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using network constitutive equations
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Abstract

The present paper deals with the use of network-based hyperelastic constitutive
equations in the context of thin membranes inflation. The study focus on the infla-
tion of plane circular membranes and the materials are assumed to obey Gaussian
and non-Gaussian statistical chains network models. The governing equations of
the inflation of axisymmetric thin rubber-like membranes are briefly recalled. The
material models are implemented in a numerical tool that incorporates an efficient
B-spline interpolation method and a coupled Newton-Raphson/arc-length solving
algorithm. Two numerical examples are studied: the homogeneous inflation of spher-
ical balloons and the inflation of initially plane circular membranes. In the second
example, the inflation profiles and the distributions of extension ratios along the
membrane are extensively analyzed during the inflation process. Both examples
highlight the need of an accurate modeling of the strain-hardening phenomenon in

elastomers.
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1 Introduction

In the last few years, classical phenomenological constitutive equations for
rubber-like solids, such as Mooney-Rivlin or Ogden models, are progressively
replaced by more physical models based on statistical considerations, in var-
ious engineering applications [1]. The determination of the material parame-
ters of the constitutive models is often performed using classical homogeneous
strain experiments (uniaxial extension or pure shear tests for example). For
biaxial deformation, authors use frequently the bubble inflation technique,
that consists in inflating an initially plane circular thin membrane (see [16,22]
and more recently [8,20]). In this type of experiments, deformations are not
homogeneous and the analysis of experimental data needs efficient numerical
method to solve the inflation problem. The problem of circular membranes in-
flation is classically solved for phenomenological rubber-like models. Here, we
present, some solutions corresponding with new statistical constitutive equa-

tions.

The governing equations of the large strains inflation of axisymmetric mem-
branes were established by Green and Adkins [11]. Then, some authors solve
the corresponding problem by directly integrating the system of ordinary dif-
ferential equations using shooting methods. Both hyperelastic [17,33] and vis-
coelastic [30,10] constitutive equations are considered. Nevertheless, most of
the works are based on numerical discretized methods, such as finite element
analysis [19,5,15,28]. Most of the papers focus on the numerical methods and
consider simple phenomenological constitutive equations. Very recently, Has-
sager et al. study the response of polymeric fluid membranes under inflation

using the advanced Doi-Edwards and Tom-Pom models [12].



The aim of the present paper is the analysis of the inflation of thin elas-
tomeric membranes using network based rubber-like constitutive equations. In
Section 2, the governing equations of the axisymmetric inflation problem are
recalled and the constitutive equations are presented. Four models are studied:
the classical neo-Hookean model based on Gaussian statistics and three chains
models that are based on non-Gaussian statistics. Section 3 is devoted to the
solving procedure. The numerical scheme and our original B-spline interpola-
tion, detailed in [29], are briefly recalled. The numerical analysis of spherical
balloons and circular plane membranes are presented in Section 4. Finally,

concluding remarks are proposed in Section 5.

2 Problem formulation

2.1 Governing equations

We consider an axially symmetric hyperelastic membrane of uniform thick-
ness ho in its undeformed configuration. The geometry of this membrane
can be described by the cylindrical coordinates of its mid-surface. In each
f-constant plane, both undeformed and deformed configurations are reduced
to one-dimensional curves, as shown in Figure 1. Consider a particle of un-
deformed coordinates (rg, z9) of the undeformed membrane. This point is dis-
placed to a new position (r, z) in the deformed configuration. The thickness of
the deformed membrane is denoted h. Every geometrical data rg, zq, r, 2 and
h are functions of the arc-length coordinate in the undeformed configuration
s, that varies between 0 and [y, the length of the initial membrane. As shown

by Yang and Feng [33], the principal stretch ratios in meridian, circumferential



and normal directions are given by:
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in which - ; stands for the differentiation with respect to s. As the material is
assumed incompressible, the thickness of the deformed body is simply related

to the thickness in the natural state by:

h= ho (2)

AmAe

Under a quasi-static pressure load, the Principle of Virtual Work can be writ-

ten in the following form:

5WdV0—/5uPndS:0 v du (3)
S

Vo
where 1 and S are respectively the volume of the undeformed membrane and
the surface of the deformed membrane. W is the strain energy, P n is the out-

ward oriented blowing pressure and du is an admissible virtual displacement

vector. Noting that the components of n are (z,/\/r% + 2%; —rs/\/1% + 22),

the previous equation (3) simplifies:
I !
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where t,, and t. are the principal first Piola-Kirchhoff stresses respectively in
the meridian and circumferential directions, and (du,dv) stand for the com-

ponents of the virtual displacement vector.
2.2 Network constitutive equations for elastomers

As mentioned above, the use of statistical network models for rubber-like

models increases in finite elements tools. These constitutive equations present



some major advantages: they necessitate a small number of parameters and

they agree well with experiments in various modes of deformation [32].

In the statistical approach, polymers are considered as networks of long flexible
chains randomly oriented and joined together by chemical cross-links. More

details on this subject can be found in [26,9].

2.2.1 Gaussian statistics model

Treloar first proposed a statistical treatment of rubber elasticity. He considered
that the configuration of polymer chains can be described by Gaussian statis-
tics. This leads to the well-known neo-Hookean constitutive equation [25]. The

corresponding strain energy function is:
1
W = inkT(Il —3) (5)

where n denotes the average number of polymer chains per unit of volume, &
is the Boltzmann constant, 7" is the absolute temperature and finally [; is the
first invariant of the stretch tensor, said its trace. This model only depends

on a unique parameter C'r defined as:

Cp = nkT (6)

2.2.2 Non-Gaussian statistics models

In order to overcome the limitations of the previous model that is restricted to
small strains, authors use non-Gaussian statistics theory to describe molecular

polymer chains configurations.



2.2.2.1 Single chain elasticity In 1942, Kuhn and Griin use the non-
Gaussian statistics theory to model the limited extension of chains [18]. Their

approach is based on the random walk statistics of an ideal phantom chain.

Consider a molecular chain composed by N monomer segments of length [.
Its average unstretched length is v/ NI and its maximum stretched length is
NI. Moreover, the strain energy function of the chain w can be written in the

following form:

A B
= NkT | —= 1 7

v [\/NBJF nsinhﬂ] (7)
where ) is the extension of the chain and with 8 = £! ()\/\/N) L1 is
the inverse of the Langevin function defined by L£(x) = coth(x) — 1/x. The

first Piola-Kirchhoff stress in this single chain is obtained by derivation of the

strain energy with respect to the extension:

t= ‘;—i’ =kTVNL! (%) (8)

2.2.2.2 p-chains models In order to develop constitutive equations, a
network of chains which strain energy functions are given by (7) should be
considered. Recently, Wu and van der Giessen integrate the previous stress
(8) on a unit sphere defined by its chains density [32]. Their full network
model agrees well with experiments but necessitates numerical integration
procedures on the sphere. This numerical integration does not lead to an

efficient implementation in numerical softwares.

Other authors used the non-Gaussian statistics theory to develop simpler mod-
els which do not need numerical integration. The most employed are the 3-
chains and the 8-chains models. Moreover, we mention the approached full

network model, that accurately approximates the general theory of Wu and



van der Giessen presented above. These constitutive equations are developed
by considering privileged directions in the unit sphere. Denoting n the density
of polymer chains as introduced for the neo-Hookean model, it is assumed that
n/p chains per unit of volume are oriented in each of the p privileged directions
in the undeformed configuration. Then, the previous numerical integration of
the strain energy on the unit sphere is advantageously replaced by a sum of
p single chain strain energy functions weighted by the factor n/p. Particular

cases of p-chains models are presented in Figure 2.

The simplest p-chains model is defined by considering the three principal strain
axes as privileged directions. It was derived by James and Guth [13] and is
widely known as the 3-chains model. Figure 2(a) presents this model. Princi-

pal stresses (¢3°hains), _, 5 are expressed as functions of principal stretch ratios

()\i)izl,?, by:

3-chains q 1 / -1 )\z

where ¢ is the hydrostatic pressure introduced by the incompressibility as-

sumption.

A more recent model based on non-Gaussian statistics is the 8-chains model
developed by Arruda and Boyce [2]. Privileged directions are defined by the
half diagonals of a cube contained in the unit sphere. Figure 2(b) shows this
chains distribution of the model. Its major property is its symmetry with
respect to the three principal axes. Therefore, the eight chains are stretched
with the same extension ratio, A, that corresponds to the stretching of each

half diagonals of the cube:

AP = (2 + N3+ N)/3 (10)



This leads to a simple stress-stretch relationship:

. 1 Ai A
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Finally, we can mention the approached full network model proposed by Wu
and van der Giessen [31]. Authors use a linear combination of the stresses of

the 3-chains and 8-chains models to approximate the full network stresses by:

tzfull network __ (1 . p) t?'ChainS + ptf—chains (12)

where p is a parameter that is related to the maximal principal stretch ratio:

p= Lf; max(r, Ao, As) (13)

in which the factor 0.85 is chosen to give the best correlation with the full

integration on the unit sphere.

3 Solution procedure

In this part, the resolution procedure used to integrate the problem (4) as-
sociated with one of the stress-strain relationships defined above is briefly

presented. For more details, the reader can refer to [29].
3.1 Discretized equations and solution procedure

Whatever the interpolation method adopted, the membrane is discretized by
considering n + 1 nodes, (N;);=o,,. Each node N; is defined by its undeformed
arc-length coordinate s;. Its displacements in radial and axial direction are

respectively u; and v;. The assembled nodal displacements vector, that includes



all nodal displacements, is denoted U with:
Ugi_lzui and Ugi:UZ' VZ:(),,’I’L (14)

Using interpolation formulas (detailed in the next paragraph), the Principle

of Virtual Work (4) becomes:
SUT [Fint(U) — Fert (U, p)] = 0 v su” (15)

where Fi(U) and Fe (U, p) are the internal and external forces vectors re-
spectively, U is the virtual nodal displacement vector and -7 denotes the
transposition. F;,; is the discretized counterpart of the first left-hand side
term in Eq. (4) and Fe, corresponds to the second term in this equation. It
is obvious that the system (15) is highly non-linear both geometrically and
by the constitutive equation. Thus, an iterative method must be employed to
solve this system and the tangent operator must be derived. This operator
is denoted K and represents the derivative of the out-of-balance force vector

(Fint — Fext) with respect to U:

_ aFin‘u 8Fext

K ou ou

(16)

The detailed ready-to-program formulas of Fy,, Fexy and K are given in [23]
for the classical two nodes membrane finite element and in [29] for our original

B-spline interpolation.

As shown by Beatty for static inflation [4] and Verron et al. for dynamic
inflation [27], the pressure-displacement curves corresponding to rubber-like
membranes inflation exhibit limit points. Consequently a continuation method
has to be adopted to compute the equilibrium path [24]. Here, the arc-length
method is implemented. It consists in completing the system of equilibrium

equations with an additional relation between the load (here the pressure) and



the displacement increments (see [6] for various versions of this method). In
the present case, the displacement control method is considered [3] and the

additional equation is:

|AU|> — da* = 0 (17)

where AU is the displacement increment vector between two equilibrium
points and da is the prescribed arc-length. This equation is added to the pre-
vious system (15) as a bordered equation and the assembled system is solved

by the classical Newton-Raphson algorithm [21].

3.2 B-splines interpolation method

In this study, the membrane is interpolated by two cubic splines defined on

the set of nodes (V;);—on, one for each coordinate ry and zp:

n+1
Z a; Bi(s/ly) (18)
-
Z Bz S/l() (19)
1=—1

where (;);__y .y and (B;),—_, ., are the parameters of the two splines and

functions B; are B-spline functions. Denoting & the reduced arc-length, said

10



s/ly, these functions are given by [7]:
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where &; is the reduced arc-length coordinate of the node N; and where the

following conventions are adopted:

& = s9/ly fori <0 (21)

& = sp/flp for i > n (22)

With these two conventions some denominators are equal to 0 and we adopt

the equality: 0/0 = 0.

In Eqgs (18, 19), the n 4+ 3 parameters of each splines are defined in a unique
manner using the undeformed coordinates of the n+1 nodes and by taking into
account end conditions to determine the two extra parameters. Depending on

the mechanical boundary conditions, different mathematical end conditions

11



for the splines can be adopted:

1. if the extreme point does not lies in the symmetry axis, both ry and z
interpolation admit natural end conditions, i.e. the second derivative of
both functions are equal to zero at this point,

2. if the extreme point lies in the symmetry axis, the zp-spline admits natural
end conditions but the ry-spline admits Hermite end conditions, i.e. the first
derivative of the function is prescribed at the point and, in our case, is set

to zero.

These boundary conditions provide two additional linear relations between

parameters for both splines, and interpolation formulas (18,19) reduce to:

n

ro(s) = Z% a; By, (s/lo) (23)

20(s) = _ Bi Bz (s/h) (24)

1=0

where (B, )i=o,, and (B, )i=o,» are the new interpolation basis, defined as linear

combinations of the classical B-spline functions B;.

Similarly to isoparametrical finite elements, the displacement field (u,v) is

interpolated by two splines developed on the same basis functions:

n

u(s) = ZU % Bri(s/lo) (25)

v(s) = 326 By (/1) (26)

=0

in which (7;)i=0,n and (d;)i=o,, are the parameters of these two splines.

Some calculations are now necessary to establish the discretized problem

(15,16). This derivation is detailed in [29].

12



4 Numerical examples

In this section, some numerical examples are presented.

The aim of this paper is the comparison of different network models. Thus, the
different constitutive equations have to be fitted for the same material using
the same type of experimental data. Here, experimental data corresponding
to the uniaxial extension of a natural rubber as reported by James et al. are
considered [14]. Moreover, we adopt the material parameters previously deter-
mined by Wu and van der Giessen [32]. It is to note that network parameters
N and Cx must be determined for each model. But, as the small strain be-
haviour is governed primarily by Cr, Wu and van der Giessen first determine
it, and consider an identical value of Cr for all models, said C'r = 0.4 MPa.
Then afterwards, the average number of monomers per chain is fitted for each
constitutive equation: N = 80 for the 3-chains model, N = 25 for the 8-chains

model, and finally N = 50 for the approached full network model.

4.1 Spherical balloons

Before examining the case of circular membranes, we consider the simple ho-
mogeneous inflation of spherical balloons. This problem was widely studied
for classical hyperelastic models, both in statics [4] and dynamics [27]. As the
deformation remains biaxial in every material points of the sphere, the prob-
lem reduces to a simple analytical governing equation that relies the blowing
pressure and the deformed radius. Here, our numerical approach is used to
solve the problem and the numerical results were successfully compared with

the analytical relation, that validates the present method.
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Consider a thin spherical membrane of natural rubber. The initial radius is
equal to 1.0 and the uniform thickness is 0.01. The semi-spherical cap is dis-
cretized using 21 nodes. It is assumed that the balloon remains spherical dur-
ing the inflation, so that no bifurcating phenomenon occurs. Consequently,

the extension ratios are:
A=A, A=A, A=— (27)

where A is the adimensional deformed radius r/r. The curves pressure versus
A are presented in Figure 3 for the four constitutive equations studied here.
Values of extension ratios and blowing pressures that correspond to the two
limit points, (A7, Pr) and (Arr, Prr), are presented in Table 1. As shown else-
where, the neo-Hookean balloon exhibits only one limit point that divides the
curve into a stable path and an unstable path. For the three other balloons,
the curves admit two limit points and three paths, two stable (increasing parts
of the curves) and one unstable (decreasing parts of the curves). A similar be-
haviour was highlighted previously for the Mooney-Rivlin model [27]. Let us
examine more precisely the first part of the curves that correspond to small
strains, i.e. for A < 2.0. First limit points occur approximately for the same
values of the extension ratio, said A = 1.39. This value can be obtained ana-
Iytically in the case of the neo-Hookean model and is equal to /7. This result
verifies our previous statement that the small strains behaviour only depends
on the material parameter Cg, that is identical for the four models. For larger
strains, inflation curves differ. In the case of the neo-Hookean material, there
is no strain-hardening (because of the Gaussian assumption) and the pressure
slowly decreases to zero as the membrane continues to inflate. For the three
other models, polymer chains reach their limit of extensibility for different

values of the undeformed radius. Last points (circles) of the curves in Fig. 3

14



represent the last configurations in which the simulation was able to converge.
The limit values of the adimensional radius, i.e. values for which the limiting
stretch of chains is reached, can be simply predicted for both 3-chains and
8-chains models. In the case of the 3-chains model, the limit of extensibility
is reached when one of the extension ratios ); tends to v/N in Eq. (9). Here,

recalling the equibiaxial deformations (27), we have:
M=dm=A 5 d=A=X , A=A =1/) (28)

Thus the limiting extensibility is obtained for A = /80 ~ 8.94. Note that
in our numerical simulations, we are not able to overcome A =~ 8.0 due to

convergence problems. In the case of the 8-chains model, the stretching of the

chains A" is defined by Eq. (10). Using (28), it reduces to:

A = /(202 +1/)1)/3 (29)
and the limit chain extension is obtained by:
At = /N (30)

with N = 25. The solution of this equation is A ~ 6.12. This value can be
seen as the asymptotic vertical line corresponding to the pressure curve of the
8-chains model in Fig. 3. Finally, the response of the approached full network
model is considered. As the model is a linear combination of the 3-chains and
the 8-chains models, the model reaches its limiting extensibility when one of
them reaches its own limit. Thus, considering now that N = 50, the limiting
extensibility is obtained for A = V50 &~ 7.07 for the 3-chains model. For the
8-chains model, Eqs (29) and (30) are solved with N = 50 and the limiting
extensibility is approximately equal to 8.66. The stresses (12) tends to infinity

for the smallest value, said A & 7.07 which corresponds to the 3-chains stress,

15



as shown by the corresponding curve in Fig. 3.

4.2 Circular plane membranes

Consider now an initially plane circular membrane of radius 1.0 and uniform
thickness 0.01. The exterior edge of the membrane is clamped. The membrane
is meshed using 21 nodes. In this problem, the deformation is not homogeneous

in the membrane. At the pole (the node in which r = 0.), the deformation is

equibiaxial:
1
Am > Ae = A ) Ap = E (31)
and at the clamped rim, the membrane is under pure shear conditions:
1
)\m ) )\c =1 ) )\n = )\_ (32)

Moreover, it is obvious that the pole lies in the symmetry axis. With our
numerical approach, there is no difficulty to satisfy the tangency condition,
said ' = 0, because this boundary condition is directly taken into account
in the B, interpolation functions (see Section 3.2). Using classical finite ele-
ments, this condition can not be strictly imposed, because there is no degree

of freedom that corresponds to r' (see [12] for example).

First, we study the curves that show the inflating pressure versus the axial
coordinate of the pole (denoted zpye through the rest of the paper) for the
different constitutive equations. These results are shown in Figure 4. The
corresponding values of limit points (2po1e 1, Pr) and (2pole 11, Prr) are presented
in Table 2. General aspects of the curves are similar to those observed for the
spherical balloons with both increasing and decreasing paths. In the present

case, the two values of the pressure that correspond to limit points are not very

16



different for each chains models. Moreover, the strain-hardening of the non-
Gaussian constitutive equations is highly remarkable and the limiting chain
extension is rapidly reached as it can be shown by the final vertical parts of

curves presented in Fig. 4.

Let us now examine the inflation profiles shown in Figure 5. For the four mod-
els, we present profiles that correspond to zp0e =1.0, 2.0, 3.0 and 4.0. Moreover,
the last profiles obtained before numerical divergence are also drawn for the
non-Gaussian constitutive equations. It can be seen that for 2, equal to 1.0
and 2.0 the profiles corresponding to the four models are similar. Neverthe-
less, for higher values of the axial coordinate of the pole, said 2,0 > 3.0, the
profiles corresponding to the three non-Gaussian models are similar, but they
highly differ from the shape of the deformed neo-Hookean membranes. The
neo-Hookean bubble is more ”spherical” than the other ones. This example
shows that the strain-hardening of the material has a very significant influence

of the shape of inflated membranes.

This remark is confirmed by the thickness distributions presented in Figure 6.
The thickness is plotted as function of the undeformed radius ry. As observed
by Hassager et al., the neo-Hookean membrane exhibits a strong thinning at
the pole [12]. Here, we show that the same observations can be made for non-
Gaussian statistical models. As predicted by the examination of the profiles,
the three non-Gaussian thickness distributions are almost similar at the pole,
and are of the same order of magnitude along the membrane for a given value
of Zpole- The last profile of each non-Gaussian membrane exhibits the same
thickness distribution that can be seen as the ultimate state before the oc-
currence of chains rupture. Moreover, the difference between the neo-Hookean

membrane and the non-Gaussian membranes is very significant. For values of

17



Zpole Of 2.0, 3.0 and 4.0, the thickness of the neo-Hookean membrane at the
clamped rim are identical and values at the pole tend to zero (see Fig. 6(a)).
In the case of the three other models, the thickness at the clamped rim evolves
significantly with respect to z,.1 and the thinning at the pole remains smaller

than in the neo-Hookean case.

In order to highlight the influence of the strain-hardening modeled by the
inverse Langevin function in constitutive equations (9), (11) and (12), the
distribution of the in-plane extension ratios A, and A. along the membranes
are presented in Figure 7. First, we verify that the circumferential stretch ratio
Ac varies between A, at the pole and 1.0 at the clamped rim. Fig. 7(a) reveals
that, for the neo-Hookean bubble, both distributions are similar, as previously
demonstrated by Yang and Feng [33]. Moreover, for zp,e = 5.0, extensions
ratios are equal to 25.0 at the pole. This result has no physical meaning and
proves the importance of a good modeling of strain-hardening of elastomers at
large strains. In the case of the non-Gaussian models, distributions of A, for
the three models are comparable for the same deformation level. Distributions
of A\, are also similar until the material reaches its strain-hardening behaviour.
In this case, the 8-chains models distribution (Fig. 7(c) for zpee = 4.02) differs
from the 3-chains and the approached full network distributions (Fig. 7(b) for
Zpole = 9.60 and Fig. 7(d) for z,0e = 3.87). In the former case, A, is greater
at the clamped extremity than at the pole; in the later, \,, is approximately
uniform for both 3-chains and approached full network membranes. This last
observation can be explained by examining the maximum chain extensibility
along the membrane for the three non-Gaussian bubbles. Recall that for the

3-chains model, the maximum chain extension at a material point is defined

18



AN — max (A, Aes An) (33)

and in our case, it is always equal to \,,. For the 8-chains model, it is given

by:

max — (02, 122 1 22) /3 (34)
and finally, for the approached full network model, it is the greater values of

the 3-chains and 8-chains data:

A — max (A, Aes Ans \/ (A2, + A2 4 A2)/3) (35)

and here, it is always equal to \,,. In the three cases, as A" ™ tends to /N,
the material hardens and the asymptotic vertical line in the pressure versus
Zpole diagram is approached (Fig. 4). The distributions of A" ™% along the
membranes are plotted versus the undeformed radius in Figure 8, for the three
non-Gaussian network models. They are highly similar for the three models: at
the beginning of the inflation the distribution is uniform, then the membrane
extends more significantly in the neighbourhood of the pole than near the
clamped rim, and finally for higher values of 2z, the chain extensibility tends
to become uniform and approaches the limit value v/ N, while few evolution of
strains takes place at the pole. This can be seen as the inflation of a circular
membrane with a rigid inclusion at the pole, considering that the radius of

this inclusion increases during the inflation.

5 Concluding remarks

In this paper, we have presented some results concerning the inflation of

rubber-like circular membranes using physical networks hyperelastic consti-
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tutive equations. The simulations are performed using a new B-spline model
that was proved to be very efficient for large strains inflation of axisymmet-
ric membranes. The non-Gaussian models are implemented and compared
with the classical neo-Hookean constitutive equation. The influence of strain-
hardening on the membrane response is highlighted. It is shown that both
inflation profiles and thickness distribution are highly influenced by the na-

ture of the material model.

These results are of interest in the context of the identification of material
parameters in biaxial conditions. In order to perform biaxial experiments on
elastomers or heat-softened plastics, the bubble inflation technique is widely
used. In most of the cases, only experimental data obtained at the pole are
considered to determine parameters of constitutive equations, because the
deformation is equibiaxial at this point. The present work shows that the evo-
lution of the membrane profile during inflation and some data concerning the
thickness distribution may be of great interest in the choice of the constitutive
equation that must be adopted, and in the determination of the corresponding
material parameters. Thus, the numerical analysis of the entire membrane is

highly suitable in the identification procedure.
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List of captions

Fig. 1. Problem description.

Fig. 2. Description of the most employed p-chains models: (a) 3-chains, (b) 8-chains.

Fig. 3. Pressure versus adimensional deformed radius for spherical balloons.

Fig. 4. Pressure versus axial coordinate of the pole for the plane membranes.

Fig. 5. Inflation profiles of the circular plane membranes: (a) neo-Hookean,
(b) 3-chains, (c) 8-chains, (d) approached full network. Numbers on the curves

stand for the corresponding inflating pressure.

Fig. 6. Thickness distribution in the circular plane membranes: (a) neo-Hookean,
(b) 3-chains, (c) 8-chains, (d) approached full network. Numbers on the curves stand

for the corresponding value of zpge.

Fig. 7. Extension ratios in the circular plane membranes (—) Ap, () Ag
(a) neo-Hookean, (b) 3-chains, (c) 8-chains, (d) approached full network. Numbers

on the curves stand for the corresponding value of zpge.

Fig. 8. Maximum chains extensibility in the circular plane membranes (—) distribu-
tion in the membrane, (- -) limit value v/N: (a) 3-chains, (b) 8-chains, (c) approached

full network. Numbers on the curves stand for the corresponding value of z,ge.



Tables

Model A1 Pr A1 Prr
Neo-hookean 1.40 | 4.96e-03
3-chains 1.40 | 5.04e-03 || 5.71 | 1.97e-03
8-chains 1.39 | 5.13e-03 || 3.92 | 2.88e-03
Approached full network || 1.39 | 5.08¢-03 || 5.10 | 2.26e-03

Table 1

Limit points for spherical balloons. Circles represent the analytical solutions.

Model Zpole I Pr Zpole IT Prr
Neo-hookean 1.16 | 7.52e-03
3-chains 1.23 | 7.73e-03 3.16 | 6.09e-03
8-chains 1.17 | 8.01e-03 2.17 | 7.64e-03
Approached full network | 1.26 | 7.84e-03 2.83 | 6.66e-03

Table 2

Limit points for circular plane membranes.



