO. nj . (uO,H -UO) ds.}lint 
We have used the fact that u0 = u0 on I'int· D 

The coupling term can be positive or negative. It represents the work done by the jump in traction 
[u0 · n] moving through the difference in the numerical and exact homogenized displacement. Thus, it
depends both on the modeling and numerical errors. On the contrary, if we isolate the numerical error 
coming from the local analysis, we get the following decomposition: 

PROPERTY 2. If iio,H,h = iio,H on lint. then

e2 = llu -iiO,Hllhn) + lliiO,H -iiO,H,hllhni. 
mod.+num. (H-mesh) num. (h-mesh) 

PROOF We have 

e2 = llu -iio,H ll�(n) + llii0,H -iio,H,hllhn) + 2 fn E(Vu0,H -Vu) : (Viio,H,h -Vu0,H) dx
and 

l E(ViiO,H -Vu): (ViiO,H,h -ViiO,H)dx= fncuO,H - u): (ViiO,H,h -ViiO,H)dx 
= -l (V. iTO,H -V. u). (iiO,H,h -UO,H) cJx

0 
+ { [(iTO,H _ u). nj . (iiO,H,h _ UO,H) ds Jrint 

=0. D 

(23) 

Let us now decompose the modeling and numerical errors appearing in Property 1 .  The modeling 
error can be decomposed into the error due to the homogenization process minus that gained by doing 
the local analysis (Property 3). The numerical error can be decomposed into the error due to the H-mesh
approximation and the error due to the h-mesh approximation (Property 4). 
PROPERTY 3. 

llu -ii0llkcnJ = llu -u011hn) -llu0 -u011krn) · '------..-----' '------..-----' _______.. 
modeling error homogenization sudom. analysis 

PROOF We have 

llu -u011�(n) = llu -u011hni - llu0 -u011krni + 2 fn E(Vii0 - Vu): (Vu0 -Vu0) dx 
and 

L E(Vu0-Vu): (Vu0 -Vu0)dx= L(u0-u): (Vu0 -Vu0)dx 

(24) 
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= r [(u0- u) . n] . (ii0 -u0)ds} Tint 
=0 

owing to the fact that u0 = u0 on I'mt· D 
PROPERTY 4. If iio,H,h = u0·H on lint then 

lliio - ii0,H,hll2 - lliio - iio,H112 + lliiO,H -ii0,H,hll2 E(fl) - E(fl) E(fl) · 
numerical num. (H-mesh) num. (h-mesh) 

PROOF We have 

and 

llii0 -iiO,H,hlli(n) = llii0 -ii0,Hlli(n) + llii0•H -iiO,H,hlli(n)
+2 l E(\liio,H -\liio): (\liio,H,h -\liio,H) dx 

r E(\liiO,H -\liio): (\liiO,H,h - \liiO,H)dx = r (uO,H -uo): (\liiO,H,h -\liiO,H)dxJn ln 
= { [(uO,H _ uO). n] . (iiO,H,h _ iiO,H) dsJrmt 
=0. 

Gathering Properties 1 ,  3 and 4, we finally get the following decomposition for the error:

PROPERTY 5. If iio,H,h = u0·H = u0.H on lint, then

2 I I oll2 II o -0112 11-0 -o,Hll2 11-0,H -o,H,1zll2 e = U - U E(fl) - U - U E(fl) + U -U E(fl) + U - ll E(fl) 
+ 2  r [U0 . n] . (u0·H - u0) ds. D Jrmt 

(25) 

(26) 

Let us establish precisely the meaning of each of these terms: 
• The first term, ll u -u011£(fl), is the error introduced by replacing E by E0 in the original problem.

It depends on E0 and it is zero if E0 and E coincide.
• The second term, ll u0 -u011£(fl), is what we gain (minus sign in (26)) in solving the subdomain

problems. It depends on E0 and the subdomain partition, symbolically denoted by .1. As the sub­
domain size tends to zero, .1 ---+ 0 symbolically, this term tends to zero since ii 0 ---+ u 0 and it is zero
if E0 and E coincide. Finally note that the two first terms in the right hand side of (26) form a
quantity that is always greater or equal to zero, by Property 3. 

• The third term, llii0 - u0·H llE(fl), takes into account the numerical errors introduced in solving the
homogenized problems. It depends on E0, .1 and the H -mesh size. It tends to zero as H ---+ 0 since
u0·H ---+ u0. But is not zero in general if E0 and E coincide. We have

llii0 - iiO,Hlli(D) = r [(uO,H - u0) · nj · (uO,H -u0) ds.} lint 
Thus, the third term depends on the quality of the finite element solution u O,H only on the boundary
of the subdomains, lint·

• The fourth term, llii0·H - iio,H,hl!Euii, takes into account the numerical errors introduced by solving
approximately the subdomain problems. It tends to zero as h tends to zero since iio,H.h ----> iio,H and
it is not zero, in general, if E0 and E coincide.
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• The last term in (26) is the coupling term whose sign can be positive or negative. It tends to zero as
H --+ 0 and it is zero if E0 and E coincide. Thus, this term exhibits a coupling between the numerical
and modeling errors.

3. Influence of the numerical errors 

We study here the influence of the h- and H-mesh on the error in connection with a model problem.
The influence of the subdomain size is also studied since it has many features similar to the influence of 
the h-mesh. The study is carried out on the 1-D problem described in Fig. 1. The problem to be solved 
on (0, 1) is to find a triple (u, E, er) such that

E(x) = d;;)
, x E (0, 1) and u(O) = 0, u(l) = O; (27) 

d�x) = -f(x), f(x) = 1, x E (0, 1);

cr(x) = EE(x), x E (0, 1).

(28) 

(29) 

The Young modulus E = E(x) corresponds to a two-phase material with equal volumetric distribution 
of each phase. More precisely, we consider that the rod is composed of 'particles' of size d = 1 / P, P 
being the total number of particles. These particles have a Young modulus of £1 or £2. The partition of 
the phases on the rod is generated randomly. 

3.1. Influence of the h-mesh

The h-mesh size influences only the fourth term in the decomposition of the error (26). We introduce 
the notations 

11"0,H - UO.H,hllE(!!) Enum,h = llu 11£(.(2) '
llu - uo,H.hllE(!l) E = ������-

11 u llE(fl) 
and we first consider the case of one subdomain. So, E = Enum,h = Enum,h(h). We thus study the behavior of
the finite element method for a heterogeneous material. Piecewise linear finite elements are considered. 

3.1.1. Non-matching mesh
Fig. 6 shows the behavior of Enum,h for uniform meshes non matching the particles boundaries (the

number of particles is a power of 10 and the number of elements a power of 2). We observe that the error 
is almost constant during a range of mesh sizes and then starts to decrease with a rate of convergence 
0( Vii). The ratio of the size of the element and the size of the particles is about three or four when the
error starts to decrease. 

The almost constant value of the error before the decrease does not depend on the size of particles 
nor on the size of the elements. It only depends on T, the 'mismatch ratio' £1/ £2. Fig. 7 shows two 

Table 1 . . . 4 
Evolution of the error (%) with the number of elements for several values of the mismatch T. The number of particles is 10 

Number of elements 

T � *102 (l+T) 4 16 64 256 

100 98.0 100 98.2 98.0 98.0 98.0 
10 81.8 100 83.1 81.9 81.7 81.4 

5 66.7 100 69. l 66.8 66.6 66.2 

2 33.3 100 41.2 33.8 33.3 33.0 
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100 1000 
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·x. 

D 

10000 100000 le+06 Nb elements 

Fig. 6. Evolution of the numerical error <'num.h (%) with the number of elements in the h-mesh for several numbers of particles. 
The mismatch is r = 10. 

h 

L--�___,--
�t--

F
->--� � 

E l  E2 

h/2 h/2 

Fig. 7. 1\vo finite element problems having the same numerical error. 

finite element problems for which the numerical errors are identically the same. The relative error is C(-r) = 11 - -rl/(1 + -r). Although our 1-D problem is different from the one described in Fig. 7, the valueC( -r) is very close to the actual value for our problem (Table 1). Note that when -r--> +oo, the error
stays at a level of 100% before a significant decrease. 

The error exhibits three main trends (Fig. 8). First, O(h) convergence is observed until an error 
ll - -rl/(1 + -r) is reached (when T = 1 we observe an order of convergence of unity all the way as h -->0). Then, the error decreases very slowly. Finally, when h is around three times the size of the particle 
we observe a rate of convergence of O(  vh). This rate is in agreement with the classical convergence
results of the finite element method. 

The following empirical formula gives an idea of the number of elements needed per particle, for this 
problem, in order to achieve a numerical error Eo 

d 1 (ll--rl)2 1 _ ,...._, _ --- -
h - rcrit (1 + T) E� . 
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11-tl /(l+t) 

log( l/h) 
Fig. 8. The three main behavior phases of the numerical error <'num.h with non-matching meshes. 

dis the size of the particle and rcrit is the critical ratio h/d needed to obtain a significant decrease of the 
error (rcrit ,....., 3). With 7 = 10, about 5 elements per particle are needed for 20% error, about 20 for 10%
and about 85 for 5% . Due to the poor convergence rates the numerical effort needed is very large. 

Concerning the influence of the subdomain size Ll, we observe that Enum,h increases slightly for a given
h-mesh when L1 is decreased, if E0 = (E-1 )-1. The opposite behavior is observed if E0 = (E). However,
in general, whatever the value of L1 and the choice of E0, the same general behavior as depicted in Fig. 9
may be observed. The only difference is that the limiting value ll - 71/(1 + 7) is no longer valid.

3.1.2. Matching mesh
We now consider the case where the mesh does take into account the boundary of the particles, i.e. a 

node is placed at each boundary between two particles. Fig. 9 shows the evolution of the error with the 
number of elements compared with the previous case where the mesh was not taking into account the 
boundaries of the particles. The error is now dramatically smaller and does not depend on the number 
of particles. The error is simply given by the mesh size h. 

3.2. Influence of the H -mesh

We denote this influence by oH. It gathers the third and last term of the decomposition (26)

OH = E;um H + 'YH 
where 

11-0 -OH ll U - U ' E(!l)Enum,H = 
!lu !IE(!l) ' 

(30) 

(31) 
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Fig. 9. Evolution of the numerical error "num.h (%) with the number of elements in the h-mesh for several numbers of particles. 
The mismatch is r = 10. The a and b cases correspond to meshes not matching and matching the boundary of the particles, 
respectively. 

If the assumptions of the Property 5 holds, one can easily show that 

OH= 
1
2 r [(ua·H+o-O)·n]·(ua,H_ua)ds.

II U II E(fl) } lint 
(32) 

For the 1-D problem under consideration, the finite element solution ua,H is such that u0·H = u0 at
the nodes. So 8H is zero since the subdomains boundaries are chosen so as to coincide with nodes of the 
H-mesh. However, the classical numerical error in the energy norm /lua - u0·HllEo(fl) associated to u0J1
is not zero. This remark highlights the fact that 8H depends only on the quality of u O.fl on the boundary 
of the subdomains and not over the whole domain. 

In order to purposely avoid exact finite element values at node, we modify the problem by introducing 
a non constant section S(x). The problem is now

! (S(x)E(x) dz�x)) = -f(x), 
and the homogenized problem is 

! (S(x)Ea du�x» = -f(x), 

u(O) = 0, 

ua(O) = 0, 

u(l) = 0 with S(x) = ex and f(x) = e-x 

ua(l) = 0. 

Tables 2 and 3 show the behavior of Enum H and 'YH as the H-mesh is refined for two different choices 
of Ea. 

. 

We observe that: 
• The sign of YH can be positive or negative depending on the choice of Ea;
• Enum,H is very stable with respect to the number of subdomains. 'YH is very stable in the case E0 = (E)

but not in the case E0 = (E-1 )-1;

12



Table 2 

Influence of the number of elements in the H-mesh on Enum,H and YH for a variable number of subdomains (N). Ea= (E-1)-1 
and T = 10 

Number of elements in the H-mesh (1000 particles) 

N 4 8 16 32 64 128 256 

4 1.00(-2) 2.53(-3) 6.34(-4) 1.59(-4) 3.97(-5) 9.91(-6) 2.48(-6) Enum,H 16 6.66(-4) 1.67(-4) 4.16(-5) 1.04(-5) 2.60(-6) 
64 4.28(-5) 1.07(-5) 2.67(-6) 

4 -2.70(-4) -6.79(-5) -1.70(-5) -4.25(-6) -1.06(-6) -2.66(-7) -6.64(-8) YH 16 -4.19(-5) -1.05(-5) -2.62(-6) -6.55(-7) -1.64(-7) 
64 -6.69(-6) -1.67(-6) -4.18(-7) 

Table 3 
Influence of the number of elements in the H-mesh on Enum,H and YH for a variable number of subdomains (N). Ea= (E) and 
T = 10 

Number of elements in the H-mesh (1000 particles) 

N 4 8 16 32 64 128 256 

3.33(-3) 8.37(-4) 2.10(-4) 5.24(-5) 1.31(-5) 3.28(-6) 8.19(-7) Enum,H 
4 

16 
64 

2.20(-4) 5.50(-5) 1.38(-5) 3.44(-6) 8.60(-7) 

YH 
4 

16 
64 

4.26(-3) 1.07(-3) 2.68(-4) 6.70(-5) 
2.88(-4) 7.19(-5) 

1.41(-5) 3.53(-6) 8.84(-7) 

1.67(-5) 4.19(-6) 1.05(-6) 
1.80(-5) 4.49(-6) 1.12(-6) 
1.77(-5) 4.42(-6) 1.11(-6) 

• Enum,H and YH are of the order of O(H2) as H --> 0. This comes from the fact that we have super­
convergence at the nodes: (uo,H - u0) � O(H2) .

• Since Enum,H and YH converge a t  the same rate, the influence of Enum,H is quickly negligible in front
of the influence of YH in SH, see (30). 
Finally, to compare the influence of the H-mesh and of the h-mesh on the error, we must compare SH 

to E;um.h and observe that:
• Enum,h is always positive; SH is not necessarily positive or negative;
• Enum,h depends on the quality of ii o,H,h on each subdomain; SH depends on the quality of ii o,H only

on the boundary of the subdomains;
• The rate of convergence of SH as H --> 0 depends on the regularity of the homogenized solution u 0•

On the contrary, the rate of convergence of Enum,h as h --> 0 depends on the regularity of the local
solution u0·H and the type of mesh (matching or non matching mesh) .

3.3. Influence of the subdomain size

Let us introduce the notations 

llu - u0iiE(D) Emod,o = llu llE(D) '
liu0 - u011E(D) Emod,Ll = llu llE(D)

(33) 

Fig. 10  shows the behavior of Emod,Ll as the size of the subdomains, .1, tends to zero. One can observe,
first, a very slow decrease of Emod,Ll· Then, when the size of the subdomains is around three or four times
the size of the particles, Emod,Ll decreases as the square root of the size of the subdomains. Fig. 10  is very 
similar to Fig. 6. The critical subdomain size to obtain a significant decrease of Emod,Ll is the same as the
critical h size to obtain a significant decrease of the numerical error Enum,h: this critical length is three 
to four times the size of the particles. Furthermore, the asymptotic rates of convergence are the same. 
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Fig. 10. Evolution of "'mod • .:! (%) with the number of subdomains, for several numbers of particles. The mismatch is T = 10 and 
Eo = (E-1)-1. 

DJ2 

Fig. 11. These two cases have the same Emod,.:! error. 

DJ2 

There is however, a conceptual difference between Emod,.1 and Enum,h: Emod,.1 is what we gain by solving 
exactly the fine scale problems and Enum,h is the numerical error introduced by solving the local problem. 
Thus, the size of interest for the subdomain is at least three or four times the size of the particles and 
the size of interest for h is at most three or four times the size of the particles. The critical length, three 
to four times the size of particles, separates the long length range (homogenized problem) and the short 
length range (local analysis). 

Fig. 1 1  shows two cases for which Emod,.1 is the same: Emod,.1 = 0.511 - TI/ y'T. With T = 10, we have an
error of 142.3% . This value is very close to the constant error value in Fig. 10. The relationship between 
Figs. 1 1  and 7 is noteworthy. 

4. The error-in-the-constitutive-law framework 

The homogenized solution and the exact solution both fulfill the kinematic constraints (1) and the
equilibrium equation (2). They differ because they do not satisfy the same constitutive law. A way to 
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measure the distance between the two solutions is to compute the distance in the energy norm, between 
the exact and homogenized displacement: e = llu - u0iiE(D)· Another way is to measure the way the
couple ( u, E0) satisfies the fine-scale constitutive law. 

The error on the constitutive law concept is very general and relies on a strong mechanical interpre­
tation. It has been applied to many types of problem. Let us cite the design of error estimator for finite 
element computation [3] and the adjustment of finite element models using vibration tests [4]. For our 
purposes, this concept can be summarized as follows. Suppose we have at hand a stress-strain couple 
(0-, E-) satisfying the kinematic constraints ( 1 )  and the equilibrium equation (2). This couple will be the 
exact solution of the problem if and only if it satisfies the actual constitutive law: 

0- = E£ on D. (34) 

Thus, the quality of the couple (0-, E-) can be measured by the way it satisfies (34).  Let us introduce the 
quantity 71 defined by 

( A A ) * ( A ) ( A ) A A h * ( A ) 1 A E-1 A d ( A ) 1 A E A 71 lT' E = cp lT + 'P E - lT : E' w ere cp lT = 2 lT : lT an cp E = 2 E : E.

cp ( E) is the strain energy and cp * ( 0-) is the complementary energy, its dual via the classical Legendre­
Fenchel transformation, 

cp * ( 0-) = sup ( 0- : E1 - cp ( E1)) • 
E' 

It follows that 71 has the following two classical properties: 

71(0-,E-) ;;:::o vco-,E-);

71(0-, E-) = 0 q. 0- =EE-. 

Thus, a measure of the absolute error associated with the couple ( 0-, E-) may be defined by:

Y(O-, €) = { 2fn 71(0-, €) dx r/2

We shall refer to this error-in-the-constitutive-law approach as the ECL framework. 
It is interesting to note that 

llu - u011E(D) = Y(u,E0) and llullE(D) = Y(u,O). 

(35) 

(36) 

(37) 

(38) 

In other words, the distance between u and u 0 in the energy norm, is equivalent to the way the couple
(u, E0) satisfies the fine-scale constitutive law as measured by the functional Y(·, ·). 

We shall now rewrite and demonstrate the main results of the HDPM in the ECL framework. This 
will lead to a mechanical interpretation of the results. We will also establish a new result. 

• The first result of the HDPM is that it is possible to compute an explicit a posteriori upper bound
for the homogenization error [1]. In particular, the exact solution need not be known to compute 
the bound: 

llu - u011E(D)::;; � where � = llioY'u0iiE(n),
After some manipulations, this result can be proved to be equivalent to 

Y(u, E0)::;; Y(u0, E0). 

(39) 

(40) 

In other words, an upper bound is obtained by replacing in the error in the constitutive law the 
exact stress field by the homogenized field. Y(u0, E0) measures the way the homogenized solution
satisfies the actual behavior. The following Lemma is the key to demonstrate all the main results of 
the HDPM using the ECL framework: 

LEMMA 1. Let (u1, Ei) and (u2, E2) be two stress-strain couples satisfying the following orthog­
onality condition: 
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l ( u I - u2) : ( E1 - Ez) dx = o.

Then, we have 

Y2(u1, Ei) + Y2(u2, E2) = Y2(u1, E2) + Y2(u2, E1)- D 

(41 )  

The pairs (u, t:) and (u0, t:0) satisfy the orthogonality condition. Moreover, Y2(u, t:) = 0 .  So, by
the Lemma 1, we have 

y2(uo, Eo) = y2(u, Eo) + y2(uo, E) (42) 

which proves the upper-bound. D 
• The second principle of the HDPM is that the modeling error is reduced by carrying out the

subdomain analysis [1] .  Suppose that the subdomain analysis is performed on the subdomain fh.
We have

llu - u011E(nkJ � llu - u011E(nk) · 
This result may be rewritten 

Yk(u, £0) � Yk(u, t:0) 
where 

Yk(u, £) = { 2 fn
k 

71(0-, £) dx r/2

( 43)

PROOF OF (43). The pairs (u, t:0) and (o-0, £0) satisfy the orthogonality condition on nk. Then by
Lemma 1, since Yk( o-0, £0) = 0, we have

yz (u Eo) _ y2 (u ;;,O) + y2 (uo Eo) k ' - k ' "' k ' ' (44) 

proving the result. D 
• The [ quantity defined in the first result is not, in general, an upper bound locally, i .e. the following

inequality is not satisfied in general over a given subdomain, nk:

llu - uollE(nk) � [k where [k = llio V'uoll£(!2k) ·
However, the following inequality, which is the third result of the HDPM [1], holds: 

llu0 - u011E(nd � [k. 

(45) 

(46)

In other words, it is possible to determine locally where the local solution process will produce a 
significant change in the homogenized solution. 

In terms of the ECL, we have 

yk ( a-o, Eo) � Yk( uo, Eo). 

PROOF OF (47). Applying the Lemma 1 with the pairs (o-0, £0) and (u0, t:0), we have

Y�(u0, t:0) = Y�(o-0, t:0) + Y�(u0, £0). D 

(47) 

• The fourth principle is that an upper bound also exists for the modeling error obtained after the
subdomain analysis [2]:

llu - u011E(n) �i./! where i./!2 = 2(J(u0) - J(u0)) + [2. (48) 

J(·) is the potential energy associated to the displacement field · : 
J(·) = l rp(E( ·))dx- lfg · (·) dx - l tg · (·)ds. 

t 
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The result (48) may be rewritten 

Y( u, £0) � Y( u0, £0). (49) 

In other words, as for the first result, an upper bound is obtained by replacing the exact stress by 
the homogenized one. 
PROOF OF (49). Applying the Lemma 1 with the pairs (u, E) and (u0, £0), we have

(50) 

The ECL framework has allowed us to find a new mechanical interpretation of the HDPM results: the
bounds are obtained by using the homogenized stress field in the error in the constitutive law expression. 
In the first and last results, it is the global exact stress field u that is replaced by the homogenized one
(see (40) and (49)) and in the third result it is the local stress field u0 that is replaced by the homogenized
stress (see (47)). 

We also note that all the HDPM results now extend to the nonlinear case. In the nonlinear case, all the
proofs remain valid, only the expression of the potential <p and <p* change. Let us inquire the meaning
of the Y functional in the nonlinear case. Assuming that iT satisfies the equilibrium equation (2) and ii 
satisfies the kinematic constraints (1 ), we can write

� Y2(u , E(il )) = .J(il) - II(u)
where .J (ii) is the potential energy and IT( iT) the complementary potential energy:

.J(il)= r <p(E(il))dx- r fg·(il)dx- r tg·(il)ds,Jn Jn lrt 
II(u)=- { <p*(i'T)dx+ { (u·n)·ugds.Jn lru 

(51 )  

(52) 

(53) 

Thus Y is linked to the difference between the potential energy and the complementary potential energy.
It is always positive and zero if and only if the couple ( iT, £ = E(il)) satisfies the behavior described by
the relation: 

(54) 
The main results of the HDPM are stated in terms of explicit upper-bounds. The quality of these

bounds, is defined by the following effectivity indices, all greater than or equal to one: 

� 80 = 0 . 
llu - ll llE(fl), 

- if; 80 = -0 ' 
llu - U llE(fl) 

8 - �k s,k - 11-0 011 'U - U E(flk) 
or equivalently, in terms of the error in the constitutive law: 

Y(uo,Eo) (i - Y(uo,£0) 8 - Yk(uo,Eo) 80= Y(u,EO)' o- Y(u,£0)' s,k-Yk(iTo,Eo)·
We may also define the global sensitivity effectivity index, 8s: 

� Y(u0, E0) 8s= -----llz1 0 - u011E(fll Y(u0, E0) ·

Of course, 85 is bounded from below by the best effectivity over the subdomain and from above by the
worst effectivity index: 

min 8,,k � 8s � max 8,,k.k=I.. .. ,N k=l, ... ,N 

The following property establishes that the effectivity index on the if; estimate, Oo, is always greater than

the effectivity index on the � estimate, 80. The global sensitivity index, 8s, is also always greater than 80.
Finally, 80, 00 and 8, are linked in a relation:
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PROPERTY6. 

- -
• 80 :::;; 80 and 80 = 1 {:} 80 = 1 ;

PROOF. Applying the Lemma 1 to the pairs (u0, E0) and (u0, i0), we obtain since Y(o-0, i0) = 0 
yz(uo, Eo) = yz(uo, io) + yz(uo, Eo). (55) 

Summing relation (44) over all the subdomains yields 

yz(u, Eo) = yz(u, io) + yz(a-o, Eo). (56) 

Dividing relation (55) by relation (56), we obtain 

yz(uo Eo) y2(0-o io) + y2(a-o Eo) y2(uo io) _ e 2 = ' = ' ' :::;; ' = eJ 0 Y2(u, E0) Y2(u, i0) + Y2(u0, E0) Y2(u, i0) 

and clearly 
0
0 = 1 {:} 00 = 1 .  The second relation is obvious since

Y(u0, E0):::;; Y(u, E0) 

(57) 

and the third one is obtained by eliminating the quantity Y( o-0, E0) between the two relations:

8s = 
Y(uo, EO) 

and 0J = 
y2(uo, Eo) - yz(uo, Eo)_ 

0 
Y( o-0, E0) Y2( u, E0) - Y2( o-0, E0) 

Table 4 shows the influence of the number of subdomains on the modeling error 

llu - u011E(!2) Y(u, i0)
E- - ---- llu llE(fl)

- Y(u,0) 

and on the effectivity index 00. We see that
0
0 tends monotonically to 80 as the subdomain size is reduced.

Table 4 
Evolution of the modeling error E and the effectivity index Bo with respect to the number of subdomains, N, for three different 

o _ -I -I _ _ 11u -u011E(flJ _ Y(u.to") - _ values of r. E - (E ) . When N - +oo, E - llUllE(flJ - Y(u,o) and Bo-Bo 

T = lQ T = 50 - -N E Bo E Bo 

1 0. +oo 0. +oo 
2 2.702(-4) 44.70039184 3.114(-4) 45.66017533 
4 1.739(-2) 1.21748697 2.046(-2) 1.21758072 

16 3.505(-2) 1.05768583 4.138(-2) 1.05734892 
64 7.672(-2) 1.01231204 9.128(-2) 1.01205426 

256 1.499(-1) 1.00323777 1.809(-1) 1.00308147 
1024 3.232(-1) 1.00069796 4.959(-1) 1.00041075 
4096 7.648(-1) 1.00012465 1.692 1.00003527 
+oo 1.421 1.00003609 3.460 1.00000844 

T = 100

E Bo 

0. +oo 
3.169(-4) 45.79441773 
2.088(-2) 1.21759302 
4.225(-2) 1.05730230 
9.329(-2) 1.01201730 
1.854(-1) 1.00305648 
6.074(-1) 1.00028513 
2.356 1.00001896 
4.944 1.00000431 
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5. Numerical results for the HDPM 

The results of the HDPM method rely on the assumption that the homogenized and the local solutions 
are free of numerical errors. In practice, this is not the case. Thus, we seek for the meaning of the 
results, mainly the two first results, when numerical errors occur. We keep the error-in-the-constitutive­
law framework allowing us to deal with both linear or nonlinear constitutive laws. 

It is interesting to note that the inequality expressed in ( 40) still holds if the exact fields are replaced by
the approximate fields. Defining (<TH, EH) as the finite element solution obtained with the real material
and the H -mesh, we have 

PROPERTY 7. 

Y(uH, Eo,H) � Y(uo.H, EO,H).

PROOF The proof is obtained by the Lemma 1 using the pairs ( uH, EH) and ( u0,H , Eo,H). The ortho­
gonality condition ( 41) is indeed satisfied at the finite element level. D 

Defining the numerical effectivity index, e0H, as

Y(uo,H Eo,H)(}H - ' 
o - Y(uH,EH) '

we thus have eJ1;? 1 like 00;? 1. Numerical experiments carried out in [1] for 1 -D and 3-D problems
confirm the property, although in this study an iterative solver and approximate spatial integration were 
used in the 3-D case. It was also noticed in [1] that e0H is very stable with respect to the mesh size H.
Finally, note that, as the (estimate (Y(u0 , E0)), Y(u0,H,  Eo.H) is zero if E and E0 coincide, even though
numerical errors occur. 

By performing the local analysis, we know from the second result of the HDPM that we obtain a 
perturbation of the homogenized solution, ii 0, that is closer to the exact solution than u 0. This might
not hold for the numerical approximation of ii 0 because it is not an exact solution of the subdomain
problems. Fortunately, we have the following result: 

PROPERTY 8. Let uZ.H be the restriction of uO,H to nk and EZ'H = E(uZ'H). If (uZ'H - iiZ'H,h) E v; 
then 

Y ( -0,H,h)  ,.,- y ( O,H) k U, Ek "=:; k U, Ek .

PROOF We apply Lemma 1 with the pairs (uZ'H,h' EZ'H,h) and (u, EZ'H). Since (uZ,fl - iiZ'H,h) E v; the
orthogonality condition holds. D 

Finally, we stress that two quantities equivalent when free of numerical errors may become quite 
different in the case of numerical error. For instance, as seen in the previous section, the following two 
expressions of lfi are equivalent:

( -0 0 0 2 ) l/Z 
lfi = 2(.:J(u ) - .:J(u )) + llio V'u llE(n) ,
l/J = Y(uo, 'Eo). 

If we inject the approximate solution, we get 

( )Ip l/Jnuml = 2(.:J(iio,H,h) - .:J(uo,H)) + llioV'uO,H llhn) ' 
l/Jnum2 = Y( UO,H, EO,H,h). 

lfinuml and lfinumz 
no longer coincide since the first one may be the square root of a negative value,

whereas the second one is always well defined. 

19



6. A posteriori error estimation and adaptive strategy 
From (23), we recall that

llu - ucw,hllhni = llu - u0.11lliowJ + llu0·H - uo.H.hll�ull

which can be rewritten 

y2( lT' i/l.lf.h) = y2 ( lT' EO,lf) + y2( o-0.H' EO.H,h). (58) 

The Properties 9, 10 and 11 below give upper-bounds for the three terms in (58). The spaces U and S 
describe the regularity imposed to the displacement and stress field, respectively. 

PROPERTY 9.
Y(u, io,H.h) � Y(O-, EOH,h) I;/ 0- E Sad 

where 

Sad= { u E IL;ym(fl): L u: \i'v dx - F(v) = 0 l:/v E V}, 
JL;ym = { T = h1} E (L2(D)tx", T = T1 } .

PROOF With the pairs ( u, E) and (0-,€0.H,h), Lemma 1 gives

Y2( 0-' EO,H,h) = y2( u, EO,H,h) + Y2( 0-, E) . D 

PROPERTY 10. 
Y(u, i0·H) � Y(O-, i0•H) I:/ 0- E Sad· 

PROOF With the pairs ( u, E) and (0-, €0.H), we get from Lemma 1

y2(0-, io,H) = y2(u, Eo,H) + y2(0-, E) . D 

PROPERTY 11. 
Y(u0·H, io.H,h) � Y(&, i0Jf·h) I:/ &- E Sad 

where 

N 
Sad=II{TEIL;ym(Dd:l T:V'vdx=l fg·vdx+ r tg·vds,

k= 1 nk nk J r 1 r:ank 

l:/v E H1(Dk),v = 0 on lint U I' u}
PROOF With the pairs (u0·H, i0·H) and(&-, io,H.h), we have by Lemma 1

y2(&, EO,H,h) = y2(iTO,H' EO,H.h) + y2(&, EO.H). D 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

Note that this last Property is also valid on each subdomain. Finally, it is worth mentioning that for 
linear elasticity, the relations (61), (62) and (64) may also be obtained using the hyper-circle theorem [5]. 

Let us define the three following effectivity indices, all greater than one: 

e() - -- ' e () - enum num - en um
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where 

e = Y(u, EO,H,h), 

e = Y(u, io,H,h) , 

A Y( A -0 H) emod = U ,  E ' , 

e - Y( ;r.O,H E-0,H,h) num - ._, ' · 

We have the following property: 

(65) 

(66) 

PROPERTY 12. If e and emod are computed with the same stress field 0- E Sad, we have: 8 � 8mod and
() = 1 .  {'} 8mod = 1 .

PR 00 F With the pairs ( 0-, io,H ,h) and ( u0·H , io,H), Lemma 1 gives

y2(u, i0,H,h) = y2(u, i0,H) + y2(iTo,H , EO,H,h). 

Dividing (67) by (58), we get 

82 = 
y2(0-, io,H,h) = y2(u,  io,H) + y2(iTo,H , io,H,h) < y2(0-, io,H) _ 

82 
Y2(u, i0,H,h) Y2(u, i0,H) + Y2(uo,H , EO,H,h) "' Y2(u, i0,H) - mod

and clearly 8mod = 1 .  {'} 8 = 1 .  D 

(67) 

(68) 

From the finite element stresses u0·H, it is possible to build explicitly a stress field o-0.H belonging to

Sad [3]. Similarly, it is possible to build from the finite element stresses iTo,H,h stresses iFo,H,h belonging
to Sad· Thus, the upper bound e and Cnum can be practically computed since EO,H,h is known. On the
contrary, Cmod cannot be computed since EO,H is unknown. However, when e2 � e�um• we can evaluate
emod by Cmod : 

-2 A2 A2 emod = e - enum
and define the effectivity index 

Bmod = Cmod/emod· 
This latter effectivity is not necessarily greater than one. 

Table 5 gives the results for the estimated errors and the effectivity indices for the model problem. 
The relative errors € , Enum and Emod are defined by

€ = e/ llu 11£(!2) > Enum = enum/llu 1 1£(!2) , Emod = emod/llu 11£(!2)· 
One can see that the effectivity indices, () and 8num, are close to one, especially for () .  For the last two
meshes, the modeling error can be evaluated by the difference between the estimated total error and 
the numerical errors and the modeling effectivity index is very good. 

6.1. A simple adaptive strategy

An effective adaptive strategy for the HDPM should be able to (1)  select the best suited homogenized 
material property E0, (2) partition il into subdomains, (3) produce the H-mesh and (4) the h-mesh in

Table 5 
Estimated errors (%) and effectivity indices with a growing number of elements in the h-mesh. There are 1000 particles, 256 

subdomains and the mismatch is T = 1 0

N b  elts € e En urn On urn Emod Omod 
256 1 37.3 1.0001 213.3 1.66 

1024 92.07 1.0001 111.5 1.41 

4096 57.39 1 .0004 34.65 1.07 45.76 0.970 

16384 49.75 1.0005 15.57 1.02 47.27 0.999 
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Table 6 
An example of simple adaptive strategy. 1000 particles, E0 = (E- 1 ) - 1 and T = 10. 
N 

Emod En um 
256 
128 

64 

49.77 
32.21 
21.17 

47.27 
29.1 6  
16.94 

15.57 
13.66 
12.70 

order to minimize the cost of the computation for a prescribed total accuracy. The problem of choosing 
E0 and the partition is already a difficult task by itself. Therefore, we make the following assumptions: 

• The 'best' homogenized material property is known;
• No numerical errors are introduced by the H-mesh;
• We consider a uniform subdomain partition and uniform h-meshes;
• The subdomain analysis is carried out on each subdomain.

We try to adapt the subdomain size and the h-mesh size to reach a prescribed total accuracy Eo % . Instead
of minimizing the cost of the computation, we impose a given sharing of the modeling and numerical 
errors. This sharing is described by the parameter a (0 < a <  1 ) :  Emod = (a)112Eo and Enum = (1 - a)112Eo. 

We propose the following simple strategy: 
• Step 1 :  Start with a subdomain size which is at least three or four times the size of a particle;
• Step 2: With this size of subdomain, use standard h-adaptive finite element method to optimize the

mesh to reach the prescribed numerical accuracy;
• Step 3: Iteratively reduce the number of subdomains, keeping the h-mesh fixed, until the prescribed

modeling accuracy is reached.
As an example, we consider our 1-D problem with 1000 particles and T = 10. The homogenized 

modulus E0 is taken as E0 = (E-1 ) -1 and no errors are introduced by the H -mesh since the exact 
displacements values are obtained at the nodes (cf Section 3.2) .  We target a 20% error divided into 
14.14% for modeling error and 14.14% for the numerical error (a = 0.5). We start with 256 subdomains 
and we optimize the mesh. Note that for our 1-D model problem, if we work with meshes matching the 
particles boundaries the numerical error is quickly very small. In order to get substantial numerical error, 
we choose to work with non matching meshes (our 1-D problem is academic and it is highly advised 
for 2- and 3-D problem to use meshes matching the boundaries of the heterogeneities) .  With 16,384 
elements, we get Enum = 15 .57% . The modeling error is Emod = 47.27% . The number of subdomains, N,
is  decreased to 128 and then to 64. The final error is  21 . 17% . Table 6 gives a summary of the adaptive 
process. 

7. Conclusions 

In the Homogenized Dirichlet Projection Method, numerical errors occur when solving the homog­
enized problem (H-mesh) and when performing the local analysis (h-mesh) .  The influences of the h­
and H-mesh on the error are completely different. The influence of the H-mesh is expressed in terms 
of the difference between the numerical and exact homogenized displacement on the boundary of the 
subdomains. As H --> 0, the total error decreases or increases depending on the choice made for the 
homogenized material property. Conversely, the influence of the h-mesh is expressed as the distance 
in the energy norm between the exact and numerical solution in displacement of the local subdomain 
problems. If the nodes of the h-mesh and the particle boundaries are not matching, the rate of conver­
gence of the numerical error is very poor, 0( Vh) for piecewise linear elements. Moreover, this rate of
convergence is achieved only if the mesh size is smaller than a critical length being three to four times 
the size of the particles. On the contrary, if the h-mesh matches the particle boundaries, the rate is O(h) 
for piecewise linear elements and the critical mesh size is no longer present. 
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Concerning the modeling error, a critical length also appears, the same as for the numerical error: the 
subdomain size should be bigger than three to four times the size of the particles to allow an efficient 
decomposition into subdomains, for our 1 -D model problem. 

Using the ECL concept, we are able to give a mechanical interpretation of the main results of the 
HDPM and to extend them to nonlinear constitutive laws. 

Finally, computable upper bounds for the total and numerical error are obtained and the effectivity 
indices obtained for our 1-D model problem are close to one. A simple adaptive strategy is also proposed 
to choose the size of the subdomain and the h-mesh size. 

Acknowledgment 

The authors gratefully acknowledge the support of this work by the U.S. Office of Naval Research 
under Grant N00014-95-1-0401 and the National Science Foundation under grant ECS-9422707. 

References 

[1] Tarek I. Zohdi, J.T. Oden, and Gregory J. Rodin, Hierarchical modeling of heterogeneous bodies, TI CAM report 96-21, Texas 
Institute for Computational and Applied Mathematics, Austin, 1996. Also to appear in Comput. Methods Appl. Mech. Engrg. 

[2] J.T. Oden and Tarek I. Zohdi, Analysis of elastic structures composed of highly heterogeneous materials, TICAM report 96-56, 
Texas Institute for Computational and Applied Mathematics, Austin, 1996. Also to appear in Comput. Methods Appl. Mech. 
Engrg. 

[3] P. Ladeveze and D. Leguillon, Error estimate procedure in the finite element method and application, SIAM J. Numer. Anal. 
20(3) (1983) 485-509. 

[4] P. Ladeveze and M. Reynier, A localisation method of stiffness errors for the adjustment of F.E. models, In Special issue, 12th 
ASME Mechanical Vibration and Noise Conference, Montreal, 1989. 

[5] W. Prager and J.L. Synge, Approximation in elasticity based on the concept of functions space, Quart. Appl. Math. 5 (1947) 
261-269. 

23


