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This paper focuses on two improvements of the extended finite element method (X-FEM) in the context of linear fracture 
mechanics. Both improve the accuracy and the robustness of the X-FEM. In a first contribution, a new enrichment strategy 
is proposed to take into account the singular stress field at the crack tip that is meant to replace the traditional four-crack-tip 
enrichment functions. The efficiency of the new approach is demonstrated on mesh convergence experi-ments for two-
dimensional straight and curved crack problems, using first- and second-order shape functions, both in terms of convergence 
rates and in terms of condition number of the system to solve. The second contribution revisits the problem of the numerical 
integration of the stiffness operator when singular functions like the tip enrichment functions are used. An original algorithm to 
build accurate and fast integration rules for elements in the enrichment zone, touch-ing the crack tip singularity, or not, is 
presented. The effects on convergence rate of the choice of the integration rule are illustrated on numerical examples.

KEY WORDS: X-FEM, cracks, singular function integration, LEFM

1. INTRODUCTION

The paper presents some improvements to the extended finite element method (X-FEM) in the context of linear
fracture mechanics. The goal is to provide better convergence rate and robustness to the method. Most FEM industrial
codes provide up to a second-order finite element, with a corresponding optimal second-orderh convergence rate of
the energy norm error when applied to regular problems. The X-FEM, beyond relaxing the constraint on the mesh,
also has the potential to reach optimal convergence rate in the presence of a stress singularity such as a crack. It is
generally considered achieved when first-order shape functions are used (Béchet et al., 2005; Laborde et al., 2005).
Using a geometrical enrichment strategy and a sufficiently accurate integration rule, a first-order convergence rate
has already been demonstrated. Moving to higher order while keeping the optimal convergence rate is much more
difficult. This is our ultimate goal and the contributions of this paper are steps toward that goal.

The outline of the paper is as follows: In the first section, the X-FEM modeling strategy for cracks is briefly
recalled, with references and comparisons to the variants introduced by the generalized finite element method (G-
FEM). Special care is focused toward the definition of the enrichment zone, either topological or geometrical. In this
first section, the vectorial crack tip enrichment strategy is be presented, along with some details on its implementation.
The second section is devoted to the analysis and the construction of a new quadrature rule meant to reduce the
integration error in the stiffness matrix, due to the presence of singular terms coming from the tip enrichment functions.
In the last section, the proposed improvements are tested on some benchmarks where high-order accuracy is achieved.
Optimal order of convergence is obtained, for both first- and second-order shape functions, with a reasonable condition
number for the stiffness matrix, compared to the previous method. Lastly, taking advantage of the structure of the
vector enrichment functions, a very fast stress intensity factor extractor is presented. Its usefulness as compared to
G-theta domain integral methods is discussed. Finally, the paper ends with some conclusions.
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2. THE X-FEM MODELING OF CRACKS

2.1 Problem Statement

We place ourselves within the context of linear elasticity. On a discretized domainΩh, whereh is a discretization
parameter (element size) bounded byΓh, the weak form of the discretized equilibrium equations may be written as
follows:

Finduh, the discretized displacement field∈ Vh, such that
∫

Ωh

B(uh,vh)dΩ =
∫

Γt

L(vh)dΓ∀vh ∈ Vh
0 (1.1)

whereVh is the trial space for the displacement field, over the mesh that discretizes the domainΩ, that fulfills the
Dirichlet boundary condition onΓh

u, andVh
0 is the corresponding space with a homogeneous Dirichlet boundary

condition.B is a bilinear operator, defined asB(u,v) = ∇suh : D : ∇svh, where∇Su is the symmetric part of the
gradient tensor ofu (e.g., the linearized strain tensor), andD is the fourth-order elasticity tensor.L is a linear operator
corresponding to the Neumann boundary condition onΓt : L(u) = t.u, wheret represents the prescribed tractions
known onΓt.

The domainΩ is then cut by a traction-free crack. In the context of X-FEM, the mesh does not conform to the
crack and alternative representations for the geometry of the crack need to be used.

2.2 Geometric representation of the crack

The modeling of three-dimensional (3D) cracks not aligned with the mesh using the partition of unity was first devel-
oped in Sukumar et al. (2000). The description of the crack location was explicit in this paper.

Later, in Möes et al. (2002), a more flexible level set representation was introduced, the representation used in
the present work, which we describe in the following. The crack location is given by two level sets. The normal level
set, lsn, corresponds to the signed distance to the crack surface. The tangential level setlst corresponds the signed
distance to the front (or to be more precise, the distance to a surface passing through the front and orthogonal to the
crack surface). The crack front is given by the set of points were bothlsn andlst are zero, whereas the crack is given
by the set of points for whichlsn = 0 andlst ≤ 0. The iso-zero of the two level sets are depicted in Fig. 1 close to a
crack front portion.

FIG. 1: Level set representation ofacrack and definition of the local axis along the crack front.
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Numerically, the level setsarediscretized as a linear finite element approximation, over the mesh that is used for
the computation of the displacement field. It is, of course, possible to use another mesh to represent the level set. For
example, it was proposed to represent the level set on a finer mesh, or on a structured or octree type of mesh (Legrain
et al., 2012; Prabel et al., 2007; Sukumar et al., 2008). The latter versions are sometimes more memory efficient,
and more efficient propagation algorithms can be used to update the position of the crack when performing crack
propagation analysis. Using an implicit representation of the crack such as the one presented, has some drawbacks.
Indeed, the crack surface, if simple enough, could be described by a parametric surface, or by a mesh. The memory
cost of such a representation would be in most cases much smaller than the cost of representing two discrete level sets
over a whole mesh. Those claims could nonetheless be more balanced, since the level sets need only to be defined in
a narrow band containing the crack surface (Osher and Fedkiw, 2002; Sethian, 1999).

In the context of crack propagation, the crack front represented by the level setlst is able to take any topology.
Updating a mesh of the crack front, on the other hand, can be more difficult.

2.3 Crack Tip Enrichment: Classical Version

The commonly used X-FEM approximation field is as follows. If no crack is present, the displacement fieldu(x) over
the body located inΩ is approximated by

uh(x) =
∑

i∈[1:dim]

∑

I∈N
NI(x)uIiEi (1.2)

whereN is the set of all nodes in the mesh,NI are the classicalC0 shape functions, anduIi are the displacement
degrees of freedom attached to nodeI in directionEi, where theEi form a global orthonormal basis, anddim is
the number of spacial dimensions of the problem. Introducing a crack in the mesh yields the following enriched
approximation:

uh(x) =
∑

i∈[1:dim]

∑

I∈N
NI(x)uIiEi +

∑

i∈[1:dim]

∑

I∈Ncrack

NI(x)H[lsn(x)]hIiEi

+
∑

i∈[1:dim]

∑

I∈Ntip

∑
α

NI(x)Fα[lsn(x), lst(x)]aIiαEi (1.3)

in which

– Ncrack is the set of nodes whose support (union of the elements connected to the node) is completely cut into
two by the crack. These nodes are enriched by the generalized Heaviside function:

H[lsn(x)] = sign[lsn(x)] (1.4)

sign(x) = −1 if x < 0, sign(x) = +1 if x ≥ = 0.

– Ntip is the set of nodes enriched by the tip enrichment functions:

[Fα] =
[√

r sin
θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sinθ,

√
r cos

θ

2
sinθ

]
(1.5)

where

r =
√

lsn2 + lst2, θ = tan−1

(
lsn
lst

)
(1.6)

– hIi are the degrees of freedomassociatedto the Heaviside enrichment function attached to nodeI, in directioni.

– aIiα are the degrees of freedom associated to theα crack tip enrichment function attached to nodeI, in direc-
tion i.
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ThesetNtip must at least contain the nodeswhosesupports touch the crack front. Similarly to what was introduced
in Béchet et al. (2005) and Laborde et al. (2005), we can distinguish topological and geometrical enrichment. We
denote byV geo(R) the set of elements for which at least one node is at a distancer to the crack front smaller or
equal toR. The distancer is computed by Eq. (1.6). We denote byV topo(n) the set of elements composingn layers
of elements around the front. The precise definition of the layers follows. The first layer contains all the elements
touching the front. The second layer is defined as the elements connected to the nodes of the elements of the first
layer. The third layer is defined as the elements connected to the nodes of the elements of the second layer and so
on. For all the numerical examples presented in the presented here, we use the geometrical enrichment strategy where
Ntip is the set of nodes ofV geo(R). It was shown, for example, in B́echet et al. (2005) that it was required to obtain
an optimal rate of convergence in energy error norm. For the rest of the paper, we refer to the use of the fourFα crack
tip enrichment functions as thescalar enrichmentor scalar tip enrichmentto differentiate with the new enrichment
that is presented in the next section.

2.4 Crack Tip Enrichment: Updated Version

2.4.1 Presentation

In the present paper we propose to investigate an updated version of the X-FEM enrichment we just discussed. The
main difference is that instead of using the fourFα scalar enrichment functions, we propose to use threeKα vector
enrichment functions. Equation (1.3) then reads

u(x) =
∑

i∈[1:dim]

∑

I∈N
NI(x)uIiEi +

∑

i∈[1:dim]

∑

I∈Ncrack

NI(x)H[lsn(x)]hIiEi

+
∑

I∈Ntip

∑
α

NI(x)Kα[lsn(x), lst(x)]aIα (1.7)

In this updated version, only the last sum differs slightly. TheaIα are now scalar degrees of freedom and the vectorial
nature of the displacement field is embedded in the enrichment functions. We make the choice to use three vector
enrichment functions that are a dimensionless version of the three Irwin asymptotic opening modes (Irwin, 1957).

K1 =
√

r cos
θ

2
(κ− cos θ)[e1(x) + e2(x)] (1.8)

K2 =
√

r sin
θ

2
(κ + 2 + cosθ)e1(x) +

√
r cos

θ

2
(κ− 2 cos θ)e2(x) (1.9)

K3 =
√

r sin
θ

2
e3(x) (1.10)

whereκ = 3–4ν, with ν the Poisson ratio, in 3Dor the plane strain case.

2.4.2 Bibliographic Discussion

While the idea of using these enrichment functions seemed original to us at the time of development, further review
of the bibliography showed that the idea was already used in a similar form in the G-FEM context. While G-FEM and
X-FEM methods appeared approximately at the same time and were both applications of the partition-of-unity method
and were both applied to the modelization of cracks, they were initially quite different. The two methods evolved since
then borrowing ideas from each other to the point that it is difficult to distinguish them now (Belytschko and Fries,
2010). If we refer to early applications for cracks (1999, 2000) the introduction of discontinuity inside an element was
done using a discontinuous partition of unity in the G-FEM, while in the case of the X-FEM, the discontinuity was
introduced via Heaviside enrichment multiplied by a linear, continuous partition of unity. In the original G-FEM, the
displacement space is defined as

u =
∑

qiφi(x)Ni (1.11)
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wheretheφi(x) are constructed from Shepard function,usingthe visibility criteria, and theNi are the classical finite
element shape functions. In the original X-FEM the displacement space is defined as

u =
∑

qiNi +
∑

hiNiH[lsn(x)] (1.12)

where theNi are the classical finite element shape functions andH is the Heaviside function, defined on top of the
normal level set that gives the distance to the crack surface. More recent papers in G-FEM seem to have adopted a
formulation closer to X-FEM, where the discontinuity is now introduced via the enrichment. Enriching the elements
touching the crack tip directly with vectorial functions that are the asymptotic expansion of the exact solution ap-
peared, to our knowledge, in G-FEM in Duarte et al. (2000), where it was applied to describe corners or wedges and,
at the limit when the angle goes to 0, cracks. The discrete displacement field is enriched around a corner using vecto-
rial functions that are directly the asymptotic expansion of the exact solution. In this paper, the mesh was conformed
to the corner. In the following paper (Duarte et al., 2001), the method is explicitly applied to cracks and the “WA”
criteria is used to choose a node enriched by the asymptotic expansion. WA criteria refer to “wrap around nodes,” e.g.,
all nodes belonging to elements that intersect the crack front. At this time, the enrichment is therefore only “topo-
logic” in our designation. The enrichment proposed in this paper is indeed the same as the one proposed in Duarte et
al. (2000), but at the time of this paper, the need to have a geometric criteria instead of a topological in order to get
optimal convergence order was not yet realized, and the idea of using a level set to represent the crack was not used. In
a more recent paper (Pereira et al., 2009), the same group proposed another enrichment strategy, inspired by the initial
one, where the three vectorial asymptotic displacement field functions are split in six enrichment functions according
to the tangential and normal directions. This approach permits the precise description of the direction of the crack
to be avoided, while still limiting the number of degrees of freedom per enriched node to 6 (to be compared to the
12 enrichment functions with scalar enrichment). In this paper, the author used topologic enrichment, claiming that
geometrical enrichment only works for planar crack. As shown in the examples Section 3, the geometric enrichment
works perfectly in our case, even for nonplanar cracks. Until now, all papers that model crack using the X-FEM and
crack tip enrichment used the basis proposed initially, i.e., the four scalar enrichment functions 1.5, applied separately
in each space direction. In view of the bibliography, the originality of the present paper is therefore not to use the
presented vector enrichment functions, but rather to use them in the context of geometrical enrichment, based upon a
level set representation of the crack and realizing the consequences on the conditioning of the stiffness matrix, while
showing an optimal rate of convergence for both straight and curved cracks.

2.4.3 Implementation Issues

The three vector enrichment functions (1.8–1.10) are defined as a function of the local crack basis, that, in general
depends onx. Therefore, to ensure continuity of the displacement field, at first sight, it seems that the local basis
has to be defined continuously over the enrichment zone. It would mean that one needs to build from the gradient
of the discretized level set, a continuous field of moving local basis. Furthermore, when computing the gradient of
the proposed enriched function, a curvature term(∂ei)/xj would appear. Even if this term might be neglected when
the curvature of the crack is small compared to the element size in the enrichment zone, it seems a difficult task to
implement a robust version using this point of view. In fact, we propose a much easier alternative. We propose to define
a local crack basis discretization per enriched node. This local basis needs only to be defined over the support of the
enriched node. Since the enrichment function associated to an enriched node is multiplied by the finite element shape
functions associated to the node, the resulting function is always zero on the boundary and outside of the support.
This alleviates the continuity constrain over the local crack basis discretization: for each enriched node, its associated
local crack basis discretization needs only to be continuous over its support, resulting in an overall continuous field. To
simplify the discretization even more, we choose a constant approximation of each local crack basis per enriched node
over the node’s support. This permits the computation of the curvature term to be avoided. Figure 2 illustrates a typical
situation. On this small mesh, suppose that only nodes A and B are enriched. When computing the stiffness matrix on
the gray element, the contribution of the enrichment of node A and B must be taken into account. When computing
the enrichment attached to node A, we use the local basis defined for the support of node A, and respectively, when

5



FIG. 2: The support of two nodes(large dot), with two local basis, one belonging to each node.

computing the enrichment attached to node B, we use the local basis defined for the support of node B. The number
of local basis defined over an element is equal to the number of supports of enriched nodes this element is a part of.
The enrichment function is now a function of the enriched node. This is reflected in the following rewriting of the last
term of Eq. (1.7):

∑

I∈Ntip

∑
α

NI(x)KI
α[lsn(x), lst(x)]aIα (1.13)

where the dependence of the enrichment function on the node it is attached to appears clearly, and where

KI
1 =

√
r cos

θ

2
(κ− cos θ)(eI

1 + eI
2) (1.14)

KI
2 =

√
r sin

θ

2
(κ + 2 + cos θ)eI

1 +
√

r cos
θ

2
(κ− 2 cos θ)eI

2 (1.15)

KI
3 =

√
r sin

θ

2
eI
3 (1.16)

whereeI
i is the discretized value of theith basisvector of the moving local axis, at nodeI. In our implementation of

the X-FEM, the two level sets are discretized with linear shape function over the mesh. We can therefore compute their
gradient, constant in each element, and from them construct a constant orthogonal basis per element that approximates
the local crack tip axis. But we need a constant value per support. To obtain this value, we simply take the weighted
average of the constant gradients over each element in the support of the enriched node, and from these values,
construct an orthogonal basis. This scheme is very efficient and easy to implement.

This concludes our first part. We reviewed the X-FEM for linear fracture mechanics, covering the representation
of the geometry and proposing a different crack tip enrichment strategy. Our vector enrichment strategy is tested and
discussed more in part 3, but first we must cover the problem of the integration of the elasticity operator (the stiffness
matrix) over enriched elements.

3. INTEGRATION RULE

Integration of the bilinear formB(vh,uh), for each enriched element, is known to be problematic. Indeed, leading
terms of the expression to integrate include terms such as1/r due to the tip enrichment, and the functions to integrate
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arediscontinuous across the crack surface.In the context of two- or three-dimensional problems, there is no hope
for an exact integration of the bilinear form over a tip-enriched element. Numerical integration is, of course, needed.
From the start of the X-FEM, some papers already tried to deal with this issue: how to obtain an efficient integration
scheme so that the error in the integration of the bilinear form doesn’t pollute the results so much as it degrades the
convergence properties. Recent references on the subject are, among others, Béchet et al. (2005), Park et al. (2009),
and Mousavi and Sukuvar (2010), which used ideas developed outside of the X-FEM context in Duffy (1982) and
Nagarajan and Mukherjee (1993). The first step was to cut the element to integrate into a series of cells along the
crack surface and then use classic Gauss-like integration rules over each cell, usually of higher order than the rule
needed to integrate classic terms. This permits us to have exact integrations of terms that come from classic shape
function and Heaviside enrichment, but leaves in most cases, many errors for terms that involve the tip enrichment
functions. The situation was improved when special integration rules where used for cells that have one node on the
crack tip. We think that this approach is not always sufficient. In the present paper, we propose and implement, starting
from a singular mapping for singular elements, a new strategy that permits all the enriched elements to be integrated
with high precision, not only the ones that touch the crack tip, for the two-dimensional case.

3.1 Fundamental Background — Integration of Weakly Singular Functions Over a Segment

In the present section we analyze a very simple one-dimensional case in order to explain the problems we want to
cope with in the more general case. Integration of a function over an interval using a Gauss-Legendre rule is known to
converge exponentially to the exact solution if the function to integrate is regular (C∞). In our case, we are interested
in the computation of functions with a singularity, or a singularity in one of their gradients, at the position of the crack
tip. To start the analysis, let us consider the quadrature of

√
(|r|) over the interval[–1 : 1], using Gauss-Legendre

points. Since the function has indefinite derivative at zero, the error in the integral does not converge exponentially.
A first improvement would be to cut the interval at pointr = 0 and perform a numeric integral over[–1 : 0[ and then
]0 : 1]. As can be seen in Fig. 3, in the first case, the error oscillates while slowly converging to zero with the number
of points: in the second case, the convergence is still slow, but does not oscillate anymore. This first basic observation
will motivate the choice of cutting the elements into cells that can contain the singularity only on their corner, not
inside. Let us now pursue the analysis by considering the quadrature of

√
r over the interval[ε : 1 + ε] with ε ≥ 0.

On the left side of Fig. 4, we report the relative error of the quadrature of
√

x asa function of the number ofGauss-

FIG. 3: Integration error of
√

(‖r‖) over [–1 : 1].
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FIG. 4: Integration error of
√

(‖r‖) over [ε, 1 + ε]: (left) direct Gauss-Legendre integration, and (right) Gauss-
Legendre integration after change of variable (2.1).

Legendre points used forε ranging from 1 to 0. For largeε, the quadrature rule converges exponentially with the
number of Gauss points, but asε goes to 0 the error becomes higher and higher for the same number of Gauss points.
At the limit whenε goes to 0, the exponential convergence is lost and a very slow power law rate is obtained. The
important point that we want to make is that in fact, as long asε > 0 the convergence is indeed exponential, but asε

becomes smaller, one needs more and more points to see the effect of the exponential convergence. It appears linear.
Of course the integral can be computed after a change of variabler = y2 so that the integrand becomes regular on the
full integration interval: ∫ b

a

√
rdr =

∫ √
b

√
a

2y2dy (2.1)

Numericalintegration on the right-hand side thenprovides excellent results, since the exact result, up to round-off
error, can be obtained with the two points Gauss-Legendre rule (see Fig. 4, right).

The difficulty in integrating the term of the bilinear form associated with the crack tip enrichment functions was
of course noted in numerous papers (Béchet et al., 2005; Mousavi and Sukumar, 2010; Park et al., 2009) and are
founded on a change of variable that cancels the singularity. But except in Béchet et al. (2005), only the cases where
the singularity is at an integration cell vertex (and/or along an edge of an integration cell in three dimensions) are
treated. In B́echet et al. (2005), a solution is proposed: a triangular cell is replaced by a superposition of three cells.
Each of the cells has one of its nodes on the singular point, and the two others are two nodes of the original cell.
The paper reports good results in this case, but this strategy implies the use of evaluation points that are outside of
the original element, which limits its application and increases the total number of evaluation points. Outside the last
mentioned strategy, we found no special treatment in the X-FEM or G-FEM literature applied to cells close to the
crack tip, which do not contain the crack tip. If nothing special is done for those cells, the quadrature will converge
very slowly. We propose here a new integration scheme, also based on a change of variable, but we extend it to the
case where the crack tip does not coincide with a node of the cell.

In order to benchmark different integration strategies, in a first step we compute the stiffness matrix of one two-
dimensional element and compare it with a reference solution. LetKe

i be the stiffness associated with elemente
obtained using an integration strategy, andKe

r be the reference matrix. In the following we useerr as our error
measure, whereerr = (‖Ke

i −Ke
r‖∞)/(‖Ke

r‖) and‖A‖∞ = max{|aij |}. The reference matrix is obtained using an
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adaptive integration scheme, built on top of the functiongsl_integration_qags provided by the Gnu Scientific
Library (GSL) (Galassi, 2009). This function uses an adaptive algorithm to integrate a scalar function over an interval,
until the estimated error is less than a threshold provided by the user.

3.2 Partition of the Elements

Starting with early X-FEM papers (Moës et al., 1999), the elements are cut along the crack front into a partition of
cells that does not cross the discontinuity, and then Gauss-like integration rules over the triangular cells are used.
In this part we want to discuss the splitting strategies that produce the integration cells that form apartition of the
elements so that each cell is in one of the quadrant of the crack coordinate system. This is the analog to what was just
presented in our first improvement of the one-dimensional case.

In the present work, we use the integration scheme over the triangle as can be found in Solin et al. (2004), where
optimal rules over the triangle are given, classified by the polynomial order they can integrate exactly. We only used
among these rules those which do not have negative weight nor point outside of the reference element. Table 1 gives the
number of integration points for each polynomial order. For all the following integration benchmarks, the coordinates
of the triangle nodes are given with respect to the crack tip coordinate system. The first results we want to discuss are
results for which the crack tip are inside the element (case 1 in Table 2). The element is partitioned along the crack as
in Fig. 5, according tolsn for case 1a (Fig. 5, left) and according tolsn andlst for case 1b. In case 1b, the element is
first divided in three cells by triangulating the element, after a cut alonglsn = 0, then each cell of the first partition is

TABLE 1: Number of integration points (nbpt) as a function of highest-order
polynomial integrated exactly over a triangle, following Solin et al. (2004)

Order 1 2 3 4 5 6 8 9 10 12 13 14 17 19

nbpt 1 3 4 6 7 12 16 19 25 33 37 42 62 73

TABLE 2: List of case tested forthedifferent integration rule

Case x0 y0 x1 y1 x2 y2

Case1 –1/3 –1/3 2/3 –1/3 –1/3 2/3

Case2 0 0 1 0 0 1

Case3 0 0 10 0 0 1

Case4 0 0 100 0 0 1

(1) cut alonglsn = 0 (2) cut alonglsn = 0, thenlst = 0

FIG. 5: Partition of an element in an integration cell. Thick line: the crack. Black dot: the crack tip.
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furthertriangulated after a cut alonglst = 0.Thegoal here is to divide the element so that each cell is forced inside one
of the quadrants of the crack coordinate system. Of course, this partitioning strategy is not the optimal one to achieve
these properties, but it has the advantage to be built around the preexisting cut primitive to cut along the iso-zero of
one level set. In case 1b, we therefore end up with a total of nine integration cells. With the last splitting strategy, a
cell belonging to an enriched element can touch the crack tip with one of its nodes. In this case we call it asingular
cell, or the crack tip is strictly outside the cell and we call this cell aweakly singular cell.

Error in the local stiffness matrix, as defined above, is plotted as a function of the total number of integration points
over all the cells for the two cutting strategies as reported in Fig. 6 [For example, for the order 1 rule (one point per
cell), we have three points in case 1a and nine points in case 1b]. In both cases, the convergence rate is slow. In case
1a (one cut), the convergence is not even guarantied; one can see that the error oscillates from one integration degree
to the next. Even if the cut was not optimal (we integrate over nine cells), the error in case 2b is constantly less than in
the case of one cut, at equal number of points. The convergence, while still slow in case 1b, oscillates much less than
for case 1a. The previous experiment has been repeated for different relative positions of the crack tip and various
element shapes, and it always shows an improvement when the elements are cut alonglsn = 0 and lst = 0. This is
related to the fact that by cutting the element twice, the singularity can only be on a vertex or strictly outside a cell. In
the following, the integration algorithm using the second partitioning strategy and the regular Gauss-like integration
rule over the resulting triangle is calledpartition integrationand is parametrized by the order of the integration ruleo
used for each cell.

3.3 Treating the Singularity

As seen above, partitioning the element into a suitable partition of cells improves the situation by confining the
singularity on a corner of a cell. For all elements in the enrichment zone, there are terms in the form of 1/r, 1/

√
(r),√

(r), r which are singular or singular in theirgradientfor r = 0. In the literature, such singularity is already treated
properly for a cell which has one node on the singularity. In most cases, the authors used changes of variables before
performing the integration that renders the integrand regular. Among those changes of variables, we concentrate on
the one proposed in B́echet et al. (2005). First, a cell with a node on the crack tip is mapped via a linear mapping to a
reference element that has the crack tip on its first node. Let us labelξ andη the coordinates in the reference element.
Then the following change of variable is applied:

FIG. 6: Max norm of relativestiffness matrix error for case 1, with one or two cuts.
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ξ =
1
2
ρ2[1− sinh(τ)], η =

1
2
ρ2[1 + sinh(τ)] (2.2)

whereρ takes values in[0 : 1] andτ in {–ln[1+
√

2] : ln[1 +
√

2]}. The change of variable definedin Eq. (2.17) can
be seen as a map between the rectangle{[0, –ln(1+

√
2)], [1, –ln(1 +

√
2)], [1, +ln(1 +

√
2)], [1, +ln(1 +

√
2)]}

in the(ρ, τ) plane to thetriangle[(0, 0), (1, 0), (0, 1)] in the(ξ, η) plane, as represented in Fig. 7. Note that the grid
represented in the triangle is made of the isolines ofρ andτ. The singular point A in the triangle is the image of the
line ρ = 0. This change of variable is very close to a polar change of variable, whereτ plays the role of the angle and
whereρ is close to the square root of the radius.

This change of variable was built with the previous consideration in mind and so that the domain that represents
the triangle in theρ, τ plane is a simple rectangle, where it is easy to build an integration rule by using a tensor product
of Gauss-Legendre rule in each direction of the(ρ, τ) plane. This is exactly what is done in our next numerical experi-
ment. We integrate the stiffness matrix for an element which corresponds to the reference element with the singularity
at the first node (case 2 in Table 2), for different numbers of Gauss-Legendre points using the presented change of vari-
able, and compare using regular integration points over the triangle. The one-dimensional Gauss-Legendre rules used
to build the two-dimensional rules are rules starting at one point and ending at ten points. The number of integration
points for the two-dimensional rules therefore range from 1 to 100.

Figure 8 reports the error in the stiffness matrix as a function of the total number of Gauss points. The results
are of course much better using the change of variables. We can observe an exponential convergence rate. The error
reaches a value of 7.28× 10−9 for 81 points and 7.406× 10−10 for 100 points, while the classic integration rule of
highest order on the triangle just reaches 9.77× 10−3 with 79 points.

Unfortunately, even for the case where one node is exactly singular, the results are not always good enough. Even
if the change of variable always improves the situation, the fact that the change of variable is done with regard to
a reference element in order to always have a known rectangular domain on which to develop the integration rule
can induce a relative loss of efficiency when the cell on which one wishes to integrate has a high aspect ratio (the
shortest edge is much smaller than the longest edge), as can be seen in the following experiment. Cases 2, 3, and 4
from Table 1 are tested; they are all elements with the first node at the singularity, the third node at (0, 1), but the
second node is aty = 0, andx is respectively set toL = 1, L = 10, andL = 100. The goal of the experiment is here
to relate the aspect ratio of the cell to the accuracy of the integration rule. As can be seen in Fig. 9, the quality of the

FIG. 7: Change of variable according toEq.(2.17) for a cell with a singular node.
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FIG. 8: Error in stiffness matrix maxnormfor case 2, comparing regular integration with Gauss-Legendre integration
using a change of variable 2.17.

FIG. 9: Error in Stiffness matrix max normfor cases 2, 3, and 4: with a varying aspect ratiomax(x)/ max(y) using
change of variable 2.17.

convergence is clearly degraded by the high aspect ratio. This point is, in fact, very important for the robustness of
the overall method. Indeed, since the mesh is not related to the crack, the positions of the nodes relative to the crack
type will dictate the shape of the integration cells. Even with a very-high-quality mesh, the cells can have a very bad
aspect ratio. It happens if one node of the mesh is very close to the crack surface. Therefore, even for the case where
one cell node is on the crack tip, the strategy proposed in most papers suffers from robustness issues even when using
a special integration scheme of the type we just presented. But the situation in the particular case of a node on the
crack tip, as we will show, is going to be improved by the general approach that we develop in the following.
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3.4 Treating the Singularity for All Enriched Cells: the Algorithm

We have just shown that even when one node of a cell is on the crack tip, singular integration schemes are insufficient
to get a rapid and robust convergence of the integration of the stiffness matrix. But perhaps more importantly, we
also need to consider the case where the crack tip is outside of the element but still close to the element. This case
is analogous to our one-dimensional analysis where the singularity was outside of the integration domain: even if the
singularity is outside, the convergence rate is very slow if no change of variable is applied. So far, all the integration
schemes that we used were found in the literature. In this section, we develop what we think is a new contribution
to the field. After the discussion about the partition of the elements, we place ourselves in a framework where a cell
is always in one of the quadrants of the crack coordinate system. Furthermore, we propose that a cell has to be in
the positive quadrant (x ≥ 0 andy ≥ 0). If this is not the case, the cell is first mapped to the positive quadrant by
reversing one or two of its node coordinates. No further mapping to a reference element is applied, contrary to the
scheme presented in the previous section. Indeed, since the singular point can be outside of the element, there is no
gain to apply any such mapping. We then consider the same change of variable but directly applied to a triangle in
crack the coordinate system (positive quadrant).

x =
1
2
ρ2[1− sinh(τ)], y =

1
2
ρ2[1 + sinh(τ)] (2.3)

The domain that representsthetriangle in the(ρ, τ) plane can have a variety of shapes. If no node is on the crack tip,
the shape in the(ρ, τ) plane is a curved triangle. When a node of the triangle is continuously moved to the crack tip,
the curved triangle looks more and more like a quadrilateral with one straight edge onρ = 0 at the end of the motion.
Figure 10 gives some examples of the effect of mapping for some typical cell.

We now wish to integrate the stiffness matrix after having performed the change of variable by mapping Gauss-
Legendre points on the unit square to the triangle in the(ρ, τ) plane. Fortunately, in order to perform this task, we can
count on some properties of the change of variable. First, the change of variable can be inverted for all points but the
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singularpoint, which means that by knowing the coordinatex, y of a point in the(x, y) plane, the coordinatesρ, τ
can be computed as

ψ−1 : (x, y) → (ρ, τ) x ≥ 0 y ≥ 0 x + y > 0, ρ =
√

x + y, τ = arcsinh

(
y − x

x + y

)
(2.4)

Let us now consider a segment[AB] in the (x, y) plane. This segment is mapped on a curve on the (ρ,τ) plane, for
which the graph and its derivative can be computed. LetαAB , βAB , andγAB be three constant values computed as
follows from the coordinatesxA, yA andxB , yB :

αAB = (xA + xB)(yB − yA)− (yA + yB)(xB − xA) (2.5)

βAB = xA − xB − yA + yB (2.6)

γAB = xA − xB + yA − yB (2.7)

The segment[AB] is described by the following curveρAB(τ) and derivativeρ′AB(τ) in the(ρ, τ) plane, ifτA 6= τB :

ρAB =
√

αAB

βAB + γAB sinh(τ)
(2.8)

ρ′AB = − 1
2αAB

ρ3γAB cosh(τ) (2.9)

Alternatively, it can bedescribedby the curveτ(ρ) and derivativeτ′(ρ) if ρA 6= ρB :

τAB = asinh(−βAB/αAB + αAB/βABρ−2) (2.10)

τ′AB =
−2αAB

βABρ3

1√
1 + (−βAB/αAB + αAB/βABρ−2)2

(2.11)

An importantproperty of the curveρAB(τ) is that it is monotonous inτ for all points of the segment[AB] in the
positive quadrant [respectivelyτAB(ρ) is monotonous inρ]. It means that the curve representing one edge of a
triangle in the(ρ, τ) plane is increasing or decreasing, exclusively. This property will be used very shortly.

In a first step of our algorithm to build an integration rule over the image of the triangle in the(ρ, τ) plane, we first
classify each edge[AB] according to the value ofτ′AB(ρ) along the edge. If locallyτ′AB(ρ) is in [–1 : 1], then the
tangent of the curve is labeled to be “along” theρ direction; otherwise it is labeled to be along theτ direction. Since
the curve for one edge is monotonous, only four situations can occur for the “direction” of the edge, depending on the
value ofτ′AB(ρ) at the extremitiesA andB of the segment:

i. (τ′AB(ρA) ∈ [−1 : 1]) and(τ′AB(ρB) ∈ [−1 : 1])

ii. (τ′AB(ρA) /∈ [−1 : 1]) and(τ′AB(ρB) /∈ [−1 : 1])

iii. (τ′AB(ρA) ∈ [−1 : 1]) and(τ′AB(ρB) /∈ [−1 : 1])

iv. (τ′AB(ρA) /∈ [−1 : 1]) and(τ′AB(ρB) ∈ [−1 : 1])
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In case 1, the edge is saidto be in theρ direction, and in case 2, the edge is said to be in theτ direction. In cases
3 and 4, there exists one and only one pointab on the edge[AB], such as we haveτ′AB(ρab) = 1 orτ′AB(ρab) = –1.
We call this point a cut point, and it can be found easily by using any root solver. In such a case, the edge is split
in two parts, each part with one properly defined direction, eitherρ or τ. Therefore for any triangle, by eventually
splitting each edge at most once, we can construct a list of at most six edge parts. Each edge part is aligned either
in theτ or ρ direction. A number of cases depending on the alignment of each edge part in the(ρ, τ) plane can be
recognized, but before pursuing, let us include the case where one node of the cell is on the singularity. In this case,
the mapping from the(ρ, τ) plane to the(x, y) plane is not invertible for points on the lineρ = 0. The image of the
singular point of a triangle is a segment in the(ρ, τ) plane along theρ = 0 axis and its direction isτ. The two edges
connecting the singular point produce two segments for whichτ is fixed and therefore, their direction isρ. Only the
image of the third edge of the triangle is curved on the(ρ, τ) plane. This edge cannot have any singular point, and the
previous formulas can be used with no change to choose its direction or split it and choose the direction of its edge
parts if needed (see Fig. 11). We end up with a list of at most four edge parts in this case, and the algorithm beyond
this point is the same for cells with or without one node on the singular point. To keep the discussion brief, let us first
discuss a typical case as seen in Fig. 12. The triangle(ABC) is mapped in the (ρ,τ) plane. According to our splitting
rule, the edge[AB] is split in [Aab], which is found to be in theτ direction, and[abB], which is in theρ direction.
The edge[AC] is split in [Aca], which is in theτ direction, and[caC], which is in theρ direction. From these five
edges, we now want to construct a partition of the image of the triangle in the(ρ, τ) plane so that each subcell is a
curved quadrilateral (or eventually curved quadrilateral degenerated to a curved triangle when two consecutive nodes
are at the same position). But we do not want any curved quadrilateral, we want quadrilateral, so that when traversing
the contour-connected curved edge by the connected curved edge, the direction of edge 1 isρ, edge 2 isτ, edge 3
is ρ, and edge 4 isτ. By imposing these conditions, we end up with a curved quadrilateral, with each edge as much
as possible aligned with theρ, τ coordinate axis. In the case presented in Fig. 12, it is possible to obtain a partition
in two quadrilaterals by constructing one more point: the point[bc], which is the intersection of the curve[BC] with
the axisτ = τA. Note that this point is easy to obtain because we have an explicit equation for the curve[BC] in the
form of theρBC(τ). The two curved quadrilaterals, respecting the direction condition and forming a partition of the
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image of[ABC], are now[A bcC ca] and[ab B bc A]. Each of these curved quadrilaterals can now be mapped on a
reference square in the(s, t) plane. The details of the subcell construction algorithm for all the different cases is quite
technical, would take a lot of space, and are not necessary to pursue the discussion. We prefer to directly distribute
the code, which will be freely available upon request.

In the following, we call[A′B′C ′D′] a curved quadrilateral in the(ρ, τ) plane, with edge[A′B′], [B′C ′], [C ′D′],
and[D′A′] respectively in theρ, τ, ρ, andτ direction, with the the previously defined meaning. This quadrilateral is
mapped to a reference square in the(s, t) plane, such asA′, B′, C ′, andD′ are, respectively, the image of (–1, –1),
(1, –1), (1, 1), and (–1, 1) by

ρ =
1
2
(1− s)ρA′D′(t) +

1
2
(1 + s)ρB′C′(t) (2.12)

τ =
1
2
(1− t)τA′B′(s) +

1
2
(1 + t)τD′C′(s) (2.13)

where the functionsρA′D′(t), ρB′C′(t), τA′B′(s), andτD′C′(s) need to be defined. We detail the construction of
τA′B′(t) in the following; the three other functions are constructed in a similar way. First note that by construction,
edge[A′B′] is aligned withρ, following our definition —τ′A′B′(ρ) is in [–1 : 1] and cannot change sign being either
positive, negative, or identically zero. If the slope is identically zero, thenτA′B′(s) = τA′ = τB′ . Otherwise, we
first defineρA′B′(s) by mapping linearly[–1 : 1] to [ρA′ : ρB′ ]. Then we setτA′B′(s) = τA′B′ [ρA′B′(s)]. This is of
course always possible since the curve is monotonous. This mapping is reproduced in Fig. 12. A square in the(s, t) is
mapped on each of the curved quadrilateral subcell of the image of(ABC) in the(ρ, τ) plane. On this figure the grid
is defined on the square of the(s, t) plane and is successively mapped on the(ρ, τ) and(x, y) plane, from right to left.
It is now easy to construct an integration rule: For each quadrilateral in the(s, t) plane that forms a valid partition of
a cell, construct a Gauss-Legendre rule which is a tensor product of classic one-dimensional rule. Then compute the
coordinate of each point in the(x, y) plane by chaining the mapping and the change of variable. The overall algorithm
can be summarized as follows, for a given triangular cell:

i. Compute the direction of each edge in the(ρ, τ) plane.

ii. Split edges that need it at the pointτ′(ρ) = +1 or –1.

iii. Divide the cell in “aligned” curved quadrilateral.

iv. For each quadrilateral, construct a Gauss-Legendre integration rule using the mapping between the(s, t) and
the (ρ,τ) plane.
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Eachof the steps of the previousalgorithm, except for the second one, have been fully described. There are a lot
of possible alternatives to achieve this second step, and the implementation can be tedious. The full description of the
second step as we implemented it, for the sake of the tractability of the presentation, is not exposed in the paper. The
code that constructs it, as mentioned before, will be given upon request to the authors. We present and analyze results
of this integration scheme in the next section.

3.5 Treating the Singularity for All Enriched Elements: Some Results

First we show the convergence rate for the elements presented at the beginning of the section, and then we present a
more global benchmark of the integration rule that tests the algorithm for a large quantity of elements.

3.5.1 Integration Error Over One Element

Cases 2, 3, and 4 were designed with various degrees of aspect ratio, as previously described to measure the integration
error when an element or a cell was strictly singular. Results applying the new algorithm are displayed in Fig. 13 and
are to be compared with the previous results using only the change of variable presented in Fig. 13. The results for
case 2, which is the reference element, are exactly the same as results obtained using only the variable change. This
is because no edge split is needed in this case and the integration rule produced is exactly the same. For cases 3 and
4, the results are greatly improved. For these two cases, the edge not connected to the crack tip is split in such a
manner that the algorithm, as represented in Fig. 11 for case 3, produces three subcells aligned with the(ρ, τ) axis:
[A1, a1b, bc, a2a1], [a2a1, bc, C,A2], and[a1b,B, B, bc] (the last quadrilateral being degenerated to a triangle). This
explains the total number of integration points reaching 300 for the highest-order rule used (again, a 10-point one-
dimensional Gauss-Legendre rule). The best rule returns an error as low as 1.87× 10−11 and 3.482× 10−8 for cases
3 and 4, respectively, to compare with the value obtained by applying only the change of variable: 8.235× 10−5 and
1.521× 10−4, respectively.

Case 1, which was first used to compare the merit of two splitting strategies into cells, as can be seen in Fig. 5
does not produce only cells with one node on the crack tip but also produces cells that, in the second splitting strategy,
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have a singularity close andoutsideof the element. Applying only the change of variable is not practicable for those
cells, but the new algorithm is applicable for all the cells. As mentioned before, the splitting strategy produces nine
integration cells, and the new algorithm from these nine cells generates a total of 17(ρ, τ) aligned subcells. This
appears to be a lot, but as can be seen in Fig. 14, this is still an efficient algorithm: The error obtained applying the
one-dimensional 10-point Gauss-Legendre rule (for a total number of 1700 points) reaches an error of 3.47× 10−9,
while the best partition integration (for a total number of 9× 79 = 711 integration points) only reaches 9.015× 10−4.

3.5.2 Integration Error Over an Unstructured Mesh

The experiment could be repeated for a lot of elements, with varying shapes and relative positions to the crack tip, but
in the following we propose what we think is a better benchmark that tests at once for a great variety of elements. The
elasticity problem is solved on a square that contains a straight horizontal crack with the crack tip at the center of the
square (see Fig. 15). On the boundary of the square, the tension found by computing the stress of an exact solution for
a crack in an infinite domain is applied. The exact solution of this problem coincides with the exact solution in infinite
domain, inside the square. The square is meshed with an unstructured mesh, and the displacement field is discretized
by using the tip enrichment everywhere, and only the tip enrichment, multiplied by the partition of unity. The only
difference with classical benchmarks used to show theh convergence of the X-FEM method, as used, for instance,
in Béchet et al. (2005), is that we use only the tip enrichment functions, and these functions are used everywhere in
the mesh. In principle, if the integration of the bilinear form was exact and if the obtained system of linear equation
was not singular, we should end up with the exact solution, since the exact solution is contained in the enriched finite
element space we just constructed on our square. Our first experiments trying this strategy were unsuccessful when
using what we call the classic scalar enrichment in the first part of this paper. Indeed, when using a weak integration
rule on quite coarse meshes, we were able to obtain some results, with quite high error, but when the mesh was refined
or the integration rule was improved, we often end up with a singular system of equations that we could not solve with
a direct solver (in our case superlu, described in Demmel et al. 1999). Further analysis, and as was noted in Béchet et
al. (2005) or Laborde et al. (2005), showed that the space obtained by using the four scalar shape functions, produces
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FIG. 15: Sketch of the benchmark problem. Traction on the boundary of the square (arrows) is computed from the
exact solution of a straight crack in infinite media.

a more and more ill-conditioned stiffness matrix as the enrichment zone grows, to the limit of a singular matrix when
the enrichment is applied on all the nodes. As will be shown, this is not the case with the vector enrichment shape
function proposed in this paper. But to keep the presentation consistent, we still want to use the scalar enrichment to
show the gain of an improved integration strategy. In order to do that, we will reduce the enriched space a little bit by
keeping only the needed enrichment function to produce a space that still includes the pure mode I opening solution.
This reduction will be used only for the present benchmark. The other experiment wil, of course, use the full scalar
enrichment. The full tip enrichment space in the two-dimensional case is reminded in the following equation:

∑

i∈[1:2]

∑

I∈Ntip

∑

α∈[1:4]

NI(x)Fα(x)EiaIαi (2.14)

The directions of the physical space are enriched with each of the four scalar enrichment functions. We reduce this
space by using a space where onlyF1 andF2 are used in both theEx andEy direction, whileF3 andF4 are only
applied, respectively, in theEx andEy direction. The space of shape functions used in our benchmark, using scalar
enrichment function everywhere, is now

∑

I∈N
NIF1ExaI1x + NIF1EyaI1y + NIF2ExaI2x + NIF2EyaI2y + NIF3ExaI3x + NIF4EyaI4y (2.15)

This reduction of the space insures the presence of a pure mode I opening field and produces a regular stiffness matrix
when all the nodes of a mesh are enriched. The problem is solved on a square aligned with the crack, with crack tip at
(0, 0), the two opposite corners of the square at position (–1, –1) and (1, 1), respectively. The mesh is built using the
Gmsh package (Geuzaine and Remacle, 2009; Remacle et al., 2007). Each edge of the square is divided in 20 equal
sized segments, for a total of 560 nodes and 1038 triangles for the final unstructured mesh. With the space used, we
end up with 3360 degrees of freedom, 1228 integration cells and 1805 sub-cells for the new integration strategy.

For this test, we define the errorerr to be the relative energy error norm defined as follows

err =

√∫

Ωh

(σh − σe) : (εh − εe)
σe : εe

dΩ (2.16)

whereσh, εh, σe andεe stand,respectively, for the finiteelement strain, stress, exact strain, and exact stress.
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Thiserror cannot be computed exactly, since the fields to integrate are singular. We could have used our integration
rule to measure the error. Experiment proved that this is not necessary, and instead, we used the simple partition
integration rule, with order 5 (seven points per cell), to evaluate the error. The error is reported in Fig. 16 as a function
of the total number of integration points used to compute the stiffness matrix. As can be seen, while with the partition
integration the error converges very slowly and with oscillations, the new scheme displays an exponential convergence
rate and reaches very small relative energy error. The best partition integration (order 19) gave an error of 7.2× 10−4

for a total of 89,644 integration points, while the new algorithm gave an error of 2.99× 10−5 for a total of 88,445
points, and the highest order used (20 points in the underlying one-dimensional Gauss-Legendre rule) reached an error
of 1.13× 10−9 for 722,000 points.

3.5.3 Adaptive Strategy

On a reasonable scale problem like the one we just showed, one can ask about the penalty of a new approach in total
computation time. Indeed, for the partition integration scheme, the integration points are known and are the same
in the reference cell for all the integration cells. While in the case of our algorithm, for each cell, subcells must be
constructed in the(ρ, τ) plane, and the integration point positions are the same for each subcell only in the(s, t)
plane. In the context of a classic finite element method, this would probably be an unacceptable price to pay. Indeed,
all the shape functions in classic finite element method are defined on a reference element, and the evaluation of the
shape function at each integration point can be done once and for all, in the reference element. Only the jacobian
must be computed separately for each element. In the context of the X-FEM, the enrichment functions are defined as
a function of the position of the point of evaluation in the global frame. There is no possibility to evaluate the shape
function without knowing the coordinate of the node in real space. Whatever the method to construct the integration
points, which can be viewed as a preprocessing step done once for a given mesh and given crack, the enrichment
functions need to be computed at each integration point of each element. At equal numbers of integration points, the
time to build the stiffness matrix is equal, whatever method is used to construct them. In our experiments, the time to
construct the integration points was always so negligible compared to the rest of the solution process that we did not
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FIG. 16: Relative energy errornorm,for a computation on a full mesh using enrichment everywhere, using partition
integration and the new algorithm as a function of the total number of integration points.
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even bother to savethem from one computation to another. They are computed when they are needed by the assembly
process.

Nevertheless, if we could achieve a similar accuracy as the one just presented with fewer integration points, we
would get faster assembling process. In order to achieve that, we will need some sort of adaptive strategy. Indeed,
experiments showed that even with a small number of integration points, the new integration strategy gives very high
accuracy in the local stiffness for most of the elements of the mesh. Only a few of them need a high number of points.
Unsurprisingly, those elements are usually the one close to the crack tip. The direction is therefore clear. We could
adaptively set the number of points of the underlying one-dimensional Gauss-Legendre rule from one cell to another
if we had some sort ofa priori error indicator for constructed rule over a cell. Our experiments have shown that the
error in the evaluation of the area of a triangle using our integration scheme was strongly correlated to the error in the
local stiffness matrix. This error, when all the points are mapped to the reference element, is very easy to evaluate:
just sum all the weight of the integration points and compare to 0.5, the exact area of the reference element. So, for
each element, we construct all the subcells and then iteratively construct the integration points for an underlying one-
dimensional rule of increasing order until a threshold in the relative area error is reached. The experiment is reported in
Fig. 17, where the relative energy error norm is plotted against the total number of points, for our integration algorithm
with or without adaptivity, on the previous benchmark.

For the adaptive version, we set our parameter so that the minimum and maximum number of points of the one-
dimensional Gauss-Legendre rule are 3 and 49, respectively. For each point of the curve, we set a different value of
the relative area error threshold, starting at 1.0× 10−2, and dividing by 10 for each new point until we reach our
minimum threshold of 1.0× 10−13. As clearly shown, a huge gain in accuracy at equal number of integration points
is achieved. The best reported adaptive result is reached for the smallest relative area error threshold of 1.0× 10−13.
The energy error norm is then 3.476× 10−10 for a total of 161,271 points, compared to the 722,000 points obtained
without adaptivity for an error still 3 times higher (1.13× 10−9).

The last version of our integration method is referred to as thesingular integrationin the rest of the text. Thesin-
gular integrationis parametrized by the minimum and maximum number of points in the underlying Gauss-Legendre
rule (minpt andmaxpt, respectively) and the area error threshold (ae).
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FIG. 17: Relative energy errornorm,for a computation on a full mesh using enrichment everywhere, using the new
algorithm, with or without adaptivity, as a function of the total number of integration points.
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3.5.4 Comparison with a Scheme thatProperly Treats Singular Cells Only

Up to this point, we only compared our integration strategy with the quite crude partition integration. In the following
we compare it with a more advanced scheme presented in Nagarajan and Mukherjee (1993) and Park et al. (2009),
and apply it to our setting. We call this strategypolar mapping. In the polar mapping strategy, elements are split into
integration cells in the same fashion as inpartition integration. Weakly singular cells are integrated using one of the
Gauss quadrature rules over the triangle, and singular cells are treated by using a the following ”quasipolar” change
of variable

ξ = r cos2(θ); η = r sin2(θ); (2.17)

wherer takes values in[0 : 1] andθ in [0 : π/2] and again,ξ andη are the coordinates of a reference element,
such as the singular node is mapped on (0, 0) in the (ξ,η) plane. The integration rule is then constructed using a
tensor product of the one-dimensional Gauss-Legendre rule. The polar mapping strategy therefore has two controlling
parameters: the ordero of the integration rule in the weakly singular cell and the numbernpt of Gauss-Legendre
points in each direction of the(r,θ) map. Figure 18 compares the results between the polar mapping strategy, the
partition integration, and the adaptive singular integration, on the same test case. For the polar strategy,o is increased
from 6 to 19, whilenpt is set to 20. One can see that the polar strategy is of course better than the partition integration.
The error is much less for an equivalent number of integration points: 97,012 points for an error of 0.0014 is the
partition integration case, and 91,606 points for an error of 6.57× 10−5 in the polar mapping case. The adaptive
singular integration with 86,704 points gives an error of only 6.52× 10−9, 4 orders of magnitude smaller than the
polar mapping strategy. An error of 1.42× 10−5, slightly better than the best polar mapping, is obtained with 31,025
points, less than one third the number of points needed with the polar mapping. From the curves of the convergence of
the polar mapping error, one can see that the error is not necessarily smaller when one increases the number of points.
It does not seem to be the case with the adaptive singular mapping.
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3.5.5 Robustness of the SchemeCompared to Polar Mapping

In order to measure the robustness of the integration rule with respect to the relative position of the crack tip within an
element, we next perform the following experiment. We take the same setting as in the previous experiment, we select
the element where the crack tip is, and we do the same computation for different positions of the crack tip inside
the element. More precisely, we will gradually move the crack tipxt from the center of gravityxg of the element
to the closest pointxc to xg on the boundary of the element. This experiment is parametrized bys ∈ [0,1], such as
xt = (1 –s)xc+sxg. In Fig. 19, left side, the previous parametrization is depicted. We performed the same experiment
as before, for different values ofs, and measure the error in the energy norm using the polar mapping strategy or the
singular integration. For this experiment, we took the best polar strategy used in the previous computation (o = 19,
npt = 20) and the adaptive singular integration scheme that gave the same order of magnitude in the error (minpt= 3,
ae = 1.0× 10−7). The results of this experiment are depicted on the right of Fig. 19. In the case of the polar integration
strategy, the magnitude of the error varies from a minimum of 1.2× 10−7 to a maximum of 7.8× 10−4, almost 4
orders of magnitude. This contrasts with the singular integration strategy, which returns an error varying only from
1.09× 10−5 to 1.41× 10−5. This contrast can easily be explained. When the crack tip moves closer and closer to the
boundary of an element, the integration cells of the element on the other side of the boundary are more and more close
to the crack tip, and therefore closer and closer to singular. With the polar mapping strategy, those cells are integrated
with the classical integration rule that gives worse and worse results, while with the singular integration strategy, the
singularity is taken into account. We think that this is an important fact, never reported before in the X-FEM literature.
If close to singular cells are not taken into account properly in the integration scheme, the error in the stiffness matrix
is very much dependent on the mesh (more precisely, the relative position of the crack tip inside an element). Treating
properly the singular cell only is not enough to insure the robustness of the stiffness matrix computation. This issue
might be crucial in particular for crack propagation problems where one as no control of the relative position of the
crack tip of the element.

This concludes, for now, our work on the integration scheme for enriched elements. Starting from an efficient
integration rule for singular cells (the parabolic mapping), we extended it in this contribution to weakly singular cells.
This new integration scheme is efficient and accurate on any element, whatever its position relative to the crack tip.
We have shown in the end of this section that the scheme, at equal numbers of integration points performs better than
the partitioning strategy and also gives better results than the polar mapping.
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4. NUMERICAL BENCHMARK AND CONVERGENCE TEST

4.1 Straight Crack

In this section we propose to compare the two versions of the X-FEM methods. The analysis is focused on convergence
rate and condition number. The test problem to solve is the two-dimensional problem of a planar crack in an infinite
two-dimensional domain. The material is linear elastic and isotropic, and the computations are done in plane strain
state. The analytical solution is known and is the Irwin solution. To solve this problem numerically, we work with a
square domain, where the tensions of the analytical solution are applied on the boundary.

To track the convergence, we will always use the same series of meshes with increasing numbers of elements.
The mesh are all unstructured meshes with as uniform as possible size field, obtained using the Gmsh package. The
controlling parameter for the mesh size isn, the number of equal subdivisions along one edge of the square. The
measureh of the mesh size that we used for convergence analysis is the length of the square divided byn. Table 3
gives some characteristic measures for the series of mesh we used.

For all the presented results, the radius of geometrical enrichment for the tip enrichment functionR is set to 0.4.
Elements which are not enriched by tip enrichment are integrated exactly using an integration rule on the triangular
cell obtained by the splitting algorithm with an integration rule of order 2(p– 1), wherep is the polynomial order of
the shape function.

4.1.1 Order One Shape Functions

First we tested our series of mesh using the classical scalar tip enrichment function and used a linear shape function
both for the classical field and the partition of unity. Due to the bad conditioning of the stiffness matrix, it was not
possible to solve for mesh 7 in this case. In order to be able to solve up to mesh 6, we had to use a minimal order of 5
for the partition integration in the enriched element. Analysis of the error is reported in Fig. 20 where the energy error
is plotted as a function of the size of the element for each of the three integration schemes. In order to compare them
properly, we set the parameters of each scheme so that we get approximately the same total of integration points for
the finer mesh (around 200,000 points). The error is then mostly the same for each scheme, and the convergence rate
is close to optimal.

Nevertheless, we looked more closely at the results. For instance, we compared, for different parameters of each
integration scheme, the total number of integration points needed to reach a given precision. For a given mesh, we
first compute a reference energy error, the energy error when using the best integration scheme that we have (typically
the singular adaptive withae set to 10−15). We then find for each scheme the set of parameters that return an energy
error which is less than 1% larger than the reference energy error for the minimum number of integration points. This
relative difference in energy error is clearly related to the effect of the integration error on the energy error. In the
following we call it erri. The results on mesh 6 are reported in Table 4. To reach the requested level of precision, the
partition integration needed more than 500,000 points, while both polar and adaptive integration needed only around
200,000 points. These numbers show a slight edge for the adaptive singular scheme.

TABLE 3: Description of the series of meshes used for the convergence analysis

Meshnumber n h Nodes Edges Elements

1 5 0.4 45 112 68

2 10 0.2 145 392 248

3 20 0.1 560 1597 1038

4 40 0.05 2215 6482 4268

5 80 0.025 8592 25453 16862

6 160 0.0125 34172 101873 67702

7 320 0.00625 135706 405835 270130
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FIG. 20: Convergence analysis, linearshapefunctions, tip enrichment.

TABLE 4: Minimum number of points for each scheme and associated pa-
rameter to reach a precision better than 1% in the energy error

Schemename Parameters Number of points erri

Partition o = 17 513084 0.44%

Polarmapping o = 8 , npt = 10 211380 0.79%

Adaptive singular minpt = 3 , ae = 10−3 194072 0.05%

4.1.2 Order 2 Shape Functions

When movingto order 2, the situation changes drastically. We now set the order of the shape function to 2, for both the
classical field and the Heaviside enrichment. The tip enrichment is still multiplied by a partition of unity of order 1,
since we found that it does not affect the convergence rate and that it maintains the conditioning to acceptable values.
Again we computed the error as function of the mesh size with the three different schemes, setting the parameter
so that we get the smallest error with approximately the same total of integration points for the finest mesh (around
100,000). Results are reported in Fig. 21. Partition integration always stays far from the optimal rate of 2. The Polar
mapping strategy already really improves the situation, but the results are off for the final mesh: the interpolation error
becomes of the same order as the integration error. The integration scheme is not precise enough in this case. The
optimal convergence rate is only recovered with the adaptive singular rule, for this total of integration points. As in
the first-order case, we have computed the best parameter set for each integration rule in order to geterri less than
1% for mesh 5. Results are reported in Table 5. The partition integration could not reach the goalerri; the best result
waserri = 373% for the highest integration order. Both the polar mapping and the adaptive singular manage to reach
this precision, the adaptive singular reaching the results with half the number of points needed by the polar mapping.

4.1.3 Robustness of the Scheme

To further prove the advantage of properly treating the weakly singular cell, we reproduced the experiment of moving
the position of the crack tip inside an element gradually from the center of gravity to the boundary of the cell in our
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FIG. 21: Convergence analysis, quadraticshapefunction, tip enrichment.

TABLE 5: Minimum number of points for each scheme and associated pa-
rameter to reach a precision better than 1% in the energy error for order 2
shape functions

Schemename Parameters Number of points erri

PolarMapping o = 19,npt = 12 235294 0.76%

Adaptive Singular minpt = 4, ae = 10−5 113887 0.69%

testcase. Fig. 22 reports the energyerror on mesh 5 for an order 2 shape function for the adaptive singular and the
polar mapping integration rule as a function of the position of the crack tip inside the element, parametrized bys,
which contained the crack tip in the previous numerical experiment.s ∈ [0,1] is such asxt = (1 – s)xc + sxg as in
Sec. 2.5.5. Whatever the position of the crack tip inside the element, the adaptive singular rule always gives the same
error in the energy norm. In contrast, the polar mapping error is multiplied by more than 5 when the tip moves from
xg and approaches the element’s boundary. The robustness issue that was already detected clearly has a damaging
effect on the error for a real computation.

The singular integration rule permits integration, at low computational cost, with an error in the stiffness matrix
that converges very fast to zero. But from our computations, it seems that this high degree of precision is only neces-
sary when the discretization error is small enough for the error in the stiffness matrix to have an influence. For now,
we can already draw the conclusion that the singular integration rule or any variant that can be proposed is a necessity
when one wants to reach high accuracy and robustness.

4.1.4 Vector Enrichment Function

The same computations have been done using the vector enrichment function as presented in Sec. 1.4. The energy
error is plotted as a function of the element size in Fig. 23. Again, using the singular integration rule, we reach an
optimal order of convergence for bothp = 1 andp = 2, with fewer degrees of freedom than with scalar enrichment. The
total number of degrees of freedom, compared to the scalar enrichment case, is reported in Table 6. On our example,
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FIG. 22: Variation of the energy errorwith respect to the position of the crack tip for both the polar mapping strategy
and the adaptive singular integration.
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FIG. 23: Convergence analysis, linearandquadratic shape functions, vector enrichment.

the scalar enrichment generates about 30% more degrees of freedom than the vector enrichment. More importantly,
some cases that could not be solved in the scalar enrichment case worked perfectly with vector enrichment. This is
due to the improved conditioning of the global stiffness matrix in the vector enrichment case. Figure 24 reports the
condition number evolution as a function of the element size, forp = 1, for both the scalar and vector tip enrichment
strategies. On mesh 6, the condition number is as high as 2.93× 1015, for the scalar enrichment, and the problem
could not be solved, as mentioned above, for mesh 7. On the other hand, using the vector enrichment function, the
condition number was 1.24× 108 and 2.46× 109 for mesh 6 and 7, respectively.
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TABLE 6: Number of degrees offreedom(ndof) per mesh as a function of
the enrichment type

Mesh 1 2 3 4 5 6
Ndof scalar enrichment 139 463 1693 6649 25915 102991

Ndof vector enrichment 109 349 1297 5053 19507 77287
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FIG. 24: Evolution of condition number ofK with elementsize, using scalar of vector enrichment.

The conditioning problem only shows up when geometrical enrichment is used. When using topological enrich-
ment, this problem usually does not occur, but the convergence rate is highly degraded and is not better that the one
obtained with the ordinary finite element method. Topological enrichment is therefore a weak option when one wants
to achieve high accuracy. Of course, the condition number problem was already noted before. Different solutions were
proposed, like building an adhoc preconditioner as in Béchet et al. (2005) or by linking together values of the enrich-
ment coefficients, for example, along disks centered around the crack tip in Laborde et al. (2005). The solution we
proposed here, the vector enrichment function, is another answer to the problem, which has the advantage of avoiding
to add any addition of another step to the method, and that reduces the number of degrees of freedom in the context of
geometrical enrichment. The last remark is especially true in the three-dimensional case, where each time the mesh is
refined, by a factor of 2, the number of nodes in the enrichment zone is multiplied by eight and the scalar enrichment
asks for 12 additional degrees of freedom per enriched node, while vector enrichment only adds three per enriched
node.

4.2 Circular Arc Crack

In this section, we present another important benchmark which again has an exact solution. We solve the problem of
a circular arc crack in infinite media and compare with the analytical solution as found in Broberg (1999) and first
explored in Muskhelishvili (1953) and Atluri et al. (1975). The solution in Broberg (1999) appears with mistakes in
some of the coefficients. The corrected analytical solution can be found in Appendix 3.1.
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Thedefinition of the problem can beseenin Fig. 25. The radius of the circle on which the crack lies is set to1; the
axisx is the symmetry axis of the curved crack. The crack is bounded on an arc running from−θ to θ, and loading at
infinity is unidirectional stress, parametrized by its angleα and its magnitudeσ∞.

This benchmark is important particularly for the vector enrichment function. Indeed, as was explained when
we exposed this enrichment strategy, the enrichment functions are now dependent on the local crack direction. To
simplify the implementation of the vector enrichment, we discretized these directions using a constant direction for
each support of an enriched node, computed as the mean value of the gradient of the discretized level sets over this
support. In the previous benchmark, the local crack axis was constant and the impact of its discretization could not
influence the results. Here we wish to check if the optimal convergence rate is achieved forp = 1. Convergence results
are reported in Fig. 26 using the vector enrichment with a radiusR = 0.15.
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FIG. 25: Circular arc crack definition.
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FIG. 26: Convergence results inenergy norm for circular arc crack.
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Theoptimal rate of 1 for theenergy norm is clearly obtained, which validates our discretization of the local crack
axis. Typical images of the von Mises stress are displayed in Fig. 27 (left exact solution and right numerical solution).

In the present work, we remind that the level set is discretized linearly on the same mesh as the mesh to discretize
the displacement field. There is no hope in this context to achieve optimal converge for higher order discretization of
the displacement field since the error in the representation of the geometry would in this case destroy the convergence
rate. In order to achieve optimal convergence rate in this cases, one needs to use a better representation of the geometry,
as in Dŕeau et al. (2010) or Haasemann et al. (2011).

4.3 Direct and Integral Extraction of Stress Intensity Factors

The extraction of the stress intensity factor from a finite element computation is of major importance, particularly
to predict failure, lifetime, or crack propagation in the structure. Many methods have been designed in the past and
perhaps the most accurate are those based on domain integral methods or G-theta methods. The domain integral is
an equivalent form to the well-known Rice contour integral (Rice, 1968). The theory behind the equivalent domain
integral may be found in Moran and Shih (1987a,b). The use of domain integral in the finite element context started
with the paper of Destuynder et al. (1983) for (2D) cracks and with Nikishkov and Atluri (1987) for 3D cracks. The
concept of interaction domain integral to extract separately the stress intensity factors appeared in the work of Stern
et al. (1976) for 2D cracks. The concept was then used to separate the stress intensity factors for 2D cracks (in Shih
and Asaro, 1988, and 3D cracks Nakamura, 1991; Nakamura and Parks, 1989). The cracks considered were planar
with straight edges. The axisymmetric cracks were then derived by Nahta and Moran (1993). Finally, general curved
fronts were considered in Gosz et al. (1998) and Gosz and Moran (2002). It was since then applied to the X-FEM in
Béchet et al. (2005), among others.

Our goal here is obviously not to compete with such methods, but the vector enrichment that we propose suggests
a very efficient way to compute the stress intensity factors. We propose to interpolate linearly the value of the degrees
of freedom associated with each of the vector enrichment functions, over the element that contains the crack tip at the
position of the crack tip. The interpolation of the first degree of freedom should give an approximation ofKI and the
second one an approximation ofKII . This is a postprocessing operation that can be done at no cost and which is very
easy to implement once the vector enrichment functions are available in a given code. In the following, we call this
method thedirect evaluation method.

We have applied this strategy on the straight crack in infinite media in order to compare with the known analytical
solution.

FIG. 27: Von Mises stress for thecirculararc problem: (left) analytical solution and (right) exact solution.
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We also computed the stress intensityfactors using a G-theta method on an integration domain defined geomet-
rically, as it was shown that it is the most accurate strategy. The radius of the domain around the crack was set to
the same value as the radius of the enrichment zone. Results using an order 1 shape function are plotted in Fig. 28,
showing the error in the computed value ofKI as a function of the element size. We recover, as expected, the optimal
convergence rate of 2 for the G-theta method. The direct evaluation method also gives quite good results, considering
its cost. The convergence rate is close to 1.

Figure 29 reports the same results, but using order 2 shape functions. Again, an expected convergence rate of 4
is obtained for the G-theta method. The direct evaluation method gives also good results, but we probably need more
refinement to correctly evaluate the convergence rate.
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Again, we do not advocatefor the use of our direct evaluation method only: clearly the results of the G-theta
method are much better. But having the possibility to quickly compute a rough evaluation of the stress intensity factor
when a more precise one is available might prove useful nonetheless. Indeed, the difference between the two computed
results can serve as an error indicator, giving an upper bound on the error committed by the G-theta method.

5. CONCLUSIONS

In this paper, we made two contributions to the X-FEM as applied to crack modelization in the context of linear elastic
fracture mechanics.

– We advocate for the use of thevector crack tip enrichment functioninstead of the usualscalar crack tip en-
richment function. Indeed, we have shown that for equivalent accuracy, it leads to a reduction of the number of
degrees of freedom in the problem. It improves greatly the conditioning of the linear system to be solved and it
offers a cheap extraction of the stress intensity factor.

– The design of a good integration rule to properly compute the local stiffness for tip-enriched elements contain-
ing, or close to, the singular tip was the object of much work. The paper presents a solution to this problem,
including integration cells that do not contain the singularity. The only other proposed solution in the literature
in these cases was the superposition method in Béchet et al. (2005). The method proposed in the current paper
has the advantage of ensuring that all integration points are inside the elements and it is adaptive. It was shown
that an accurate integration scheme forall enriched elements is important to obtain rapidly convergent values of
the stiffness matrix, independently of the position of the crack tip inside an element. The effects of the quality of
the integration rule are particularly important in the final error in case of a higher order discretization scheme.

We plan to pursue our work in the development of these special integration rules. The self-evident point is to
extend our work for the three-dimensional case. We think that the hardest part is already done. Indeed, the singularity,
even in full three dimensional case, is essentially two dimensional. In three dimensions, the problem of integrating
properly over a tetrahedron can certainly be solved by cutting the tetrahedron into slices orthogonal to the crack front
direction and solving the resulting two-dimensional integration problem. Alternatively, the tetrahedron could first be
mapped to a prism aligned with the crack front direction, separating the integration into a series of two-dimensional
problems. We already tried similar strategies and they are indeed promising, even if not yet sufficiently robust to be
presented at the time the paper is being written.

We are also interested in providing integration rules adapted for other types of singularies. In particular, we have
in mind to work on integration rules adapted to the integration of enrichment functions coming from the reentrant
corner, where the singularity is of the formrα with α dependent on the angle of the wedge.
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Legrain, G., Chevaugeon, N., and Dréau, K., High order X-FEM and levelsets for complex microstructures: Uncoupling geometry
and approximation,Comput. Methods Appl. Mech. Eng., vol. 241, pp. 172–189, 2012.
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APPENDIX: EXACT SOLUTION FOR CIRCULAR ARC CRACK

The exact solution for a circular arc crack in infinite media can be‘ developed as follows. The origin is the center of
the circle of radius 1 on which the crack lies. Thex axis is the axis of symmetry of the crack. The crack is defined
between angle−θ and+θ from thex axis. At infinity, the stress is supposed homogeneous and uniaxial, in the
direction represented by angleα, and its value isσ∞. z is the complex representation of the coordinate of a point in
the(x, y) plane as defined above.z = x + iy (see Fig. 25).

Let us first define some constant values:

b0 = −σ∞
4

e2iα a0 = b0

b1 = − cos(θ)b0 a1 = 1

b2 = −cos(θ)b3 a2 =
σ∞
4
− b3

b3 =
3b0cos(θ)2 − σ∞ + 2b1cos(θ)− b0

2[cos(θ)− 3]

(A.1)

Thenthe following complex potentialsare defined:

f ′ (z) =
1

G (z)

3∑
n=0

bnzn−2 +
2∑

n=0

anzn−2 (A.2)

g(z) = (z) =
1

G (z)

3∑
n=0

bnzn−2 −
2∑

n=0

anzn−2 (A.3)

WhereG(z) is defined as:

if {(|z| < 1) or [Re(z) < cos(θ)]}G(z) =
√

z2 − 2zcos(θ)+ 1 else G(z) = −
√

z2 − 2zcos(θ)+ 1
(A.4)
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In the previous expression,
√

. refersto the principal valueof the complex square root [
√

(z) =
√

(|z|)eiarg(z)/2

where−π < arg(z) <≤ pi]

Θ = 2[f ′(z) + f̄ ′(z)] (A.5)

Φ = −2[zf̄ ′′(z) + ḡ′′(z)] (A.6)

σxx =
1
2

Re(Θ+ Φ) (A.7)

σyy =
1
2

Im(Θ + Φ) (A.8)

σxy = Re(Θ)− σxx (A.9)
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