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with a theoretical question as to the definition of instabilities in a granular
ormulation at the microscopic level. Recently, this question has taken up much
rgence of intriguing failure modes such as diffuse failure associated to unstable
erials and microstructural instabilities. An analysis of the second-order work as
riterion to detect instabilities is conducted both at the macroscopic and micro-
ge deformations. On the basis of a micromechanical analysis of a body consist-
ng particles in a representative element volume (REV), a general formula is
icroscopic second-order work involving local variables on the grain scale. The
of a configurational term that involves contact forces between neighboring
consisting of the mechanical unbalance of intergranular forces under dynamics
resent analysis is thought to serve as a clarification of the question of failure in

transition from static to a dynamic regime with release of kinetic energy orig-
ral interactions.
1. Introduction

The theoretical study of instabilities in random heterogeneous
media has proved to be an interesting pursuit in the development
of a proper continuum framework for defining instability in
geomaterials. Its influence transcends the scales down to the micro
level and extends beyond applications that are being herein con-
templated. In this present work, we are specifically interested in
establishing a linkage between macroscopic and microscopic insta-
bilities and their respective mathematical expressions through a
theoretical analysis which bridges the two scales.

The microstructural investigation of instabilities has already re-
ceived much attention in the past several years. While one of the
ambitions was to elucidate which basic microstructural aspects
lead to a macroscopic instability, a prime obstacle is the diversity
in the definition of the notion of instability, as highlighted in Bagi
(2007). According to the definition proposed by Bagi, which is in
line with Lyapunov’s definition, an equilibrium mechanical state
of a given material system is considered unstable if its kinetic en-
ergy increases in a finite way under an infinitesimal load increase
t).

1

(disturbance). This increase in kinetic energy corresponds to a
transition (which is basically a bifurcation1) from a quasi-static re-
gime toward a dynamical one (Nicot et al., 2009; Darve et al., 2007;
Daouadji et al., 2010). The dynamical regime is associated with a fail-
ure process that can be either diffuse or localized.

It is commonly acknowledged, with the exclusion of flutter
instabilities, that a general and necessary condition for instability
to occur in rate-independent materials is given by the so-called
‘‘second-order work criterion’’, which corresponds to the loss of
positive definiteness of the elasto-plastic tangent constitutive ma-
trix (Hill, 1958; Bigoni and Hueckel, 1991; Petrick, 1993; Challamel
et al., 2010; see also experimental contributions of Lade: Lade and
Pradel, 1990; Lade, 1992). More specifically, excluding flutter
instabilities, a necessary and sufficient condition is that (see for in-
stance Nicot et al., 2011):

– The equilibrium state belongs to the bifurcation domain, in
which the symmetric part of the tangent constitutive operator
admits at least one negative eigenvalue. Indeed, the boundaries
of the bifurcation domain are given by the surface where the
1 A bifurcation can be defined as a discontinuous change in the response of a given
stem, under a continuous evolution of both state and loading variables. Other

efinitions can also be found in the literature.
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determinant of that symmetric part of the constitutive operator
vanishes first and by the plastic limit condition (vanishing of
the constitutive determinant itself). Inside this domain, loading
directions exist along which the second-order work takes nega-
tive values.

– The loading is controlled by mixed parameters, some being
composed of stress components, while the others of strain
components.

– The mixed control parameters impose a loading direction asso-
ciated with a negative value of the second-order work.

In non-associated plasticity, it turns out that the elasto-plastic
matrix is non-symmetric and as such, the emerging bifurcation do-
main is bounded by an outer surface given by the plastic limit condi-
tion and an inner surface defined by the first vanishing values of the
determinant of the symmetric part of the constitutive matrix (Darve
et al., 2004; Nicot et al., 2007a; Wan et al., 2011). Within such a bifur-
cation domain, the second order work lends itself to the detection of
a variety of unstable states involving either plastic strain localization
or diffuse deformation (Nicot and Darve, 2011b). In this context, the
second order work plays a fundamental role in the analysis of diver-
gence instabilities not only in geomechanics (by virtue of geomate-
rials being intrinsically non-associated), but also in structural
mechanics where the stiffness matrix is non-symmetric due to
non-conservative or dissipative forces (Challamel et al., 2010).
Viewed at the macroscopic level where a representative elementary
volume (REV) is invoked, the second-order work can be computed as
the inner product of the Piola–Kirchhoff incremental stress tensor
and the spatial gradient of the incremental displacement.

Moreover, the microstructural origin of the existence of an
unstable state and the dynamical regime that ensues (depending
on the loading conditions) is thought to be linked to the stability
of elementary grain assemblies at an intermediate, mesoscopic
scale (Kuhn and Chang, 2006; Tordesillas and Muthuswamy,
2009; Tordesillas et al., 2010), including both cluster patterns of
grains (n-grains cycles) and linear patterns (force chains). The sta-
bility of these patterns directly depends upon the possible relative
motion of each grain, and therefore on the constitutive behavior on
the contact scale (Kuhn and Chang, 2006; Valanis and Peters, 1996;
Bazant and Cedolin, 1991).

From the above discussion, it becomes clear that a proper local
variable that can be related to the macroscopic second-order work
is needed as an indicator of local stability. Along these lines, a dis-
crete definition of second-order work was proposed by Nicot and
Darve (2007) at the microscopic level (i.e. the grain level), by
involving local microstructural variables such as the inter-granular
incremental force and the inter-granular incremental displacement
at a contact point.

The objective of this paper is to discuss whether there is a con-
nection between macroscopic second-order work and the sum of
microscopic second-order work contributions from all grain con-
tacts inside the REV so as to establish a general framework relating
second-order work to microstructure. According to previous
numerical investigations based on the discrete element method
(DEM) reported in Nicot et al. (2007b, 2009), it appears that replac-
ing the macroscopic second-order work with the sum of all indi-
vidual microscopic second-order works in a REV is only valid
when deformations are small (this is the case, for example, when
all contacts behave elastically). As soon as large deformations ap-
pear in the system, the above two do not agree anymore since
important microstructural rearrangements develop, associated in
general with outbursts in kinetic energy.

In order to elucidate such a difference between the macroscopic
second-order work and the sum of individual microscopic second-
order works, a theoretical analysis of basic notions of stress and
material description in a body consisting of interacting particles
2

is first presented. After recalling Lagrangian and Eulerian formula-
tions of the macroscopic second-order work (Section 2), we finally
elaborate the microscopic counterparts (Section 3). Following a
micromechanical analysis, the difference between expressions of
the second-order work at the two scales is attributed to the local
unbalance of interparticle forces due to local dynamic effects in-
duced by local granular avalanches occurring in the plastic defor-
mation regime.

Throughout this paper, time and spatial derivatives of any
variable w will be distinguished by denoting dw the time differen-
tiation of w (defined as the product of the particulate derivative _w
and the infinitesimal time incrementdt) with respect to a given ref-
erence frame, and by denoting dw the spatial differentiation of w,
with dw = (ow/oxi)d xi. For any (first- or second-order) tensor A, At

denotes the transpose tensor. In addition, the developments ex-
pounded in this work pertain to large strains.
2. Instability, kinetic energy and second-order work

As one of the main positions taken in the introduction, a
material point at a given mechanical (stress–strain) state during
loading history is eminently unstable if loading conditions exist
such that a transition from a quasistatic regime to a dynamical oc-
curs with an increase in kinetic energy. Hence, in this section, the
link between the increase in kinetic energy and the second-order
work is reviewed.

Consider a material body of volume V0 enclosed by boundary
(C0) in an initial configuration C0 so as to describe its motion under
external loading in an incremental formulation. Following a certain
loading history, the body is in a strained configuration C and occu-
pies a volume V of boundary (C), in equilibrium under a prescribed
external loading. This loading is controlled by specific static or
kinematic parameters, referred to as the control parameters.

Let the transformation v associating each material point �x of the
current configuration C with a corresponding material point X of
the initial configuration C0 be introduced such that �x ¼ vðXÞ. The
continuity of matter ensures that the map v is bijective. Then,
any field f ð�xÞ of the current positions �x can be transformed into a

field ~f ðXÞ ¼ f ð�xÞ of the initial positions. When no confusion is pos-
sible X, the notation ‘‘�’’ will be omitted. Since the map v is bijec-

tive, the Jacobian J of the tangent linear transformation eF is strictly
positive, with the latter being a function of the positions X andeF ij ¼ oxi=oXj. The displacement field �uð�xÞ of material points �x
between both initial and current configurations is defined by the
relation �x ¼ vðXÞ ¼ X þ �uð�xÞ ¼ X þ �~uðXÞ.

The current configuration C at time t is considered to be an equi-
librium state. Thus, both the kinetic energy and its rate for the mate-
rial system in the current configuration C are zero. The second-order
time differentiation of the kinetic energy written in Lagrangian
description (Nicot et al., 2007a; Nicot and Darve, 2007) is:

d2Ec tð Þ ¼
Z

C0

dfid~uidS0 �
Z

V0

dPij
o d~uið Þ
oXj

dV0 ð1Þ

where P is the first Piola–Kirchoff stress tensor and �f the current
forces applied to the initial (reference) configuration. Eq. (1) intro-
duces explicitly the second-order work which following a semi-
Lagrangian formalism (Hill, 1958) is expressed as:

W2 ¼
Z

V0

dPijdeF ijdV0; deF ij ¼
o dxið Þ
oXj

¼ o duið Þ
oXj

ð2Þ

Despite the Lagrangian description being a natural way of
following the motion of particles of the system, an Eulerian
description can also be envisaged. Thus, the second-order work



formulated in Eulerian description will involve the Cauchy stress
tensor ��r. Using the change in variables �x ¼ vðXÞ, both ��r and P
stress tensors are related through the Piola relation, i.e.

P ¼ J��~r eF�1
� �t

ð3Þ

All terms in Eq. (3) are function of the positions X and, upon dif-
ferentiation and rearranging terms, yields:

dP ¼ Jd��~r eF�1
� �t

þ dJ��~r eF�1
� �t

� J��~r eF�1
� �t

deF� �t eF�1
� �t

ð4Þ

and finally gives:

d��~r ¼ 1
J
dP eF� �t

� dJ
J

��~rþ 1
J
P deF� �t

ð5Þ

When the two configurations C0 and C coincide at time t (as in
an updated Lagrangian description), P ¼ ��~r; F ¼ I and J = 1. How-
ever, as the current configuration C will evolve from time t,
dF – 0 and dJ – 0. Due to the updating of configurations, Eq. (4)
simplifies into:

dP ¼ d��~rþ dJ
J

��~r� ��~r deF� �t

¼ d��~rþ dJ
J

P�P deF� �t

ð6Þ

or

d��~r ¼ dP� dJ
J

PþP deF� �t

ð7Þ

As expected in an Eulerian formulation where the boundaries of
the material body change continuously, the incremental Cauchy
stress tensor in Eq. (7) is composed of three terms:

� dP accounting for the change in forces acting in a fixed
configuration,

� �ðdJ=JÞP accounting for the change in the bulk volume, and

� PðdeFÞt related to the change in the geometrical configuration
under constant forces.

Finally, substituting Eq. (4) into Eq. (2), the second-order work
expressed in terms of Cauchy stress is given by

W2 ¼
Z

V0

J d��~rþ dJ
J

��~r� ��~r eF�1
� �t

deF� �t
 ! eF� �t

: deFdV0 ð8Þ

Recalling that for any matrices A;B and C:

A : BC
� �

¼ ACt
� �

: B ¼ BtA
� �

: C ð9Þ

Eq. (8) can be rewritten as:

W2 ¼
Z

V0

d��~rþ dJ
J

��~r� ��~r deFeF�1
� �t

 !
: deF eF�1JdV0 ð10Þ

It is worth noting that:

deF ij ¼
oðd euiÞ
oXj

¼ o duið Þ
oxk

oxk

oXj
¼ Lik

eF kjdt ð11Þ

which gives:

Ldt ¼ deFeF�1 ð12Þ

where L ¼ oð _�uÞ=o�x is the velocity gradient tensor, function of
current positions �x.

Then, using the change in variables X ¼ v�1ð�xÞ, and recalling
that dV = JdV0, the integral in Eq. (10) can be expressed in the
current configuration, leading to the Eulerian expression of the
second-order work:
3

W2 ¼
Z

V
d��rþ dJ

J
��r� ��r L

� �t
dt

� �
: Ldt dV ð13Þ

It should be noted that the expression of the second-order work
takes a straightforward form when applied to a material point.
Indeed, if homogeneous conditions exist in volume V, recalling that
d J = JdV/V, Eq. (13) simply becomes:

W2 ¼ V d��rþ dV
V

��r
� �

: Ldt � ��r L
� �t

: L dtð Þ2
� �

ð14Þ

When the two configurations C0 and C coincide at time t (up-
dated Lagrangian configuration), Ldt ¼ dF, and Eq. (14) reads as:

W2 ¼ V d��rþ dV
V

��r
� �

: dF � ��r dF
� �t

: dF
� �

ð15Þ

Noting the symmetry of the Cauchy stress tensor, Eq. (15) can also
be rewritten as:

W2 ¼ Vd��r : Ddt þ dV ��r : Ddt � V ��r dF
� �t

: dF ð16Þ

where D ¼ ðLþ LtÞ=2.
An important consequence of Eq. (16) is that the standard

expression W2 ¼ Vd��r : Ddt is generally not valid.
By contrast, the absence of geometrical effects is a great advan-

tage of the Lagrangian description since the motion is formulated
with respect to a fixed configuration, leading to a straightforward
expression of the second-order work in homogeneous conditions, i.e.

W2 ¼ VdPij
o d euið Þ
oXj

¼ VdPijdeF ij ð17Þ

In the following, an updated Lagrangian configuration will be
adopted: the current configuration stands as the reference configu-
ration, P ¼ ��~r; F ¼ I and J = 1.

3. The second-order work as a link between micro and macro
scales

The problem at hand is now specialized into a homogeneous
volume of granular material comprised of N grains (the homogene-
ity refers here to the material properties of grains, as well as to the
texture – or fabric – of the granular assembly). Throughout the
paper, ‘p’ will denote indiscriminately the grain (as a body) or enu-
merate a particular grain within the assembly such that 1 6 p 6 N.
The shape of each grain ‘p’ is arbitrary. At a given time t, each grain
‘p’ is in contact with np other grains ‘q’ 2 ‘pk’ with k = 1, . . . ,np,
whereas the total number of contacts at this time t within the
assembly is denoted Nc. Boundary particles, belonging to the
boundary oV, are distinguished from internal ones occupying vol-
ume V

_

¼ V ¼ V � oV strictly inside the boundary.
The system is assumed to be in equilibrium at a given time t

under a prescribed external loading. Depending on the type of
loading control, each grain ‘p’ belonging to the boundary oV of
the considered volume is subjected to either a displacement (kine-
matic control) or an external force �f ext;p (static control), possibly
zero.

3.1. The stress tensor

The transmission of forces in granular materials operates at
contacts of adjoining grains, thereby resulting into a macroscopic
average stress at the grain ensemble level. There, we find that the
stress tensor in such a body of volume in equilibrium under external
forces �f ext;p applied to the boundary particles ‘p’ of position �xp can be
defined by the classical Love–Weber formula (Love, 1927; Weber,
1966; Christoffersen et al., 1981; Mehrabadi et al., 1982), i.e.



rij ¼
1
V

X
p2oV

f ext;p
i xp

j ð18Þ

It is useful to transform the above expression in order to introduce
the inter-particle contact forces �f c such that (see Appendix A):

rij ¼
1
V

XNc

c¼1

f c
i lc

j þ
1
V

X
p2V

f p
i xp

j ð19Þ

where �lc is the branch vector relating the centers of contacting par-
ticles, and �f p denotes the resultant force applied to the particle ‘p’. In
the absence of inertial effects or when all particles are in static equi-
librium, the second term in Eq. (19) vanishes. However, this term
may subsist in the presence of internal dynamical effects that arise
from local force unbalances, even if the whole granular body may be
in equilibrium macroscopically. In this connection, we present in
what follows the latter general case.

The summation of a given contact variable wc over all existing
contacts at a given time t can be written in the form:

XNc

c¼1

wc ¼
XN

p¼1

Xnp

k¼1

wp;pk ð20Þ

If the quantity wp,q is set to zero for any pair of particles ‘p’ and ‘q’
not in contact, then it is useful to rewrite Eq. (20) as:

XNc

c¼1

wc ¼
XN

p¼1

Xp

q¼1

wp;q ¼
X
p;q

wc ð21Þ

where the symbol
P

p;q signifies the summation over p and q vary-
ing over [1,N] with q 6 p, and c refers to the contacting pair (p,q).
The benefit of using the form of Eq. (21) is that all summations in-
volve indices p and q varying over a fixed range. Then, the differen-
tiation of term

P
p;qw

c is simply given by

d
X
p;q

wc

 !
¼
X
p;q

dwc ð22Þ

In the Eulerian formulation represented in Eq. (19), the contact
forces, the branch vectors, the location of each particle and the vol-
ume of the specimen are bound to evolve over a given loading his-
tory from an initial configuration C0ð�f c

0;
�lc

0; �x
c
0;V0Þ. Thus, referring to

the initial configuration, the analogous form of the stress tensor in
Lagrangian description is:

Pij ¼
1

V0

X
p;q

f c
i lc0;j þ

1
V0

X
p2V0

f p
i xp

0;j ð23Þ

The differentiation of Eq. (19), at a given time t, yields:

drij ¼
1
V

X
p;q

df c
i lc

j �
dV
V

rij þ
1
V

X
p;q

f c
i dlc

j þ
1
V

X
p2V

df p
i xp

j þ
1
V

�
X
p2V

f p
i dxp

j ð24Þ

which when identified with Eq. (6) and noting dJ = J(oV/V) leads to:

1
V

X
p;q

f c
i dlc

j þ
X
p;q

df c
i lc

j þ
X
p2V

df p
i xp

j þ
X
p2V

f p
i dxp

j

!

¼ 1
J

PikdeF jk þ dPik
eF jk

� �
ð25Þ

We recall that the Lagrangian stress tensor P is by definition com-
puted from the current forces with respect to the fixed and unde-
formed initial configuration. Thus, the time rate of change of P is
found from differentiation of Eq. (23) as:
4

dPij ¼
1

Vo

X
p;q

df c
i lc

o;j þ
1

Vo

X
p2Vo

df p
i xp

o;j ð26Þ

If at time t both initial and current configurations coincide (such as
in a so-called updated Lagrangian setting) �lc ¼ �lc

0; �x
p ¼ �xp

0; F ¼ I, and
J = 1. Eq. (23) becomes:

dPij ¼
1
V

X
p;q

df c
i lc

j þ
1
V

X
p2V

df p
i xp

j ð27Þ

Eq. (25) taken together with the above Eq. (27), and by virtue of Eq.
(23), gives:

1
V

X
p;q

f c
i dlc

j þ
X
p2V

f p
i dxp

j

!
¼ PikdeF jk

¼ 1
V

X
p;q

f c
i deF jklck þ

X
p2V

f p
i deF jkxp

k

!
ð28Þ

Although the above treatment pertains to a general case where
there may exist local interparticle force unbalances, we focus atten-
tion here on the special case these local unbalances may be ne-
glected f p

i ¼ 0
� �

so as to gain some insights in Eq. (28). Then, by
making i = j, and summing up on the repeated indices, we obtain:

1
V

X
p;q

f c
i dlc

i ¼ PikdeF ik ¼
1
V

X
p;q

f c
i deF iklc

k ð29Þ

In the above, we note that the scalar product f c
i dlc

i � deF iklc
k

� �
summed

over all contacts vanishes even though the quantity dlc
i � deF iklc

k

� �
-is

not zero (locally, the change in the branch vectors within a specimen
does not derive from a unique tensor; Cambou et al., 2000; Agnolin
and Kruyt, 2008; Agnolin and Roux, 2008). We also observe that
the term on the right hand side of Eq. (29) refers to the incremental
strain energy within the volume V. Interestingly, the left hand side
term does not work out to be the work done by contact forces, given
that the scalar product involves the branch vector, and not the rela-
tive displacement between a pair of contacting particles.

3.2. A microscopic formulation of the second-order work

The second-order work, as defined in Eq. (15) or (17), refers to a
quantity related to macroscopic entities of a system of interacting
point masses (material points) or discrete particles. In the specific
case of granular materials, it is of interest to express the second-
order work with respect to microscopic variables to appropriately
account for the microstructure of the material. To this end, the
micromechanical derivation of the stress tensor presented in the
previous section constitutes a sound basis.

Recalling that (dJ/J) = (dV/V), time differentiation of Eq. (25)
gives:

1
V

X
p;q

d2f c
i lc

j þ2
X
p;q

df c
i dlc

j þ
X
p;q

f c
i d2lc

j þ
X
p2V

d2f p
i xp

j þ2
X
p2V

df p
i dxp

j þ
X
p2V

f p
i d2xp

j

!

¼1
J

d2Pik
eF jkþ2dPikdeF jkþPikd

2eF jk

� �
ð30Þ

Furthermore, if at time t both initial and current configurations coin-
cide, making i = j and summing over repeated indices, it follows that:X

p;q

d2f c
i lc

i þ 2
X
p;q

df c
i dlc

i þ
X
p;q

f c
i d2lci þ

X
p2V

d2f p
i xp

i þ 2
X
p2V

df p
i dxp

i

þ
X
p2V

f p
i d2xp

i ¼ Vd2Pij þ 2VdPijdeF ij þ VPijd
2eF ij ð31Þ

Recalling Eq. (27), the time differentiation of the incremental
Lagrangian stress tensor dP can be formally written as:
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Fig. 1. Particles in contact. Geometrical description.
d2Pij ¼
1
V

X
p;q

d2f c
i lc

j þ
1
V

X
p2V

d2f p
i xp

j ð32Þ

Substitution of Eqs. (23) and (32) into (31) and noting that
W2 ¼ VdPijdeF ij, lead to the second-order work relationship:

W2 ¼
X
p;q

df c
i dlc

i þ
X
p2V

df p
i dxp

i þ
1
2

X
p;q

f c
i d2lc

i � d2eF ijl
c
j

� �
þ 1

2

X
p2V

f p
i d2xp

i � d2eF ijx
p
j

� �
ð33Þ

which can be transformed by replacing the summation over all con-
tacts with a summation over particles. Thus, the term

P
p;qf c

i d2lc
i can

be expressed as:X
p;q

f c
i d2lc

i ¼
1
2

XN

p¼1

XN

q¼1

f p;q
i d2lq;p

i ð34Þ

where �f p;q denotes the force applied by the particle ‘p’ onto the par-
ticle ‘q’, and �lq;p the branch vector connecting particle ‘q’ to particle
‘p’. When there is no contact between particles ‘p’ and ‘q’, then �f p;q is
obviously zero.

Since lq;p
i ¼ xp

i � xq
i

� �
and f p;q

i ¼ �f q;p
i , Eq. (34) simplifies into:X

p;q

f c
i d2lc

i ¼ �
X
p2V

X
q2V

f q;p
i

 !
d2xp

i

 !
ð35Þ

For an internal particle ‘p’,
P

q2V
�f q;p represents the resultant force �f p

applied by the adjoining particles to the particle ‘p’. For a boundary
particle ‘p’, �f p ¼

P
q2V

�f q;p þ �f ext;p. Thus, Eq. (35) becomes:X
p;q

f c
i d2lc

i ¼ �
X
p2V

f p
i d2xp

i þ
X
p2oV

f ext;p
i d2xp

i ð36Þ

Similarly:X
p;q

f c
i d2eF ijl

c
j ¼ �

X
p2V

f p
i d2eF ijx

p
j þ

X
p2oV

f ext;p
i d2eF ijx

p
j ð37Þ

It then follows that:X
p;q

f c
i d2lc

i � d2eF ijl
c
j

� �
þ
X
p2V

f p
i d2xp

i � d2eF ijx
p
j

� �
¼
X
p2oV

f ext;p
i d2xp

i � d2eF ijx
p
j

� �
ð38Þ

As such, the second-order work in Eq. (33) is reduced to:

W2 ¼
X
p;q

df c
i dlc

i þ
X
p2V

df p
i dxp

i þ
1
2

X
p2oV

f ext;p
i d2xp

i � d2eF ijx
p
j

� �
ð39Þ

Assuming that the loading engenders macro-homogeneous strain
and stress fields within the specimen in the sense given by Hill
(1967), the incremental displacement of a material point of position
X belonging to the boundary oV of the volume is a homogeneous
function of degree one with respect to the position X, so that:

d~ui ¼ dxi ¼
o d~uið Þ
oXj

Xj ¼ oeF ijXj and d2~ui ¼ d2xi ¼ d2eF ijXj ð40Þ

When both initial and current configurations coincide, X ¼ �x with:

dxi ¼ deF ijxj and d2xi ¼ d2eF ijxj ð41Þ

It must be emphasized that Eq. (41) hold for boundary particles
only. The incremental displacement of internal particles deviates

from the affine prediction associated with the gradient tensor deF .
Thus, the following basic relation is derived from Eq. (39):

W2 ¼
X
p;q

df c
i dlc

i þ
X
p2V

df p
i dxp

i ð42Þ

Eq. (42) shows that the micromechanical expression of the second-
order work is the combination of two terms.
5

The first term
P

p;qdf c
i dlc

i involves both contact forces and branch
vectors between adjoining grains. As branch vectors connect the
centers of adjoining grains, this first term depends on the internal
particle topology (packing). It can be regarded therefore as a con-
figurational term. The second term

P
p2Vdf p

i dxp
i of Eq. (42) intro-

duces the incremental unbalanced force d�f p applied to each
particle ‘p’. When inertial effects are small (in quasi-static regime
for example), the contribution of this term becomes negligible
too. However, when rapid particles motions occur, this term is
likely to be no longer negligible. This finding explains why in dis-
crete element simulations, replacing the macroscopic second-order
work with the sum of all individual microscopic second-order
works in a REV is valid only in quasistatic regime. This simplifica-
tion fails as soon as rapid microstructural rearrangements occur,
such as the opening of contacts in the plastic regime, as demon-
strated in Nicot et al. (2007b).

It should be noted that the term df c
i dlc

i can be related to the
microscopic second-order work Wc

2 ¼ df c
i duc

i related to a given con-
tact ‘c’ (Nicot and Darve, 2007; Nicot et al., 2007b). If �f c is the force
applied by the particle ‘p’ onto the particle ‘q’, �lc ¼ �xp � �xq is the
branch vector pointing from particle ‘q’ to particle ‘p’, and d�uc is
the relative displacement of a particle ‘p’ with respect to a particle
‘q’ (see Fig. 1). Since:

d�uc ¼ d�up � d�uq þ �rq;p ^ d �xq � �rp;q ^ d �xp

¼ d�lc þ �rq;p ^ d �xq � �rp;q ^ d �xp ð43Þ

it follows that:

d�f c � d�uc ¼ d�f c � d�lc � �rq;p ^ d�f p;q
� �

� d �xq � �rp;q ^ d�f q;p
� �

� d �xp ð44Þ

which implies:

Wc
2 ¼

X
p;q

df c
i dlc

i

�
X
p;q

�rq;p ^ d�f p;q
� �

� d �xq þ �rp;q ^ d�f q;p
� �

� d �xp
� �

ð45Þ

As a consequence, in the absence of particle rotation, the micro-
scopic second-order work reduces to df c

i dlc
i . In that case:

W2 ¼
X
p;q

Wc
2 þ

X
p2V

df p
i dxp

i ð46Þ

As seen in Eq. (17), the macroscopic second-order work is the inner
product between the incremental Piola–Kirchoff tensor and the
tangent linear transformation. Both incremental terms are related
through the constitutive relation. For this reason, the second-order
work for a material point has the mathematical structure of a



quadratic form associated with the constitutive operator at this
material point (see for instance Nicot et al., 2009, 2010). The prop-
erties of the second-order work (vanishing) are therefore intimately
related to the constitutive properties of the material. By the same
token, the term Wc

2 ¼ df c
i duc

i refers to the microscopic second-order
work, because it is actually a quadratic form associated with the lo-
cal constitutive behavior at the contact scale. Indeed, as both incre-
mental contact forces df c

i and relative displacements duc
i are related

through a constitutive relation df c
i ¼ kc

ijduc
j , where kc

ij is the local
constitutive operator, the product df c

i duc
i leads to kc

ijduc
i duc

j . The alge-
braic features of this quadratic form, with respect to the constitu-
tive properties of the local constitutive operator, were extensively
investigated in a series of papers (Nicot and Darve, 2006, 2007).

One of the main achievements of this investigation, through Eq.
(42), is to shed light on the role played by the term df c

i dlc
i in the

micromechanical definition of the second-order work. As appeared
in Eq. (42), this micromechanical definition introduces explicitly
the term df c

i dlc
i , and not the term df c

i duc
i , even though both are con-

nected as discussed above. This is a rather counter intuitive result
since the product Wc

2 ¼ df c
i duc

i seems to have the same mathemat-
ical structure as that of the macroscopic second-order work. Fur-
thermore, Eq. (42) constitutes the micromechanical expression of
the second-order work that also enables a microstructural investi-
gation of the vanishing of the second-order work, a basic and nec-
essary condition for failure to occur (Darve et al., 2004; Nicot et al.,
2009, 2010). It is desirable to analyze such a derived micro–macro
second-order work relationship with a micromechanical model to
investigate the findings put forth in the first place. In the past, such
a micromechanical model was proposed (Nicot and Darve, 2005)
with some limitations arising from a too restrictive kinematic
localization scheme which assumes an affine projection of macro-
to micro-kinematics. The purpose of a future work consists in
exploring the validity of the derived micro–macro second-order
work relationship by using a newly-developed H-microdirectional
model (Nicot and Darve, 2011a). In this model, the description of
kinematics is enriched by introducing an intermediate scale (at a
mesoscopic level) which implicates a periodic granular structure
within which grains are arranged in a hexagonal pattern. Details
of this mesoscopic treatment can be found in Nicot and Darve
(2011a). A further step will consist of microstructural analyses de-
rived from numerical computations based on a discrete element
method, to track down how a granular mass organizes itself (likely
through an intimate interplay between both the so-called weak
and strong phases) during a failure process.
4. Concluding remarks

Various formulations of the second-order work in discrete gran-
ular media have been presented at differing scales to highlight the
dominant role of microstructure when approaching failure. Starting
from the basic Love–Weber formula that relates the (Cauchy or Pio-
la–Kirchoff) stress tensor to local static variables and a proper
description of kinematics of deformations in a granular assembly,
the second-order work emerges as the sum of a configurational term
involving both contact forces and branch vectors between adjoining
grains (depending therefore on the internal particle topology), plus
a kinetic term involving unbalanced forces between grains that arise
from the dynamical nature of the material response at impending
failure. Especially when the kinematics of the considered granular
body is not controlled on its boundary (the incremental displace-
ment of each boundary particle is not imposed), inertial phenomena
may still occur inside the assembly. The mechanical unbalance of
internal grains may result in dynamic effects marking failure of
the body. When these dynamic effects related to microstructural
rearrangements are negligible, then the second-order work merely
6

reduces to the configurational term (sum of the scalar products of
the contact forces and the branch vectors over all the contacts).
Otherwise, the dynamic counterpart has to be accounted for in the
micromechanical expression of the second-order work.

As the vanishing of the second-order work is believed to be a
relevant indicator of an unstable state for the material (Nicot
et al., 2009), the derived expression should be useful in the better
understanding of microstructural mechanisms that occur within a
granular assembly in an unstable state, and during the phases lead-
ing to the failure of the material (Tordesillas, 2007; Tordesillas and
Muthuswamy, 2009; Tordesillas et al., 2010).

This investigation opens new perspectives in the understanding
of the key mechanisms leading to the failure of granular speci-
mens. Numerical simulations based on both a micromechanical
model and a discrete element method are now in progress in order
to examine the influence of the internal inertial mechanisms on the
macroscopic destabilization of granular bodies.

Acknowledgments

The authors would like to express their high gratitude to the
French Research Network MeGe (Multiscale and multi-physics
couplings in geo-environmental mechanics GDR CNRS 3176,
2008-2011), for having supported this work.

Appendix A

The Love–Weber formula gives the macroscopic stress tensor
within a REV of volume containing N particles in equilibrium under
the external forces �f ext;p applied to the boundary particles ‘p’ of po-
sition �xp:

rij ¼
1
V

X
p2oV

f ext;p
i xp

j ðA1:1Þ

For each particle ‘p’ of the REV, the resultant force �f p can be ex-
pressed as:

f p
i ¼

X
q2V

f q;p
i þ f ext;p

i ðA1:2Þ

where �f p;q denotes the contact force between both particles ‘p’ and
‘q’ (force exerted by particle ‘p’ onto ‘q’). When these particles are
not in contact, then �f p;q vanishes. In addition, for particles belonging
to the inner volume (excluding the boundary volume), �f ext;p is zero
as well. Thus:

rij ¼
1
V

X
p2V

f ext;p
i xp

j ðA1:3Þ

Starting with Eq. (A1.2), it follows that:

rij ¼
1
V

X
p2V

f p
i xp

j �
1
V

X
p2V

X
q2V

f q;p
i xp

j ðA1:4Þ

Noting that
P

p2V

P
q2V f q;p

i xp
j ¼

P
q2V

P
p2V f p;q

i xq
j (by interchanging ‘p’

with ‘q’), and �f p;q ¼ ��f q;p, we get:X
p2V

X
q2V

f q;p
i xp

j ¼ �
X
p2V

X
q2V

f q;p
i xq

j ¼
1
2

X
p2V

X
q2V

f q;p
i xp

j � xq
j

� �
ðA1:5Þ

Finally,

rij ¼
1
V

X
p2V

f p
i xp

j þ
1
2

X
p2V

X
q2V

f q;p
i xq

j � xp
j

� �
ðA1:6Þ

The term 1
2

P
p2V

P
q2V f q;p

i xq
j � xp

j

� �
represents the summation over

all the Nc contacts ‘c’ between two adjoining particles ‘p’ and ‘q’ of
the product f c

i lc
j , where f c

i ¼ f q;p
i and lc

j ¼ xq
j � xp

j . The alternate form



of the Love–Weber formula, involving internal contact forces, can
therefore be derived, i.e.

rij ¼
1
V

XNc

c¼1

f c
i lcj þ

1
V

X
p2V

f p
i xp

j ðA1:7Þ
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