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Abstra
t

The present paper deals with the use of network-based hyperelasti
 
onstitutive

equations in the 
ontext of thin membranes in
ation. The study fo
us on the in
a-

tion of plane 
ir
ular membranes and the materials are assumed to obey Gaussian

and non-Gaussian statisti
al 
hains network models. The governing equations of

the in
ation of axisymmetri
 thin rubber-like membranes are brie
y re
alled. The

material models are implemented in a numeri
al tool that in
orporates an eÆ
ient

B-spline interpolation method and a 
oupled Newton-Raphson/ar
-length solving

algorithm. Two numeri
al examples are studied: the homogeneous in
ation of spher-

i
al balloons and the in
ation of initially plane 
ir
ular membranes. In the se
ond

example, the in
ation pro�les and the distributions of extension ratios along the

membrane are extensively analyzed during the in
ation pro
ess. Both examples

highlight the need of an a

urate modeling of the strain-hardening phenomenon in

elastomers.
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1 Introdu
tion

In the last few years, 
lassi
al phenomenologi
al 
onstitutive equations for

rubber-like solids, su
h as Mooney-Rivlin or Ogden models, are progressively

repla
ed by more physi
al models based on statisti
al 
onsiderations, in var-

ious engineering appli
ations [1℄. The determination of the material parame-

ters of the 
onstitutive models is often performed using 
lassi
al homogeneous

strain experiments (uniaxial extension or pure shear tests for example). For

biaxial deformation, authors use frequently the bubble in
ation te
hnique,

that 
onsists in in
ating an initially plane 
ir
ular thin membrane (see [16,22℄

and more re
ently [8,20℄). In this type of experiments, deformations are not

homogeneous and the analysis of experimental data needs eÆ
ient numeri
al

method to solve the in
ation problem. The problem of 
ir
ular membranes in-


ation is 
lassi
ally solved for phenomenologi
al rubber-like models. Here, we

present some solutions 
orresponding with new statisti
al 
onstitutive equa-

tions.

The governing equations of the large strains in
ation of axisymmetri
 mem-

branes were established by Green and Adkins [11℄. Then, some authors solve

the 
orresponding problem by dire
tly integrating the system of ordinary dif-

ferential equations using shooting methods. Both hyperelasti
 [17,33℄ and vis-


oelasti
 [30,10℄ 
onstitutive equations are 
onsidered. Nevertheless, most of

the works are based on numeri
al dis
retized methods, su
h as �nite element

analysis [19,5,15,28℄. Most of the papers fo
us on the numeri
al methods and


onsider simple phenomenologi
al 
onstitutive equations. Very re
ently, Has-

sager et al. study the response of polymeri
 
uid membranes under in
ation

using the advan
ed Doi-Edwards and Tom-Pom models [12℄.
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The aim of the present paper is the analysis of the in
ation of thin elas-

tomeri
 membranes using network based rubber-like 
onstitutive equations. In

Se
tion 2, the governing equations of the axisymmetri
 in
ation problem are

re
alled and the 
onstitutive equations are presented. Four models are studied:

the 
lassi
al neo-Hookean model based on Gaussian statisti
s and three 
hains

models that are based on non-Gaussian statisti
s. Se
tion 3 is devoted to the

solving pro
edure. The numeri
al s
heme and our original B-spline interpola-

tion, detailed in [29℄, are brie
y re
alled. The numeri
al analysis of spheri
al

balloons and 
ir
ular plane membranes are presented in Se
tion 4. Finally,


on
luding remarks are proposed in Se
tion 5.

2 Problem formulation

2.1 Governing equations

We 
onsider an axially symmetri
 hyperelasti
 membrane of uniform thi
k-

ness h

0

in its undeformed 
on�guration. The geometry of this membrane


an be des
ribed by the 
ylindri
al 
oordinates of its mid-surfa
e. In ea
h

�-
onstant plane, both undeformed and deformed 
on�gurations are redu
ed

to one-dimensional 
urves, as shown in Figure 1. Consider a parti
le of un-

deformed 
oordinates (r

0

; z

0

) of the undeformed membrane. This point is dis-

pla
ed to a new position (r; z) in the deformed 
on�guration. The thi
kness of

the deformed membrane is denoted h. Every geometri
al data r

0

, z

0

, r, z and

h are fun
tions of the ar
-length 
oordinate in the undeformed 
on�guration

s, that varies between 0 and l

0

, the length of the initial membrane. As shown

by Yang and Feng [33℄, the prin
ipal stret
h ratios in meridian, 
ir
umferential

3



and normal dire
tions are given by:

�

m

=

v

u

u

t

r

2

;s

+ z

2

;s

r

2

0;s

+ z

2

0;s

; �




=

r

r

0

; �

n

=

h

h

0

(1)

in whi
h �

;s

stands for the di�erentiation with respe
t to s. As the material is

assumed in
ompressible, the thi
kness of the deformed body is simply related

to the thi
kness in the natural state by:

h =

1

�

m

�




h

0

(2)

Under a quasi-stati
 pressure load, the Prin
iple of Virtual Work 
an be writ-

ten in the following form:

Z

V

0

ÆW dV

0

�

Z

S

ÆuP n dS = 0 8 Æu (3)

where V

0

and S are respe
tively the volume of the undeformed membrane and

the surfa
e of the deformed membrane. W is the strain energy, P n is the out-

ward oriented blowing pressure and Æu is an admissible virtual displa
ement

ve
tor. Noting that the 
omponents of n are (z

;s

=

q

r

2

;s

+ z

2

;s

; �r

;s

=

q

r

2

;s

+ z

2

;s

),

the previous equation (3) simpli�es:

Z

l

0

0

2 � r

0

h

0

(t

m

Æ�

m

+ t




Æ�




) ds�

Z

l

0

0

2 � P r (Æu z

;s

� Æv r

;s

) ds = 0 (4)

where t

m

and t




are the prin
ipal �rst Piola-Kir
hho� stresses respe
tively in

the meridian and 
ir
umferential dire
tions, and (Æu; Æv) stand for the 
om-

ponents of the virtual displa
ement ve
tor.

2.2 Network 
onstitutive equations for elastomers

As mentioned above, the use of statisti
al network models for rubber-like

models in
reases in �nite elements tools. These 
onstitutive equations present
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some major advantages: they ne
essitate a small number of parameters and

they agree well with experiments in various modes of deformation [32℄.

In the statisti
al approa
h, polymers are 
onsidered as networks of long 
exible


hains randomly oriented and joined together by 
hemi
al 
ross-links. More

details on this subje
t 
an be found in [26,9℄.

2.2.1 Gaussian statisti
s model

Treloar �rst proposed a statisti
al treatment of rubber elasti
ity. He 
onsidered

that the 
on�guration of polymer 
hains 
an be des
ribed by Gaussian statis-

ti
s. This leads to the well-known neo-Hookean 
onstitutive equation [25℄. The


orresponding strain energy fun
tion is:

W =

1

2

nkT (I

1

� 3) (5)

where n denotes the average number of polymer 
hains per unit of volume, k

is the Boltzmann 
onstant, T is the absolute temperature and �nally I

1

is the

�rst invariant of the stret
h tensor, said its tra
e. This model only depends

on a unique parameter C

R

de�ned as:

C

R

= nkT (6)

2.2.2 Non-Gaussian statisti
s models

In order to over
ome the limitations of the previous model that is restri
ted to

small strains, authors use non-Gaussian statisti
s theory to des
ribe mole
ular

polymer 
hains 
on�gurations.
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2.2.2.1 Single 
hain elasti
ity In 1942, Kuhn and Gr�un use the non-

Gaussian statisti
s theory to model the limited extension of 
hains [18℄. Their

approa
h is based on the random walk statisti
s of an ideal phantom 
hain.

Consider a mole
ular 
hain 
omposed by N monomer segments of length l.

Its average unstret
hed length is

p

Nl and its maximum stret
hed length is

Nl. Moreover, the strain energy fun
tion of the 
hain w 
an be written in the

following form:

w = NkT

"

�

p

N

� + ln

�

sinh �

#

(7)

where � is the extension of the 
hain and with � = L

�1

�

�=

p

N

�

. L

�1

is

the inverse of the Langevin fun
tion de�ned by L(x) = 
oth(x) � 1=x. The

�rst Piola-Kir
hho� stress in this single 
hain is obtained by derivation of the

strain energy with respe
t to the extension:

t =

�w

��

= kT

p

N L

�1

 

�

p

N

!

(8)

2.2.2.2 p-
hains models In order to develop 
onstitutive equations, a

network of 
hains whi
h strain energy fun
tions are given by (7) should be


onsidered. Re
ently, Wu and van der Giessen integrate the previous stress

(8) on a unit sphere de�ned by its 
hains density [32℄. Their full network

model agrees well with experiments but ne
essitates numeri
al integration

pro
edures on the sphere. This numeri
al integration does not lead to an

eÆ
ient implementation in numeri
al softwares.

Other authors used the non-Gaussian statisti
s theory to develop simpler mod-

els whi
h do not need numeri
al integration. The most employed are the 3-


hains and the 8-
hains models. Moreover, we mention the approa
hed full

network model, that a

urately approximates the general theory of Wu and
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van der Giessen presented above. These 
onstitutive equations are developed

by 
onsidering privileged dire
tions in the unit sphere. Denoting n the density

of polymer 
hains as introdu
ed for the neo-Hookean model, it is assumed that

n=p 
hains per unit of volume are oriented in ea
h of the p privileged dire
tions

in the undeformed 
on�guration. Then, the previous numeri
al integration of

the strain energy on the unit sphere is advantageously repla
ed by a sum of

p single 
hain strain energy fun
tions weighted by the fa
tor n=p. Parti
ular


ases of p-
hains models are presented in Figure 2.

The simplest p-
hains model is de�ned by 
onsidering the three prin
ipal strain

axes as privileged dire
tions. It was derived by James and Guth [13℄ and is

widely known as the 3-
hains model. Figure 2(a) presents this model. Prin
i-

pal stresses (t

3-
hains

i

)

i=1;3

are expressed as fun
tions of prin
ipal stret
h ratios

(�

i

)

i=1;3

by:

t

3-
hains

i

= �

q

�

i

+

1

3

C

R

p

N L

�1

 

�

i

p

N

!

(9)

where q is the hydrostati
 pressure introdu
ed by the in
ompressibility as-

sumption.

A more re
ent model based on non-Gaussian statisti
s is the 8-
hains model

developed by Arruda and Boy
e [2℄. Privileged dire
tions are de�ned by the

half diagonals of a 
ube 
ontained in the unit sphere. Figure 2(b) shows this


hains distribution of the model. Its major property is its symmetry with

respe
t to the three prin
ipal axes. Therefore, the eight 
hains are stret
hed

with the same extension ratio, �


h

, that 
orresponds to the stret
hing of ea
h

half diagonals of the 
ube:

�


h

=

q

(�

2

1

+ �

2

2

+ �

2

3

)=3 (10)
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This leads to a simple stress-stret
h relationship:

t

8-
hains

i

= �

q

�

i

+

1

3

C

R

p

N

�

i

�


h

L

�1

 

�


h

p

N

!

(11)

Finally, we 
an mention the approa
hed full network model proposed by Wu

and van der Giessen [31℄. Authors use a linear 
ombination of the stresses of

the 3-
hains and 8-
hains models to approximate the full network stresses by:

t

full network

i

= (1� �) t

3-
hains

i

+ � t

8-
hains

i

(12)

where � is a parameter that is related to the maximal prin
ipal stret
h ratio:

� =

0:85

p

N

max(�

1

; �

2

; �

3

) (13)

in whi
h the fa
tor 0.85 is 
hosen to give the best 
orrelation with the full

integration on the unit sphere.

3 Solution pro
edure

In this part, the resolution pro
edure used to integrate the problem (4) as-

so
iated with one of the stress-strain relationships de�ned above is brie
y

presented. For more details, the reader 
an refer to [29℄.

3.1 Dis
retized equations and solution pro
edure

Whatever the interpolation method adopted, the membrane is dis
retized by


onsidering n+1 nodes, (N

i

)

i=0;n

. Ea
h node N

i

is de�ned by its undeformed

ar
-length 
oordinate s

i

. Its displa
ements in radial and axial dire
tion are

respe
tively u

i

and v

i

. The assembled nodal displa
ements ve
tor, that in
ludes

8



all nodal displa
ements, is denoted U with:

U

2i�1

= u

i

and U

2i

= v

i

8 i = 0; : : : ; n (14)

Using interpolation formulas (detailed in the next paragraph), the Prin
iple

of Virtual Work (4) be
omes:

ÆU

T

[F

int

(U)� F

ext

(U; p)℄ = 0 8 ÆU

T

(15)

where F

int

(U) and F

ext

(U; p) are the internal and external for
es ve
tors re-

spe
tively, ÆU is the virtual nodal displa
ement ve
tor and �

T

denotes the

transposition. F

int

is the dis
retized 
ounterpart of the �rst left-hand side

term in Eq. (4) and F

ext


orresponds to the se
ond term in this equation. It

is obvious that the system (15) is highly non-linear both geometri
ally and

by the 
onstitutive equation. Thus, an iterative method must be employed to

solve this system and the tangent operator must be derived. This operator

is denoted K and represents the derivative of the out-of-balan
e for
e ve
tor

(F

int

� F

ext

) with respe
t to U:

K =

�F

int

�U

�

�F

ext

�U

(16)

The detailed ready-to-program formulas of F

int

, F

ext

and K are given in [23℄

for the 
lassi
al two nodes membrane �nite element and in [29℄ for our original

B-spline interpolation.

As shown by Beatty for stati
 in
ation [4℄ and Verron et al. for dynami


in
ation [27℄, the pressure-displa
ement 
urves 
orresponding to rubber-like

membranes in
ation exhibit limit points. Consequently a 
ontinuation method

has to be adopted to 
ompute the equilibrium path [24℄. Here, the ar
-length

method is implemented. It 
onsists in 
ompleting the system of equilibrium

equations with an additional relation between the load (here the pressure) and

9



the displa
ement in
rements (see [6℄ for various versions of this method). In

the present 
ase, the displa
ement 
ontrol method is 
onsidered [3℄ and the

additional equation is:

k�Uk

2

� da

2

= 0 (17)

where �U is the displa
ement in
rement ve
tor between two equilibrium

points and da is the pres
ribed ar
-length. This equation is added to the pre-

vious system (15) as a bordered equation and the assembled system is solved

by the 
lassi
al Newton-Raphson algorithm [21℄.

3.2 B-splines interpolation method

In this study, the membrane is interpolated by two 
ubi
 splines de�ned on

the set of nodes (N

i

)

i=0;n

, one for ea
h 
oordinate r

0

and z

0

:

r

0

(s) =

n+1

X

i=�1

�

i

B

i

(s=l

0

) (18)

z

0

(s) =

n+1

X

i=�1

�

i

B

i

(s=l

0

) (19)

where (�

i

)

i=�1;n+1

and (�

i

)

i=�1;n+1

are the parameters of the two splines and

fun
tions B

i

are B-spline fun
tions. Denoting � the redu
ed ar
-length, said
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s=l

0

, these fun
tions are given by [7℄:
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where �

i

is the redu
ed ar
-length 
oordinate of the node N

i

and where the

following 
onventions are adopted:

�

i

= s

0

=l

0

for i � 0 (21)

�

i

= s

n

=l

0

for i � n (22)

With these two 
onventions some denominators are equal to 0 and we adopt

the equality: 0=0 = 0.

In Eqs (18, 19), the n + 3 parameters of ea
h splines are de�ned in a unique

manner using the undeformed 
oordinates of the n+1 nodes and by taking into

a

ount end 
onditions to determine the two extra parameters. Depending on

the me
hani
al boundary 
onditions, di�erent mathemati
al end 
onditions
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for the splines 
an be adopted:

1. if the extreme point does not lies in the symmetry axis, both r

0

and z

0

interpolation admit natural end 
onditions, i.e. the se
ond derivative of

both fun
tions are equal to zero at this point,

2. if the extreme point lies in the symmetry axis, the z

0

-spline admits natural

end 
onditions but the r

0

-spline admits Hermite end 
onditions, i.e. the �rst

derivative of the fun
tion is pres
ribed at the point and, in our 
ase, is set

to zero.

These boundary 
onditions provide two additional linear relations between

parameters for both splines, and interpolation formulas (18,19) redu
e to:

r

0

(s) =

n

X

i=0

�

i

B

r

i

(s=l

0

) (23)

z

0

(s) =

n

X

i=0

�

i

B

z

i

(s=l

0

) (24)

where (B

r

i

)

i=0;n

and (B

z

i

)

i=0;n

are the new interpolation basis, de�ned as linear


ombinations of the 
lassi
al B-spline fun
tions B

i

.

Similarly to isoparametri
al �nite elements, the displa
ement �eld (u,v) is

interpolated by two splines developed on the same basis fun
tions:

u(s) =

n

X

i=0




i

B

r

i

(s=l

0

) (25)

v(s) =

n

X

i=0

Æ

i

B

z

i

(s=l

0

) (26)

in whi
h (


i

)

i=0;n

and (Æ

i

)

i=0;n

are the parameters of these two splines.

Some 
al
ulations are now ne
essary to establish the dis
retized problem

(15,16). This derivation is detailed in [29℄.
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4 Numeri
al examples

In this se
tion, some numeri
al examples are presented.

The aim of this paper is the 
omparison of di�erent network models. Thus, the

di�erent 
onstitutive equations have to be �tted for the same material using

the same type of experimental data. Here, experimental data 
orresponding

to the uniaxial extension of a natural rubber as reported by James et al. are


onsidered [14℄. Moreover, we adopt the material parameters previously deter-

mined by Wu and van der Giessen [32℄. It is to note that network parameters

N and C

R

must be determined for ea
h model. But, as the small strain be-

haviour is governed primarily by C

R

, Wu and van der Giessen �rst determine

it, and 
onsider an identi
al value of C

R

for all models, said C

R

= 0:4 MPa.

Then afterwards, the average number of monomers per 
hain is �tted for ea
h


onstitutive equation: N = 80 for the 3-
hains model, N = 25 for the 8-
hains

model, and �nally N = 50 for the approa
hed full network model.

4.1 Spheri
al balloons

Before examining the 
ase of 
ir
ular membranes, we 
onsider the simple ho-

mogeneous in
ation of spheri
al balloons. This problem was widely studied

for 
lassi
al hyperelasti
 models, both in stati
s [4℄ and dynami
s [27℄. As the

deformation remains biaxial in every material points of the sphere, the prob-

lem redu
es to a simple analyti
al governing equation that relies the blowing

pressure and the deformed radius. Here, our numeri
al approa
h is used to

solve the problem and the numeri
al results were su

essfully 
ompared with

the analyti
al relation, that validates the present method.
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Consider a thin spheri
al membrane of natural rubber. The initial radius is

equal to 1.0 and the uniform thi
kness is 0.01. The semi-spheri
al 
ap is dis-


retized using 21 nodes. It is assumed that the balloon remains spheri
al dur-

ing the in
ation, so that no bifur
ating phenomenon o

urs. Consequently,

the extension ratios are:

�

m

= � ; �




= � ; �




=

1

�

2

(27)

where � is the adimensional deformed radius r=r

0

. The 
urves pressure versus

� are presented in Figure 3 for the four 
onstitutive equations studied here.

Values of extension ratios and blowing pressures that 
orrespond to the two

limit points, (�

I

; P

I

) and (�

II

; P

II

), are presented in Table 1. As shown else-

where, the neo-Hookean balloon exhibits only one limit point that divides the


urve into a stable path and an unstable path. For the three other balloons,

the 
urves admit two limit points and three paths, two stable (in
reasing parts

of the 
urves) and one unstable (de
reasing parts of the 
urves). A similar be-

haviour was highlighted previously for the Mooney-Rivlin model [27℄. Let us

examine more pre
isely the �rst part of the 
urves that 
orrespond to small

strains, i.e. for � � 2:0. First limit points o

ur approximately for the same

values of the extension ratio, said � = 1:39. This value 
an be obtained ana-

lyti
ally in the 
ase of the neo-Hookean model and is equal to

6

p

7. This result

veri�es our previous statement that the small strains behaviour only depends

on the material parameter C

R

, that is identi
al for the four models. For larger

strains, in
ation 
urves di�er. In the 
ase of the neo-Hookean material, there

is no strain-hardening (be
ause of the Gaussian assumption) and the pressure

slowly de
reases to zero as the membrane 
ontinues to in
ate. For the three

other models, polymer 
hains rea
h their limit of extensibility for di�erent

values of the undeformed radius. Last points (
ir
les) of the 
urves in Fig. 3

14



represent the last 
on�gurations in whi
h the simulation was able to 
onverge.

The limit values of the adimensional radius, i.e. values for whi
h the limiting

stret
h of 
hains is rea
hed, 
an be simply predi
ted for both 3-
hains and

8-
hains models. In the 
ase of the 3-
hains model, the limit of extensibility

is rea
hed when one of the extension ratios �

i

tends to

p

N in Eq. (9). Here,

re
alling the equibiaxial deformations (27), we have:

�

1

= �

m

= � ; �

2

= �




= � ; �

3

= �

n

= 1=�

2

(28)

Thus the limiting extensibility is obtained for � =

p

80 � 8:94. Note that

in our numeri
al simulations, we are not able to over
ome � � 8:0 due to


onvergen
e problems. In the 
ase of the 8-
hains model, the stret
hing of the


hains �


h

is de�ned by Eq. (10). Using (28), it redu
es to:

�


h

=

q

(2�

2

+ 1=�

4

)=3 (29)

and the limit 
hain extension is obtained by:

�


h

=

p

N (30)

with N = 25. The solution of this equation is � � 6:12. This value 
an be

seen as the asymptoti
 verti
al line 
orresponding to the pressure 
urve of the

8-
hains model in Fig. 3. Finally, the response of the approa
hed full network

model is 
onsidered. As the model is a linear 
ombination of the 3-
hains and

the 8-
hains models, the model rea
hes its limiting extensibility when one of

them rea
hes its own limit. Thus, 
onsidering now that N = 50, the limiting

extensibility is obtained for � =

p

50 � 7:07 for the 3-
hains model. For the

8-
hains model, Eqs (29) and (30) are solved with N = 50 and the limiting

extensibility is approximately equal to 8:66. The stresses (12) tends to in�nity

for the smallest value, said � � 7:07 whi
h 
orresponds to the 3-
hains stress,
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as shown by the 
orresponding 
urve in Fig. 3.

4.2 Cir
ular plane membranes

Consider now an initially plane 
ir
ular membrane of radius 1.0 and uniform

thi
kness 0.01. The exterior edge of the membrane is 
lamped. The membrane

is meshed using 21 nodes. In this problem, the deformation is not homogeneous

in the membrane. At the pole (the node in whi
h r = 0:), the deformation is

equibiaxial:

�

m

; �




= �

m

; �

n

=

1

�

2

m

(31)

and at the 
lamped rim, the membrane is under pure shear 
onditions:

�

m

; �




= 1 ; �

n

=

1

�

m

(32)

Moreover, it is obvious that the pole lies in the symmetry axis. With our

numeri
al approa
h, there is no diÆ
ulty to satisfy the tangen
y 
ondition,

said r

0

= 0, be
ause this boundary 
ondition is dire
tly taken into a

ount

in the B

r

i

interpolation fun
tions (see Se
tion 3.2). Using 
lassi
al �nite ele-

ments, this 
ondition 
an not be stri
tly imposed, be
ause there is no degree

of freedom that 
orresponds to r

0

(see [12℄ for example).

First, we study the 
urves that show the in
ating pressure versus the axial


oordinate of the pole (denoted z

pole

through the rest of the paper) for the

di�erent 
onstitutive equations. These results are shown in Figure 4. The


orresponding values of limit points (z

pole I

; P

I

) and (z

pole II

; P

II

) are presented

in Table 2. General aspe
ts of the 
urves are similar to those observed for the

spheri
al balloons with both in
reasing and de
reasing paths. In the present


ase, the two values of the pressure that 
orrespond to limit points are not very
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di�erent for ea
h 
hains models. Moreover, the strain-hardening of the non-

Gaussian 
onstitutive equations is highly remarkable and the limiting 
hain

extension is rapidly rea
hed as it 
an be shown by the �nal verti
al parts of


urves presented in Fig. 4.

Let us now examine the in
ation pro�les shown in Figure 5. For the four mod-

els, we present pro�les that 
orrespond to z

pole

=1.0, 2.0, 3.0 and 4.0. Moreover,

the last pro�les obtained before numeri
al divergen
e are also drawn for the

non-Gaussian 
onstitutive equations. It 
an be seen that for z

pole

equal to 1.0

and 2.0 the pro�les 
orresponding to the four models are similar. Neverthe-

less, for higher values of the axial 
oordinate of the pole, said z

pole

� 3:0, the

pro�les 
orresponding to the three non-Gaussian models are similar, but they

highly di�er from the shape of the deformed neo-Hookean membranes. The

neo-Hookean bubble is more "spheri
al" than the other ones. This example

shows that the strain-hardening of the material has a very signi�
ant in
uen
e

of the shape of in
ated membranes.

This remark is 
on�rmed by the thi
kness distributions presented in Figure 6.

The thi
kness is plotted as fun
tion of the undeformed radius r

0

. As observed

by Hassager et al., the neo-Hookean membrane exhibits a strong thinning at

the pole [12℄. Here, we show that the same observations 
an be made for non-

Gaussian statisti
al models. As predi
ted by the examination of the pro�les,

the three non-Gaussian thi
kness distributions are almost similar at the pole,

and are of the same order of magnitude along the membrane for a given value

of z

pole

. The last pro�le of ea
h non-Gaussian membrane exhibits the same

thi
kness distribution that 
an be seen as the ultimate state before the o
-


urren
e of 
hains rupture. Moreover, the di�eren
e between the neo-Hookean

membrane and the non-Gaussian membranes is very signi�
ant. For values of
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z

pole

of 2.0, 3.0 and 4.0, the thi
kness of the neo-Hookean membrane at the


lamped rim are identi
al and values at the pole tend to zero (see Fig. 6(a)).

In the 
ase of the three other models, the thi
kness at the 
lamped rim evolves

signi�
antly with respe
t to z

pole

and the thinning at the pole remains smaller

than in the neo-Hookean 
ase.

In order to highlight the in
uen
e of the strain-hardening modeled by the

inverse Langevin fun
tion in 
onstitutive equations (9), (11) and (12), the

distribution of the in-plane extension ratios �

m

and �




along the membranes

are presented in Figure 7. First, we verify that the 
ir
umferential stret
h ratio

�




varies between �

m

at the pole and 1.0 at the 
lamped rim. Fig. 7(a) reveals

that, for the neo-Hookean bubble, both distributions are similar, as previously

demonstrated by Yang and Feng [33℄. Moreover, for z

pole

= 5:0, extensions

ratios are equal to 25.0 at the pole. This result has no physi
al meaning and

proves the importan
e of a good modeling of strain-hardening of elastomers at

large strains. In the 
ase of the non-Gaussian models, distributions of �




for

the three models are 
omparable for the same deformation level. Distributions

of �

m

are also similar until the material rea
hes its strain-hardening behaviour.

In this 
ase, the 8-
hains models distribution (Fig. 7(
) for z

pole

= 4:02) di�ers

from the 3-
hains and the approa
hed full network distributions (Fig. 7(b) for

z

pole

= 5:60 and Fig. 7(d) for z

pole

= 3:87). In the former 
ase, �

m

is greater

at the 
lamped extremity than at the pole; in the later, �

m

is approximately

uniform for both 3-
hains and approa
hed full network membranes. This last

observation 
an be explained by examining the maximum 
hain extensibility

along the membrane for the three non-Gaussian bubbles. Re
all that for the

3-
hains model, the maximum 
hain extension at a material point is de�ned
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by:

�


h max

= max(�

m

; �




; �

n

) (33)

and in our 
ase, it is always equal to �

m

. For the 8-
hains model, it is given

by:

�


h max

=

q

(�

2

m

+ �

2




+ �

2

n

)=3 (34)

and �nally, for the approa
hed full network model, it is the greater values of

the 3-
hains and 8-
hains data:

�


h max

= max(�

m

; �




; �

n

;

q

(�

2

m

+ �

2




+ �

2

n

)=3) (35)

and here, it is always equal to �

m

. In the three 
ases, as �


h max

tends to

p

N ,

the material hardens and the asymptoti
 verti
al line in the pressure versus

z

pole

diagram is approa
hed (Fig. 4). The distributions of �


h max

along the

membranes are plotted versus the undeformed radius in Figure 8, for the three

non-Gaussian network models. They are highly similar for the three models: at

the beginning of the in
ation the distribution is uniform, then the membrane

extends more signi�
antly in the neighbourhood of the pole than near the


lamped rim, and �nally for higher values of z

pole

the 
hain extensibility tends

to be
ome uniform and approa
hes the limit value

p

N , while few evolution of

strains takes pla
e at the pole. This 
an be seen as the in
ation of a 
ir
ular

membrane with a rigid in
lusion at the pole, 
onsidering that the radius of

this in
lusion in
reases during the in
ation.

5 Con
luding remarks

In this paper, we have presented some results 
on
erning the in
ation of

rubber-like 
ir
ular membranes using physi
al networks hyperelasti
 
onsti-
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tutive equations. The simulations are performed using a new B-spline model

that was proved to be very eÆ
ient for large strains in
ation of axisymmet-

ri
 membranes. The non-Gaussian models are implemented and 
ompared

with the 
lassi
al neo-Hookean 
onstitutive equation. The in
uen
e of strain-

hardening on the membrane response is highlighted. It is shown that both

in
ation pro�les and thi
kness distribution are highly in
uen
ed by the na-

ture of the material model.

These results are of interest in the 
ontext of the identi�
ation of material

parameters in biaxial 
onditions. In order to perform biaxial experiments on

elastomers or heat-softened plasti
s, the bubble in
ation te
hnique is widely

used. In most of the 
ases, only experimental data obtained at the pole are


onsidered to determine parameters of 
onstitutive equations, be
ause the

deformation is equibiaxial at this point. The present work shows that the evo-

lution of the membrane pro�le during in
ation and some data 
on
erning the

thi
kness distribution may be of great interest in the 
hoi
e of the 
onstitutive

equation that must be adopted, and in the determination of the 
orresponding

material parameters. Thus, the numeri
al analysis of the entire membrane is

highly suitable in the identi�
ation pro
edure.
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List of 
aptions

Fig. 1. Problem des
ription.

Fig. 2. Des
ription of the most employed p-
hains models: (a) 3-
hains, (b) 8-
hains.

Fig. 3. Pressure versus adimensional deformed radius for spheri
al balloons.

Fig. 4. Pressure versus axial 
oordinate of the pole for the plane membranes.

Fig. 5. In
ation pro�les of the 
ir
ular plane membranes: (a) neo-Hookean,

(b) 3-
hains, (
) 8-
hains, (d) approa
hed full network. Numbers on the 
urves

stand for the 
orresponding in
ating pressure.

Fig. 6. Thi
kness distribution in the 
ir
ular plane membranes: (a) neo-Hookean,

(b) 3-
hains, (
) 8-
hains, (d) approa
hed full network. Numbers on the 
urves stand

for the 
orresponding value of z

pole

.

Fig. 7. Extension ratios in the 
ir
ular plane membranes (|) �

m

, (� � � ) �




:

(a) neo-Hookean, (b) 3-
hains, (
) 8-
hains, (d) approa
hed full network. Numbers

on the 
urves stand for the 
orresponding value of z

pole

.

Fig. 8. Maximum 
hains extensibility in the 
ir
ular plane membranes (|) distribu-

tion in the membrane, (- -) limit value

p

N : (a) 3-
hains, (b) 8-
hains, (
) approa
hed

full network. Numbers on the 
urves stand for the 
orresponding value of z

pole

.



Tables

Model �

I

P

I

�

II

P

II

Neo-hookean 1.40 4.96e-03 � �

3-
hains 1.40 5.04e-03 5.71 1.97e-03

8-
hains 1.39 5.13e-03 3.92 2.88e-03

Approa
hed full network 1.39 5.08e-03 5.10 2.26e-03

Table 1

Limit points for spheri
al balloons. Cir
les represent the analyti
al solutions.

Model z

pole I

P

I

z

pole II

P

II

Neo-hookean 1.16 7.52e-03 � �

3-
hains 1.23 7.73e-03 3.16 6.09e-03

8-
hains 1.17 8.01e-03 2.17 7.64e-03

Approa
hed full network 1.26 7.84e-03 2.83 6.66e-03

Table 2

Limit points for 
ir
ular plane membranes.


