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ABSTRACT. Under certain loading conditions, instability in loose sand can develop at a shear 
stress level much lower than the critical state failure line. To analyse these types of problems, 
we adopt the micromechanical approach developed earlier for the modelling of granular 
material behaviour. The stress-strain relationship for a granular assembly is determined by 
integrating the behaviour of the inter-particle contacts in all orientations. The constitutive 
model is applied to simulate undrained triaxial and constant-q tests on loose sand. Numerical 
simulations are compared to experimental results in order to evaluate the model’s ability to 
predict the different modes of instability of the granular assembly. With the model we have 
also analysed instability at inter-particle level to observe how it is connected to instability at 
the assembly level.  
RÉSUMÉ. Dans certaines conditions de chargement, des ruptures par instabilité peuvent 
prendre naissance dans les sables lâches pour des niveaux de contraintes très nettement 
inférieurs à ceux correspondant à la plasticité parfaite. Pour analyser ce type de problèmes, 
nous adoptons une approche d’homogénéisation développée précédemment pour la 
modélisation du comportement des matériaux granulaires. La relation contrainte-déformation 
macroscopique est obtenue en intégrant le comportement défini au niveau du contact inter-
granulaire. Le modèle est utilisé pour simuler des essais non drainés et des essais à déviateur 
constant sur un sable lâche. Les résultats de la simulation à l’échelle macroscopique sont 
comparés à des résultats expérimentaux de façon à apprécier la capacité du modèle à prédire 
la naissance de l’instabilité sur ces chemins particuliers. Une analyse à l’échelle des 
différents plans de contact inter-granulaire a également été entreprise afin de relier les 
conditions d’instabilité aux différentes échelles. 
KEYWORDS: granular material, instability, micromechanics, stress-strain relationship, sand. 
MOTS-CLÉS : matériau granulaire, instabilité, micromécanique, relation contrainte-
déformation, sable. 
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1. Introduction

Instability of granular material is an important topic in geotechnical engineering 
because it may lead to catastrophic events such as the collapse of earth structures. 
This phenomenon can be categorised into two major aspects: material instability 
(also known as intrinsic/constitutive instability) and geometrical instability (see, for 
example, (Goddard, 2003)). The development of localisation in a specimen of finite 
size can be studied as a boundary value problem for which initial inhomogeneities, 
as well as boundary conditions, play an important role. However, it has been shown 
by Rudnicki and Rice (1975) that the occurrence of localisation can be predicted at a 
constitutive level. More recently, several authors have demonstrated that other 
modes of instability can occur within granular materials. Darve and co-authors 
(2004, 1998, 2002) have studied the mode of instability which they called diffuse 
failure, using a macroscopic phenomenological approach based on an incrementally 
non-linear model. Nova (1994) has developed similar concepts and demonstrated 
that any non-associated elastoplastic model could exhibit domains of instability 
inside the plastic limit. Experimental evidences support these theoretical approaches. 
For example, in loose sand under undrained conditions, an unstable condition can be 
obtained at a low shear stress level and, subsequently, the strength is reduced to 
almost zero, corresponding to a material state known as static liquefaction.  

In this paper, we present a study of material instability, using the 
micromechanical approach developed by Chang and Hicher (2004). Under this 
approach, the stress-strain relationship for a granular assembly can be determined by 
integrating the behaviour of the inter-particle contacts in all orientations, based on a 
static hypothesis which relates the average stress of the granular assembly to the 
mean field of particle contact forces. Model simulations are compared to 
experimental results obtained on loose Hostun sand along two different loading 
paths: undrained triaxial tests and constant – q tests. 

2. Experimental evidences of instability in sand

2.1. Undrained triaxial tests 

Undrained triaxial tests on Hostun sand with various initial relative densities, Dr, 
are presented in Figure 1 (Hicher, 1998). These results show two distinctive trends 
corresponding to a contractive or a dilative behaviour. For loose sand (small values 
of Dr), a maximum strength is reached in the q- 1 plane, and the peak in the stress-
strain curve is followed by a rapid decrease of the deviatoric stress down to a 
minimum strength. This peak corresponds to the development of material instability 
as will be analysed later on. The minimum strength can be almost zero for a relative 
density close to zero. This represents the phenomenon called static liquefaction. For 
medium dense sand (medium values of Dr), the tendency of softening still occurs at 
the beginning of the loading, but it is followed by an increase of the deviatoric stress 
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up to the ultimate strength, corresponding to the critical state at large deformations. 
For dense sand (high values of Dr), the material is strongly dilatant and no strain 
softening can be observed. Instead, the deviatoric stress continuously increases up to 
the ultimate strength achieved at large deformations. These different evolutions can 
be related to the stress paths followed in a p’- q plane; a continuous decrease of the 
mean effective stress is observed for strongly contractant materials; a decrease 
followed by an increase of the mean effective stress up to the critical state is 
observed for dilatant materials.  

 

 

 

 

 

 

 

 

 

 a) b) 

Figure 1. Experimental results for undrained triaxial tests on Hostun sand with 
various densities: a) stress- strain curves, and b) stress paths (Hicher, 1998) 

If we examine the position of the peak in the stress plane p’-q, we can see that 
instability occurs at a stress state below the critical state failure line. Depending on 
the density of the sand, the position of the peak stress can be more or less distant 
from the failure line. 

2.2. Constant-q tests  

This type of test consists in shearing the specimen to a prescribe stress ratio 
along a drained compression triaxial path, and then in decreasing the mean effective 
stress while keeping constant the deviatoric stress. This stress path can simulate the 
loading condition of a soil element within a slope when a progressive increase in 
pore pressure occurs. 

Several investigations have demonstrated that instability can occur in loose sand 
during a constant-q stress path (Sasitharan et al., 1993; Nova and Imposimato, 1997; 
Gajo et al., 2000; Lade, 2002; Chu and Leong, 2003). Darve et al. (2007) have 
presented similar test results on Hostun sand and observed a sudden collapse of the 
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sand specimen for stress states located well below the critical state failure line. 
Typical results of constant-q tests on loose Hostun sand are presented in Figure 2. 
After an isotropic consolidation stage to a desired initial effective mean pressure 
p’o, a drained triaxial compression test was applied to the sample up to a prescribed 
value of the deviatoric stress q. Then, while keeping q constant, a decrease of the 
mean effective stress p’ was applied by increasing the pore water pressure and 
maintaining constant the total stresses. At a given point of the test, the axial strain 
rate started to increase very rapidly and the deviatoric stress could no longer be kept 
constant. The test is no longer controllable (as defined by Nova (1994)) in the sense 
that the imposed loading program cannot be maintained. As will be shown later, this 
point corresponds to a loss of stability, since any small change of one control 
variable, as defined below, will lead to a catastrophic failure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Experimental results of constant-q tests on loose Hostun sand 

2.3. Analysis of undrained compression and constant-q tests in terms of instability 
condition 

The importance of the stress path can be linked to Hill’s sufficient condition of 
stability (Hill, 1956), which states that a material, progressing from one stress state 
to another, is stable if the second-order work is strictly positive, i.e.:  

2 0ij ijd W d d
 [1] 

Thus, according to Hill’s condition, whether a material is stable or not depends 
not only on the current stress state but also on the direction of the stress increment.  

Because q – 1 and v – '3 are conjugate variables with respect to energy, 
Equation [1] can be re-arranged to give (Darve et al., 2003): 
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d2W = dq d 1 + d '3 d v  [2] 

Thus, as the control variables are dq and d v, the constitutive relation linking the 
stress increments to the strain increments can be rearrange to give a generalized 
mixed relation between generalised incremental stresses and generalised incremental 
strains can be given as: 

3

1

3

1

3

311333
31

13
3

1
1

212
21

12

d

d

d

d

E

E
EE

d

dq
P

v

   

[3] 

where Ei are the pseudo Young moduli and i are the pseudo Poisson’s ratios. As no 
volumetric variation is allowed during undrained tests, Equation [3] is modified as follows: 
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[4] 

Equation [4] indicates that instability will occur only if dq = 0 (peak shear stress); 
the previous equation is therefore: 
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Thus, instability can take place only if the determinant of the matrix P of the 
constitutive relation given by Equation [5] becomes equal to zero. 

As no variation of the shear stress is imposed during constant-q tests (dq = 0), 
Equation [3] can be rewritten as: 
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Taking into account Equation [3], instability will occur in this case only if d v = 0, 
because d '3 >0 is imposed by the loading program. The condition is the same as 
the one obtained for undrained tests (Equation [4]) and both correspond to: 
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Equation [7] is verified for non trivial solutions if det(P) = 0. As described by 
Darve et al. (2004), the condition of instability for constant-q tests coincides with 
the condition for undrained tests, so the stress states in the p’–q plane corresponding 
to the vanishing of the volumetric strain increment during constant-q tests are the 
same as the stress states corresponding to the peaks of the stress-strain curves for the 
undrained tests. Figure 3 presents different results obtained on very loose Hostun 
sand (Dr = 0). One can see that the condition of instability in the p’-q plane is found 
to be the same for undrained and constant-q triaxial tests, in agreement with the 
theoretical developments presented above. This condition defines an instability line 
for a mobilised friction angle equal to 16°, much lower than the friction angle at 
critical state equal to 30°. 
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Figure 3. Instability line for loose Hostun sand determined from undrained triaxial 
and constant-q tests 

3. Stress-strain model based on micromechanical approach 

In this Section, the microstructural model developed by Chang and Hicher 
(2004) is briefly described. In this model, a granular material is viewed as a 
collection of particles. The deformation of a representative volume of the material is 
generated by the mobilisation of particle contacts in all orientations. On each contact 
plane, an auxiliary local coordinate can be established by means of three orthogonal 
unit vectors n, s, t. The vector n is outward normal to the contact plane. Vectors s 
and t are on the contact plane. 
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3.1. Inter-particle behaviour 

Elastic stiffness: the contact stiffness of a contact plane nk  includes normal 

stiffness, nk , and shear stiffness, k t . The elastic stiffness tensor is defined by: 

e e
i ij jf k

 [8] 

which can be related to the contact normal and shear stiffness: 

ttssknnkk jijitjin
e

ij  [9] 

The value of the stiffness for two elastic spheres can be estimated from Hertz-
Mindlin’s formulation (1953). For sand grains, a revised form was adopted (Chang 
et al., 1989), given by: 

0 02 2;
n n

n n
n n t t

g g

f fk k k k
G l G l  

[10] 

where gG  is the elastic modulus for the grains, nf  is the contact force in normal 

direction, l  is the branch length between two particles, kk n t,0 0  and n are material 
constants.  

Plastic yield function: the yield function is assumed to be of the Mohr-Coulomb 
type, defined in a contact-force space (e.g. , ,n s tf f f ): 

( , ) 0p
i nF f T f  [11] 

where ( )P  is a hardening/softening parameter. The shear force T and the rate of 

plastic sliding p are defined as: 

2 2
s tT f f

  
and  

2 2p p p
s t  

[12] 

The hardening function is defined by a hyperbolic curve in p  plane, which 
involves two material constants: p  and 0pk .  

0

0
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p p
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n p p
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f k

 
[13] 
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Plastic flow rule: the plastic sliding often occurs along the tangential direction of 
the contact plane with an upward or downward movement, thus, shear-induced 
dilation/contraction takes place. The dilatancy effect can be described by: 

0tan
p

n
p

n

d T
d f  

[14] 

where the material constant 0  can be considered in most cases equal to the inter-
particle friction angle . On the yield surface, under a loading condition, the shear 
plastic flow is determined by a normality rule applied to the yield function. However, 
the plastic flow in the direction normal to the contact plane is governed by the 
stress-dilatancy equation in Equation [14]. Thus the flow rule is non-associated. 

Elasto-plastic relationship: with the elements discussed above, the incremental 
force-displacement relationship of the inter-particle contact can be obtained. 
Including both elastic and plastic behaviour, this relationship is given by: 

p
i ij jf k

 [15] 

Detailed expression of the elasto-plastic stiffness tensor can be derived in a 
straightforward manner from yield function and flow rule, and, therefore, is not 
given here. 

3.2. Influence of void ratio on p  

The resistance against sliding in a contact plane is dependent on the degree of 
interlocking by neighbouring particles. The resistance can be related to the packing 
void ratio e by: 

tan tan
m

c
p

e
e  [16] 

where m is a material constant (Biarez and Hicher, 1994) and ec corresponds to the 
critical void ratio for a given state of stress. For dense packing, ec/e is greater than 1 
and therefore the apparent inter-particle friction angle p  is greater than the internal 

friction angle . When the packing structure dilates, the degree of interlocking and 
the apparent friction angle is reduced, which results in a strain-softening 
phenomenon. For loose packing, the apparent friction angle p  is smaller than the 

internal friction angle  and increases during the material contraction. 

The critical void ratio ec is a function of the mean stress applied to the overall 
assembly and can be written as follows (Schofield, Wroth, 1968): 
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logce p       or      logc ref
ref
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 [17] 

where  and  are two material constants, p’ is the mean stress of the packing, and 
( refe , refp ) is a reference point on the critical state line. 

3.3. Micro-macro relationship 

The stress-strain relationship for an assembly can be determined by integrating 
the behaviour of inter-particle contacts in all orientations. In the integration process, 
a micro-macro relationship is required. Following the Love-Weber approach, the 
stress increment can be obtained by the contact forces and branch vectors for all 
contacts (Christofferson et al., 1981; Rothenburg and Salvadurai, 1981), as follows: 

1

1 N

ij j if l
V  

[18] 

The mean force on the contact plane of each orientation is: 

1
j ij ik kf A l V

 [19] 

where the branch vector kl  is defined as the vector joining the centres of two 

particles, and the fabric tensor is defined as 
1

N

ik i kA l l . 

Using the principle of energy balance, which states that the work done in a 
representative volume element is equal to the work done on all inter-cluster planes 
within the element, 

j

N

jijij f
V

u
1

,
1

 
[20] 

From Equations [19] and [20], we obtain the relation between the global strain 
and the inter-particle displacement: 

1
,

1

N

j i ik j ku A l
 [21] 

3.4. Stress-strain relationship 

From Equations [15], [18], and [21], the following relationship between stress 
increment and strain increment can be obtained: 
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[22] 

When the contact number N is sufficiently large in an isotropic packing, the 
summation of the compliance tensor in Equation [22] and the summation of the 
fabric tensor in Equation [19] can be written in integral form, given by: 

/2 2 11 1

0 0
, , , sin

2
ep

ijmp ik mn jp k n
NVC A A k l l d d

 
 [23] 

and: 

/ 2 2

0 0
, , sin

2ik i k
NA l l d d

 [24] 

The integration of Equations [23] and [24] in a spherical coordinate can be 
carried out numerically by using Gauss integration points over the surface of the 
sphere.  

4. Model performances 

The model needs a set of input parameters, such as mean particle size, particle 
stiffness, inter-particle friction, initial porosity, and parameters defining the critical 
state of the sand. The mean size of the particle for fine Hostun sand is d = 0.4 mm. 
The inter-particle elastic constant 0nk is assumed to be equal to 61000 N/mm.  

The total number of contacts per unit volume changes during the deformation. 
Using the experimental data by Oda (1977) for three mixtures of spheres, the total 
number of contact per unit volume can be approximately related to the void ratio by 
the following expression: 

0 0

0

1
1

e eN N
V V e e

 
[25] 

where e0 is the initial void ratio of the granular assembly. This equation is used to 
account for the evolution of the contact number per unit volume. The initial contact 
number per unit volume can be obtained by matching the predicted and 
experimentally measured elastic modulus for specimens with different void ratios 
(Hicher, Chang, 2007). 

The value of kt0 / kn0 is commonly about 0.4, corresponding to a Poisson’s ratio 
for Hostun Sand  = 0.2 and the exponent n = 0.5. From drained triaxial test results, 
we were able to derive the values of the two parameters corresponding to the 
position of the critical state in the e-p’ plane: = 0.2 and pref = 0.01 MPa for  
eref = emax = 1. In Equation [16], the value of m = 1 was determined from the test 
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results. The values of kp0 are assumed to be same as the elastic stiffness kp0 = kn. The 
set of parameters for fine Hostun sand is presented in Table 1. The model 
performances will be demonstrated in the following sections by comparing the 
predicted and measured stress-strain behaviour. 

Table 1. Model parameters for fine Hostun sand 

eref pref (MPa)  (°) 0(°) m

1 0.01 0.2 30 30 1 

4.1. Undrained triaxial tests 
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Figure 4. Model predictions for undrained triaxial tests on Hostun sand with 
various relative densities 

Figure 4 presents numerical results for undrained triaxial tests on Hostun sand 
with various initial void ratios, corresponding to relative densities between 0.05 
and 1. Both predicted stress-strain curves and stress paths are in agreement with the 
experimental curves in Figure 1. Results indicate that the model is capable of 
capturing the general trend observed for contractive and dilative sands. In order to 
examine the inception of instability, the predicted shear stress and second-order 
work are plotted against the shear strain in Figure 5 for a test on loose Hostun sand 
with an initial confining stress 3c = 300 kPa. For undrained conditions 

( 0vd ), the second-order work is reduced to 2d W dq d  where  is the 
deviatoric strain. As discussed in Section 2.3, since the deviatoric strain increases 
continuously, d  is always positive and the second-order work can become non-
positive if and only if 0dq  (i.e., decrease in q). Figure 5 shows that instability 
begins at the shear stress peak. The second-order work is positive before the peak 
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stress. After the peak, the second-order work remains negative and approaches zero 
at critical state. The numerical simulations can be carried out after the peak because 
the control variable is the vertical strain 1 and not the deviatoric stress q. 

It should be noted that the undrained condition imposed in the tests is taken into 
account in the modelling by the condition of no volume change, i.e., isochoric 
condition. The instability is therefore not triggered by the pore pressure built up, but 
rather tests on a dry loose sand specimen have also led to the same instability mode 
(Lanier, Block, 1989). 

Figure 5. Predicted second-order work and stress-strain curves for undrained 
triaxial test on loose Hostun sand 

4.2. Constant-q tests  

Similarly, we also used the parameters in Table 1 to predict the results of 
constant-q tests on loose Hostun sand. The predicted and measured results for the 
confining stress 3c = 300 kPa are presented in Figure 6. The initial part of 

the vp  curve shows that, as the mean stress p decreases, the volume increases. 
This trend continues until a certain point where the volume starts to decrease. For 
constant-q tests ( 0dq ), according to Equation [1], the second-order work is 

reduced to 2
vd W dp d . Since the mean stress is progressively decreased 

(i.e., 0dp ), the second-order work becomes negative if and only if 0vd  
(i.e., the volume contracts). Thus the onset of instability corresponds to the peak of 
the vp curve, which is well reproduced by the model simulation. As for the 
undrained tests discussed previously, the numerical simulations can be carried out 
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after the instability condition because the control variable is the mean effective 
stress p’ and not the volume change v.  
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Figure 6. Comparison of predicted and measured results for constant-q test  
on Hostun sand 

4.3. Summary of the condition of instability for loose Hostun sand 
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Figure 7. Comparison of predicted and measured instability condition for loose 
Hostun sand determined from undrained triaxial and constant-q tests 
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Instability conditions obtained by numerical simulations of undrained 
compression and constant-q tests are plotted in the p’-q plane together with the 
experimental results presented in Section 2.3 (Figure 7). One can see that the model 
is capable of predicting very accurately the condition of instability associated with 
these two types of tests. The position of the instability line determined by the model 
simulations is in very good agreement with the position obtained experimentally. 

4.4. Local plane behaviour 

In order to gain insight of the material behaviour at the inter-particle level, we 
selected several contact planes oriented in six different directions indicated by the 
branch vectors, as shown in Figure 8. The six directions are defined by the angle  
between the vector n perpendicular to the contact plane and the vertical axis. A 
larger value of  indicates a more inclined contact plane. 

       

Figure 8. Orientations of branch vectors for the inter-particle contact planes 
selected in the analysis 

In a loaded assembly, the forces are different on each contact plane. In order to 
obtain a more direct comparison between the local and the overall stress-strain 
behaviour, we retained the following variables, local strain and local stress, instead 
of inter-particle force and inter-particle displacement. For this purpose, we define a 
local normal stress / 3nf Nl V  and a local shear stress / 3rf Nl V , 
where l is the branch length and N/V is the total number of contacts per unit volume. 
The corresponding local normal strain is defined as /n l  and the local 

shear strain is defined as /r l . 

The local stress paths in the six contact planes are plotted in Figure 9. Since the 
local stresses are related to the stresses applied to the overall assembly by the static 
hypothesis, the local stresses on each contact plane can be determined from the 
applied stresses, even though they are different on each plane. At any given moment, 
the maximum local shear stress is located in the 45° inclined plane. The less-inclined 
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planes (oriented more horizontally) carry normal forces larger than the more-
inclined planes (oriented more vertically). 

 

 

 

 

 

 

 

 

 

 

Figure 9. Comparison of local stress paths for various inter-particle contact planes  

In Figure 9, the circular points on each curve correspond to the moment when the 
peak stress point occurs in Figure 5. It indicates that all contact planes experience a 
reduction of the contact shear force after the occurrence of the peak stress. Since the 
local stress paths for all contact planes display a softening behaviour, it is of interest 
to know whether all contact planes experience instability at once. 

 

 

 

 

 

 

 
 

 
Figure 10. Comparison of second-order work in various inter-particle contact planes 

In order to answer this question, we computed the second-order work for each 
individual plane. Note that in an undrained test, the overall volume change is zero, 
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second-order work for the th contact plane, expressed in terms of local stress and 
local strain, is given by: 

2d W d d d d  [26] 

The second-order work for the six contact planes is plotted in Figure 10. For the 
two less-inclined contact planes at 17.9° and 28.3°, the second-order work is always 
positive, therefore, these two planes remain stable during the entire undrained 
triaxial test. On the contrary, for the four more-inclined contact planes oriented 
between 45° and 72°, the second-order work displays negative values but does not 
become negative simultaneously in each plane. Instability occurs first in the two 
contact planes with inclination angles 45° and 54.7°. After a few additional load 
steps, instability occurs subsequently in the contact planes with inclination angles 
70.4° and 72°. Thus, even though the local stress paths in all the planes show a 
softening behaviour, only a part of the contact planes experience instability, but at 
different times.  

 

 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 11. Local stress-strain curves for inter-particle contact planes with inclined 
angles 17.9° and 28.3° 
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The assembly instability occurs only when few contact planes (inclined at  
45°-54.7°) start to become unstable. Even though the majority of the inter-particle 
planes are still stable at this time, the unstable condition of the few planes is severe 
enough for the overall assembly to experience instability. This can be seen from the 
negative sum of the second-order work for all the planes at this point.  

To examine more deeply the behaviour of each individual contact plane, we 
plotted the local normal stress-strain curves and local shear stress-strain curves for 
four contact planes. The less-inclined planes (17.9°, 28.3°) are plotted in Figure 11 
and the more-inclined planes (54.7°, 70.4°) are plotted in Figure 12. Initially, the 
specimen is isotropically consolidated to 0.3 MPa and then sheared in undrained 
condition. In the local normal stress-strain curves in Figures 11 and 12, the part 
corresponding to the isotropic consolidation is plotted as a dotted line up to 0.3 MPa. 
From that point on, the curve represents the local response during undrained shear 
loading. The isotropic consolidation is not displayed in the local shear stress-strain 
curves. The entire curve represents the local response during the undrained shear 
loading stage. The four circular points marked on each curve correspond to the four 
loading stages in Figure 5.  

Figure 12. Local stress-strain curves for inter-particle contact planes with inclined 
angles 54.7° and 70.4° 
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It can be observed, in the less-inclined planes, that the local normal strain 
expands as the normal stress is released. Thus, the second-order work due to the 
normal stress is positive ( 0d d ). It can also be observed that the local 
shear stress increases monotonically with the local shear strain until the peak is 
reached. After the peak, the local shear stress decreases with the local shear strain, 
producing a positive second-order work ( 0d d ). Thus, the overall second-
order work is always positive.  

On the plane with an inclination angle of 70.4° (Figure 12), the normal behaviour 
is similar to the one corresponding to the less-inclined planes, i.e., the local normal 
strain expands as the normal stress is released ( 0d d ). However, the 
behaviour is reversed on the plane with an inclination angle of 54.7°, since, when 
the local normal stress is released, the local normal strain contracts rather than 
expands, producing large negative second-order work 0d d .  

The local shear behaviour for the more-inclined planes is also reversed. After the 
peak stress is reached, the shear stress starts to decrease as the shear strain continues 
to increase, showing a softening pattern and producing a large negative second-order 
work 0d d . The overall second-order works for the more-inclined planes 
are negative. The behaviour is dominated by an instable condition. 

5. Summary and Conclusion 

According to Hill’s condition, whether a material is stable or not depends not 
only on the current stress state but also on the direction of the stress increment. 
Thus, under specific loading conditions, loose sand can remain stable until the 
critical state failure line is reached. However, under other loading conditions, loose 
sand can succumb to instability at a shear stress level much lower than the critical 
state failure line. Therefore, the usual design concept in geotechnical engineering is 
likely to overestimate the soil strength, which can cause catastrophic collapse of 
earth slopes.  

A micromechanical approach has been adopted for the analysis of this type of 
instability problem. The model considers the material as an assembly of particles. 
The stress-strain relationship for the assembly is determined by integrating the 
behaviour of the inter-particle contacts in all orientations. The inter-particle contact 
is assumed to have an elasto-plastic behaviour.  

The constitutive model has been used to simulate undrained triaxial tests and 
constant-q tests. The comparison between experimental and predicted results has 
shown the capability of the model for obtaining the modes of instability at the 
assembly level. In particular, the position of the instability line, the same for these 
two types of tests in the p’-q plane, has been predicted with very good accuracy by 
the model simulations.  
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Analysis at the inter-particle contact level during an undrained triaxial test has 
shown that only a few inter-particle planes are unstable at the onset of the assembly 
instability. Afterwards, strain softening begins with a reduction of the overall shear 
stress, and progressively, more inter-particle contact planes become unstable.  
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