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Abstrat

The present paper deals with the use of network-based hyperelasti onstitutive

equations in the ontext of thin membranes ination. The study fous on the ina-

tion of plane irular membranes and the materials are assumed to obey Gaussian

and non-Gaussian statistial hains network models. The governing equations of

the ination of axisymmetri thin rubber-like membranes are briey realled. The

material models are implemented in a numerial tool that inorporates an eÆient

B-spline interpolation method and a oupled Newton-Raphson/ar-length solving

algorithm. Two numerial examples are studied: the homogeneous ination of spher-

ial balloons and the ination of initially plane irular membranes. In the seond

example, the ination pro�les and the distributions of extension ratios along the

membrane are extensively analyzed during the ination proess. Both examples

highlight the need of an aurate modeling of the strain-hardening phenomenon in

elastomers.
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1 Introdution

In the last few years, lassial phenomenologial onstitutive equations for

rubber-like solids, suh as Mooney-Rivlin or Ogden models, are progressively

replaed by more physial models based on statistial onsiderations, in var-

ious engineering appliations [1℄. The determination of the material parame-

ters of the onstitutive models is often performed using lassial homogeneous

strain experiments (uniaxial extension or pure shear tests for example). For

biaxial deformation, authors use frequently the bubble ination tehnique,

that onsists in inating an initially plane irular thin membrane (see [16,22℄

and more reently [8,20℄). In this type of experiments, deformations are not

homogeneous and the analysis of experimental data needs eÆient numerial

method to solve the ination problem. The problem of irular membranes in-

ation is lassially solved for phenomenologial rubber-like models. Here, we

present some solutions orresponding with new statistial onstitutive equa-

tions.

The governing equations of the large strains ination of axisymmetri mem-

branes were established by Green and Adkins [11℄. Then, some authors solve

the orresponding problem by diretly integrating the system of ordinary dif-

ferential equations using shooting methods. Both hyperelasti [17,33℄ and vis-

oelasti [30,10℄ onstitutive equations are onsidered. Nevertheless, most of

the works are based on numerial disretized methods, suh as �nite element

analysis [19,5,15,28℄. Most of the papers fous on the numerial methods and

onsider simple phenomenologial onstitutive equations. Very reently, Has-

sager et al. study the response of polymeri uid membranes under ination

using the advaned Doi-Edwards and Tom-Pom models [12℄.
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The aim of the present paper is the analysis of the ination of thin elas-

tomeri membranes using network based rubber-like onstitutive equations. In

Setion 2, the governing equations of the axisymmetri ination problem are

realled and the onstitutive equations are presented. Four models are studied:

the lassial neo-Hookean model based on Gaussian statistis and three hains

models that are based on non-Gaussian statistis. Setion 3 is devoted to the

solving proedure. The numerial sheme and our original B-spline interpola-

tion, detailed in [29℄, are briey realled. The numerial analysis of spherial

balloons and irular plane membranes are presented in Setion 4. Finally,

onluding remarks are proposed in Setion 5.

2 Problem formulation

2.1 Governing equations

We onsider an axially symmetri hyperelasti membrane of uniform thik-

ness h

0

in its undeformed on�guration. The geometry of this membrane

an be desribed by the ylindrial oordinates of its mid-surfae. In eah

�-onstant plane, both undeformed and deformed on�gurations are redued

to one-dimensional urves, as shown in Figure 1. Consider a partile of un-

deformed oordinates (r

0

; z

0

) of the undeformed membrane. This point is dis-

plaed to a new position (r; z) in the deformed on�guration. The thikness of

the deformed membrane is denoted h. Every geometrial data r

0

, z

0

, r, z and

h are funtions of the ar-length oordinate in the undeformed on�guration

s, that varies between 0 and l

0

, the length of the initial membrane. As shown

by Yang and Feng [33℄, the prinipal streth ratios in meridian, irumferential
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and normal diretions are given by:

�
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u
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(1)

in whih �

;s

stands for the di�erentiation with respet to s. As the material is

assumed inompressible, the thikness of the deformed body is simply related

to the thikness in the natural state by:

h =

1

�

m

�



h

0

(2)

Under a quasi-stati pressure load, the Priniple of Virtual Work an be writ-

ten in the following form:

Z

V

0

ÆW dV

0

�

Z

S

ÆuP n dS = 0 8 Æu (3)

where V

0

and S are respetively the volume of the undeformed membrane and

the surfae of the deformed membrane. W is the strain energy, P n is the out-

ward oriented blowing pressure and Æu is an admissible virtual displaement

vetor. Noting that the omponents of n are (z

;s

=

q

r

2

;s

+ z

2

;s

; �r

;s

=

q

r

2

;s

+ z

2

;s

),

the previous equation (3) simpli�es:
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0
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0
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0
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) ds�

Z

l

0

0

2 � P r (Æu z

;s

� Æv r

;s

) ds = 0 (4)

where t

m

and t



are the prinipal �rst Piola-Kirhho� stresses respetively in

the meridian and irumferential diretions, and (Æu; Æv) stand for the om-

ponents of the virtual displaement vetor.

2.2 Network onstitutive equations for elastomers

As mentioned above, the use of statistial network models for rubber-like

models inreases in �nite elements tools. These onstitutive equations present
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some major advantages: they neessitate a small number of parameters and

they agree well with experiments in various modes of deformation [32℄.

In the statistial approah, polymers are onsidered as networks of long exible

hains randomly oriented and joined together by hemial ross-links. More

details on this subjet an be found in [26,9℄.

2.2.1 Gaussian statistis model

Treloar �rst proposed a statistial treatment of rubber elastiity. He onsidered

that the on�guration of polymer hains an be desribed by Gaussian statis-

tis. This leads to the well-known neo-Hookean onstitutive equation [25℄. The

orresponding strain energy funtion is:

W =

1

2

nkT (I

1

� 3) (5)

where n denotes the average number of polymer hains per unit of volume, k

is the Boltzmann onstant, T is the absolute temperature and �nally I

1

is the

�rst invariant of the streth tensor, said its trae. This model only depends

on a unique parameter C

R

de�ned as:

C

R

= nkT (6)

2.2.2 Non-Gaussian statistis models

In order to overome the limitations of the previous model that is restrited to

small strains, authors use non-Gaussian statistis theory to desribe moleular

polymer hains on�gurations.
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2.2.2.1 Single hain elastiity In 1942, Kuhn and Gr�un use the non-

Gaussian statistis theory to model the limited extension of hains [18℄. Their

approah is based on the random walk statistis of an ideal phantom hain.

Consider a moleular hain omposed by N monomer segments of length l.

Its average unstrethed length is

p

Nl and its maximum strethed length is

Nl. Moreover, the strain energy funtion of the hain w an be written in the

following form:

w = NkT

"

�

p

N

� + ln

�

sinh �

#

(7)

where � is the extension of the hain and with � = L

�1

�

�=

p

N

�

. L

�1

is

the inverse of the Langevin funtion de�ned by L(x) = oth(x) � 1=x. The

�rst Piola-Kirhho� stress in this single hain is obtained by derivation of the

strain energy with respet to the extension:

t =

�w

��

= kT

p

N L

�1

 

�

p

N

!

(8)

2.2.2.2 p-hains models In order to develop onstitutive equations, a

network of hains whih strain energy funtions are given by (7) should be

onsidered. Reently, Wu and van der Giessen integrate the previous stress

(8) on a unit sphere de�ned by its hains density [32℄. Their full network

model agrees well with experiments but neessitates numerial integration

proedures on the sphere. This numerial integration does not lead to an

eÆient implementation in numerial softwares.

Other authors used the non-Gaussian statistis theory to develop simpler mod-

els whih do not need numerial integration. The most employed are the 3-

hains and the 8-hains models. Moreover, we mention the approahed full

network model, that aurately approximates the general theory of Wu and
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van der Giessen presented above. These onstitutive equations are developed

by onsidering privileged diretions in the unit sphere. Denoting n the density

of polymer hains as introdued for the neo-Hookean model, it is assumed that

n=p hains per unit of volume are oriented in eah of the p privileged diretions

in the undeformed on�guration. Then, the previous numerial integration of

the strain energy on the unit sphere is advantageously replaed by a sum of

p single hain strain energy funtions weighted by the fator n=p. Partiular

ases of p-hains models are presented in Figure 2.

The simplest p-hains model is de�ned by onsidering the three prinipal strain

axes as privileged diretions. It was derived by James and Guth [13℄ and is

widely known as the 3-hains model. Figure 2(a) presents this model. Prini-

pal stresses (t

3-hains

i

)

i=1;3

are expressed as funtions of prinipal streth ratios

(�

i

)

i=1;3

by:

t

3-hains

i

= �

q

�

i

+

1

3

C

R

p

N L

�1

 

�

i

p

N

!

(9)

where q is the hydrostati pressure introdued by the inompressibility as-

sumption.

A more reent model based on non-Gaussian statistis is the 8-hains model

developed by Arruda and Boye [2℄. Privileged diretions are de�ned by the

half diagonals of a ube ontained in the unit sphere. Figure 2(b) shows this

hains distribution of the model. Its major property is its symmetry with

respet to the three prinipal axes. Therefore, the eight hains are strethed

with the same extension ratio, �

h

, that orresponds to the strething of eah

half diagonals of the ube:

�

h

=

q

(�

2

1

+ �

2

2

+ �

2

3

)=3 (10)
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This leads to a simple stress-streth relationship:

t

8-hains

i

= �

q

�

i

+

1

3

C

R

p

N

�

i

�

h

L

�1

 

�

h

p

N

!

(11)

Finally, we an mention the approahed full network model proposed by Wu

and van der Giessen [31℄. Authors use a linear ombination of the stresses of

the 3-hains and 8-hains models to approximate the full network stresses by:

t

full network

i

= (1� �) t

3-hains

i

+ � t

8-hains

i

(12)

where � is a parameter that is related to the maximal prinipal streth ratio:

� =

0:85

p

N

max(�

1

; �

2

; �

3

) (13)

in whih the fator 0.85 is hosen to give the best orrelation with the full

integration on the unit sphere.

3 Solution proedure

In this part, the resolution proedure used to integrate the problem (4) as-

soiated with one of the stress-strain relationships de�ned above is briey

presented. For more details, the reader an refer to [29℄.

3.1 Disretized equations and solution proedure

Whatever the interpolation method adopted, the membrane is disretized by

onsidering n+1 nodes, (N

i

)

i=0;n

. Eah node N

i

is de�ned by its undeformed

ar-length oordinate s

i

. Its displaements in radial and axial diretion are

respetively u

i

and v

i

. The assembled nodal displaements vetor, that inludes
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all nodal displaements, is denoted U with:

U

2i�1

= u

i

and U

2i

= v

i

8 i = 0; : : : ; n (14)

Using interpolation formulas (detailed in the next paragraph), the Priniple

of Virtual Work (4) beomes:

ÆU

T

[F

int

(U)� F

ext

(U; p)℄ = 0 8 ÆU

T

(15)

where F

int

(U) and F

ext

(U; p) are the internal and external fores vetors re-

spetively, ÆU is the virtual nodal displaement vetor and �

T

denotes the

transposition. F

int

is the disretized ounterpart of the �rst left-hand side

term in Eq. (4) and F

ext

orresponds to the seond term in this equation. It

is obvious that the system (15) is highly non-linear both geometrially and

by the onstitutive equation. Thus, an iterative method must be employed to

solve this system and the tangent operator must be derived. This operator

is denoted K and represents the derivative of the out-of-balane fore vetor

(F

int

� F

ext

) with respet to U:

K =

�F

int

�U

�

�F

ext

�U

(16)

The detailed ready-to-program formulas of F

int

, F

ext

and K are given in [23℄

for the lassial two nodes membrane �nite element and in [29℄ for our original

B-spline interpolation.

As shown by Beatty for stati ination [4℄ and Verron et al. for dynami

ination [27℄, the pressure-displaement urves orresponding to rubber-like

membranes ination exhibit limit points. Consequently a ontinuation method

has to be adopted to ompute the equilibrium path [24℄. Here, the ar-length

method is implemented. It onsists in ompleting the system of equilibrium

equations with an additional relation between the load (here the pressure) and
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the displaement inrements (see [6℄ for various versions of this method). In

the present ase, the displaement ontrol method is onsidered [3℄ and the

additional equation is:

k�Uk

2

� da

2

= 0 (17)

where �U is the displaement inrement vetor between two equilibrium

points and da is the presribed ar-length. This equation is added to the pre-

vious system (15) as a bordered equation and the assembled system is solved

by the lassial Newton-Raphson algorithm [21℄.

3.2 B-splines interpolation method

In this study, the membrane is interpolated by two ubi splines de�ned on

the set of nodes (N

i

)

i=0;n

, one for eah oordinate r

0

and z

0

:

r

0

(s) =

n+1

X

i=�1

�

i

B

i

(s=l

0

) (18)

z

0

(s) =

n+1

X

i=�1

�

i

B

i

(s=l

0

) (19)

where (�

i

)

i=�1;n+1

and (�

i

)

i=�1;n+1

are the parameters of the two splines and

funtions B

i

are B-spline funtions. Denoting � the redued ar-length, said
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s=l

0

, these funtions are given by [7℄:
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where �

i

is the redued ar-length oordinate of the node N

i

and where the

following onventions are adopted:

�

i

= s

0

=l

0

for i � 0 (21)

�

i

= s

n

=l

0

for i � n (22)

With these two onventions some denominators are equal to 0 and we adopt

the equality: 0=0 = 0.

In Eqs (18, 19), the n + 3 parameters of eah splines are de�ned in a unique

manner using the undeformed oordinates of the n+1 nodes and by taking into

aount end onditions to determine the two extra parameters. Depending on

the mehanial boundary onditions, di�erent mathematial end onditions
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for the splines an be adopted:

1. if the extreme point does not lies in the symmetry axis, both r

0

and z

0

interpolation admit natural end onditions, i.e. the seond derivative of

both funtions are equal to zero at this point,

2. if the extreme point lies in the symmetry axis, the z

0

-spline admits natural

end onditions but the r

0

-spline admits Hermite end onditions, i.e. the �rst

derivative of the funtion is presribed at the point and, in our ase, is set

to zero.

These boundary onditions provide two additional linear relations between

parameters for both splines, and interpolation formulas (18,19) redue to:

r

0

(s) =

n

X

i=0

�

i

B

r

i

(s=l

0

) (23)

z

0

(s) =

n

X

i=0

�

i

B

z

i

(s=l

0

) (24)

where (B

r

i

)

i=0;n

and (B

z

i

)

i=0;n

are the new interpolation basis, de�ned as linear

ombinations of the lassial B-spline funtions B

i

.

Similarly to isoparametrial �nite elements, the displaement �eld (u,v) is

interpolated by two splines developed on the same basis funtions:

u(s) =

n

X

i=0



i

B

r

i

(s=l

0

) (25)

v(s) =

n

X

i=0

Æ

i

B

z

i

(s=l

0

) (26)

in whih (

i

)

i=0;n

and (Æ

i

)

i=0;n

are the parameters of these two splines.

Some alulations are now neessary to establish the disretized problem

(15,16). This derivation is detailed in [29℄.
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4 Numerial examples

In this setion, some numerial examples are presented.

The aim of this paper is the omparison of di�erent network models. Thus, the

di�erent onstitutive equations have to be �tted for the same material using

the same type of experimental data. Here, experimental data orresponding

to the uniaxial extension of a natural rubber as reported by James et al. are

onsidered [14℄. Moreover, we adopt the material parameters previously deter-

mined by Wu and van der Giessen [32℄. It is to note that network parameters

N and C

R

must be determined for eah model. But, as the small strain be-

haviour is governed primarily by C

R

, Wu and van der Giessen �rst determine

it, and onsider an idential value of C

R

for all models, said C

R

= 0:4 MPa.

Then afterwards, the average number of monomers per hain is �tted for eah

onstitutive equation: N = 80 for the 3-hains model, N = 25 for the 8-hains

model, and �nally N = 50 for the approahed full network model.

4.1 Spherial balloons

Before examining the ase of irular membranes, we onsider the simple ho-

mogeneous ination of spherial balloons. This problem was widely studied

for lassial hyperelasti models, both in statis [4℄ and dynamis [27℄. As the

deformation remains biaxial in every material points of the sphere, the prob-

lem redues to a simple analytial governing equation that relies the blowing

pressure and the deformed radius. Here, our numerial approah is used to

solve the problem and the numerial results were suessfully ompared with

the analytial relation, that validates the present method.
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Consider a thin spherial membrane of natural rubber. The initial radius is

equal to 1.0 and the uniform thikness is 0.01. The semi-spherial ap is dis-

retized using 21 nodes. It is assumed that the balloon remains spherial dur-

ing the ination, so that no bifurating phenomenon ours. Consequently,

the extension ratios are:

�

m

= � ; �



= � ; �



=

1

�

2

(27)

where � is the adimensional deformed radius r=r

0

. The urves pressure versus

� are presented in Figure 3 for the four onstitutive equations studied here.

Values of extension ratios and blowing pressures that orrespond to the two

limit points, (�

I

; P

I

) and (�

II

; P

II

), are presented in Table 1. As shown else-

where, the neo-Hookean balloon exhibits only one limit point that divides the

urve into a stable path and an unstable path. For the three other balloons,

the urves admit two limit points and three paths, two stable (inreasing parts

of the urves) and one unstable (dereasing parts of the urves). A similar be-

haviour was highlighted previously for the Mooney-Rivlin model [27℄. Let us

examine more preisely the �rst part of the urves that orrespond to small

strains, i.e. for � � 2:0. First limit points our approximately for the same

values of the extension ratio, said � = 1:39. This value an be obtained ana-

lytially in the ase of the neo-Hookean model and is equal to

6

p

7. This result

veri�es our previous statement that the small strains behaviour only depends

on the material parameter C

R

, that is idential for the four models. For larger

strains, ination urves di�er. In the ase of the neo-Hookean material, there

is no strain-hardening (beause of the Gaussian assumption) and the pressure

slowly dereases to zero as the membrane ontinues to inate. For the three

other models, polymer hains reah their limit of extensibility for di�erent

values of the undeformed radius. Last points (irles) of the urves in Fig. 3
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represent the last on�gurations in whih the simulation was able to onverge.

The limit values of the adimensional radius, i.e. values for whih the limiting

streth of hains is reahed, an be simply predited for both 3-hains and

8-hains models. In the ase of the 3-hains model, the limit of extensibility

is reahed when one of the extension ratios �

i

tends to

p

N in Eq. (9). Here,

realling the equibiaxial deformations (27), we have:

�

1

= �

m

= � ; �

2

= �



= � ; �

3

= �

n

= 1=�

2

(28)

Thus the limiting extensibility is obtained for � =

p

80 � 8:94. Note that

in our numerial simulations, we are not able to overome � � 8:0 due to

onvergene problems. In the ase of the 8-hains model, the strething of the

hains �

h

is de�ned by Eq. (10). Using (28), it redues to:

�

h

=

q

(2�

2

+ 1=�

4

)=3 (29)

and the limit hain extension is obtained by:

�

h

=

p

N (30)

with N = 25. The solution of this equation is � � 6:12. This value an be

seen as the asymptoti vertial line orresponding to the pressure urve of the

8-hains model in Fig. 3. Finally, the response of the approahed full network

model is onsidered. As the model is a linear ombination of the 3-hains and

the 8-hains models, the model reahes its limiting extensibility when one of

them reahes its own limit. Thus, onsidering now that N = 50, the limiting

extensibility is obtained for � =

p

50 � 7:07 for the 3-hains model. For the

8-hains model, Eqs (29) and (30) are solved with N = 50 and the limiting

extensibility is approximately equal to 8:66. The stresses (12) tends to in�nity

for the smallest value, said � � 7:07 whih orresponds to the 3-hains stress,
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as shown by the orresponding urve in Fig. 3.

4.2 Cirular plane membranes

Consider now an initially plane irular membrane of radius 1.0 and uniform

thikness 0.01. The exterior edge of the membrane is lamped. The membrane

is meshed using 21 nodes. In this problem, the deformation is not homogeneous

in the membrane. At the pole (the node in whih r = 0:), the deformation is

equibiaxial:

�

m

; �



= �

m

; �

n

=

1

�

2

m

(31)

and at the lamped rim, the membrane is under pure shear onditions:

�

m

; �



= 1 ; �

n

=

1

�

m

(32)

Moreover, it is obvious that the pole lies in the symmetry axis. With our

numerial approah, there is no diÆulty to satisfy the tangeny ondition,

said r

0

= 0, beause this boundary ondition is diretly taken into aount

in the B

r

i

interpolation funtions (see Setion 3.2). Using lassial �nite ele-

ments, this ondition an not be stritly imposed, beause there is no degree

of freedom that orresponds to r

0

(see [12℄ for example).

First, we study the urves that show the inating pressure versus the axial

oordinate of the pole (denoted z

pole

through the rest of the paper) for the

di�erent onstitutive equations. These results are shown in Figure 4. The

orresponding values of limit points (z

pole I

; P

I

) and (z

pole II

; P

II

) are presented

in Table 2. General aspets of the urves are similar to those observed for the

spherial balloons with both inreasing and dereasing paths. In the present

ase, the two values of the pressure that orrespond to limit points are not very
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di�erent for eah hains models. Moreover, the strain-hardening of the non-

Gaussian onstitutive equations is highly remarkable and the limiting hain

extension is rapidly reahed as it an be shown by the �nal vertial parts of

urves presented in Fig. 4.

Let us now examine the ination pro�les shown in Figure 5. For the four mod-

els, we present pro�les that orrespond to z

pole

=1.0, 2.0, 3.0 and 4.0. Moreover,

the last pro�les obtained before numerial divergene are also drawn for the

non-Gaussian onstitutive equations. It an be seen that for z

pole

equal to 1.0

and 2.0 the pro�les orresponding to the four models are similar. Neverthe-

less, for higher values of the axial oordinate of the pole, said z

pole

� 3:0, the

pro�les orresponding to the three non-Gaussian models are similar, but they

highly di�er from the shape of the deformed neo-Hookean membranes. The

neo-Hookean bubble is more "spherial" than the other ones. This example

shows that the strain-hardening of the material has a very signi�ant inuene

of the shape of inated membranes.

This remark is on�rmed by the thikness distributions presented in Figure 6.

The thikness is plotted as funtion of the undeformed radius r

0

. As observed

by Hassager et al., the neo-Hookean membrane exhibits a strong thinning at

the pole [12℄. Here, we show that the same observations an be made for non-

Gaussian statistial models. As predited by the examination of the pro�les,

the three non-Gaussian thikness distributions are almost similar at the pole,

and are of the same order of magnitude along the membrane for a given value

of z

pole

. The last pro�le of eah non-Gaussian membrane exhibits the same

thikness distribution that an be seen as the ultimate state before the o-

urrene of hains rupture. Moreover, the di�erene between the neo-Hookean

membrane and the non-Gaussian membranes is very signi�ant. For values of
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z

pole

of 2.0, 3.0 and 4.0, the thikness of the neo-Hookean membrane at the

lamped rim are idential and values at the pole tend to zero (see Fig. 6(a)).

In the ase of the three other models, the thikness at the lamped rim evolves

signi�antly with respet to z

pole

and the thinning at the pole remains smaller

than in the neo-Hookean ase.

In order to highlight the inuene of the strain-hardening modeled by the

inverse Langevin funtion in onstitutive equations (9), (11) and (12), the

distribution of the in-plane extension ratios �

m

and �



along the membranes

are presented in Figure 7. First, we verify that the irumferential streth ratio

�



varies between �

m

at the pole and 1.0 at the lamped rim. Fig. 7(a) reveals

that, for the neo-Hookean bubble, both distributions are similar, as previously

demonstrated by Yang and Feng [33℄. Moreover, for z

pole

= 5:0, extensions

ratios are equal to 25.0 at the pole. This result has no physial meaning and

proves the importane of a good modeling of strain-hardening of elastomers at

large strains. In the ase of the non-Gaussian models, distributions of �



for

the three models are omparable for the same deformation level. Distributions

of �

m

are also similar until the material reahes its strain-hardening behaviour.

In this ase, the 8-hains models distribution (Fig. 7() for z

pole

= 4:02) di�ers

from the 3-hains and the approahed full network distributions (Fig. 7(b) for

z

pole

= 5:60 and Fig. 7(d) for z

pole

= 3:87). In the former ase, �

m

is greater

at the lamped extremity than at the pole; in the later, �

m

is approximately

uniform for both 3-hains and approahed full network membranes. This last

observation an be explained by examining the maximum hain extensibility

along the membrane for the three non-Gaussian bubbles. Reall that for the

3-hains model, the maximum hain extension at a material point is de�ned
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by:

�

h max

= max(�

m

; �



; �

n

) (33)

and in our ase, it is always equal to �

m

. For the 8-hains model, it is given

by:

�

h max

=

q

(�

2

m

+ �

2



+ �

2

n

)=3 (34)

and �nally, for the approahed full network model, it is the greater values of

the 3-hains and 8-hains data:

�

h max

= max(�

m

; �



; �

n

;

q

(�

2

m

+ �

2



+ �

2

n

)=3) (35)

and here, it is always equal to �

m

. In the three ases, as �

h max

tends to

p

N ,

the material hardens and the asymptoti vertial line in the pressure versus

z

pole

diagram is approahed (Fig. 4). The distributions of �

h max

along the

membranes are plotted versus the undeformed radius in Figure 8, for the three

non-Gaussian network models. They are highly similar for the three models: at

the beginning of the ination the distribution is uniform, then the membrane

extends more signi�antly in the neighbourhood of the pole than near the

lamped rim, and �nally for higher values of z

pole

the hain extensibility tends

to beome uniform and approahes the limit value

p

N , while few evolution of

strains takes plae at the pole. This an be seen as the ination of a irular

membrane with a rigid inlusion at the pole, onsidering that the radius of

this inlusion inreases during the ination.

5 Conluding remarks

In this paper, we have presented some results onerning the ination of

rubber-like irular membranes using physial networks hyperelasti onsti-
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tutive equations. The simulations are performed using a new B-spline model

that was proved to be very eÆient for large strains ination of axisymmet-

ri membranes. The non-Gaussian models are implemented and ompared

with the lassial neo-Hookean onstitutive equation. The inuene of strain-

hardening on the membrane response is highlighted. It is shown that both

ination pro�les and thikness distribution are highly inuened by the na-

ture of the material model.

These results are of interest in the ontext of the identi�ation of material

parameters in biaxial onditions. In order to perform biaxial experiments on

elastomers or heat-softened plastis, the bubble ination tehnique is widely

used. In most of the ases, only experimental data obtained at the pole are

onsidered to determine parameters of onstitutive equations, beause the

deformation is equibiaxial at this point. The present work shows that the evo-

lution of the membrane pro�le during ination and some data onerning the

thikness distribution may be of great interest in the hoie of the onstitutive

equation that must be adopted, and in the determination of the orresponding

material parameters. Thus, the numerial analysis of the entire membrane is

highly suitable in the identi�ation proedure.
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List of aptions

Fig. 1. Problem desription.

Fig. 2. Desription of the most employed p-hains models: (a) 3-hains, (b) 8-hains.

Fig. 3. Pressure versus adimensional deformed radius for spherial balloons.

Fig. 4. Pressure versus axial oordinate of the pole for the plane membranes.

Fig. 5. Ination pro�les of the irular plane membranes: (a) neo-Hookean,

(b) 3-hains, () 8-hains, (d) approahed full network. Numbers on the urves

stand for the orresponding inating pressure.

Fig. 6. Thikness distribution in the irular plane membranes: (a) neo-Hookean,

(b) 3-hains, () 8-hains, (d) approahed full network. Numbers on the urves stand

for the orresponding value of z

pole

.

Fig. 7. Extension ratios in the irular plane membranes (|) �

m

, (� � � ) �



:

(a) neo-Hookean, (b) 3-hains, () 8-hains, (d) approahed full network. Numbers

on the urves stand for the orresponding value of z

pole

.

Fig. 8. Maximum hains extensibility in the irular plane membranes (|) distribu-

tion in the membrane, (- -) limit value

p

N : (a) 3-hains, (b) 8-hains, () approahed

full network. Numbers on the urves stand for the orresponding value of z

pole

.



Tables

Model �

I

P

I

�

II

P

II

Neo-hookean 1.40 4.96e-03 � �

3-hains 1.40 5.04e-03 5.71 1.97e-03

8-hains 1.39 5.13e-03 3.92 2.88e-03

Approahed full network 1.39 5.08e-03 5.10 2.26e-03

Table 1

Limit points for spherial balloons. Cirles represent the analytial solutions.

Model z

pole I

P

I

z

pole II

P

II

Neo-hookean 1.16 7.52e-03 � �

3-hains 1.23 7.73e-03 3.16 6.09e-03

8-hains 1.17 8.01e-03 2.17 7.64e-03

Approahed full network 1.26 7.84e-03 2.83 6.66e-03

Table 2

Limit points for irular plane membranes.


