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Impact on highly compressible media in explicit dynamics using
the X-FEM

Céline Dubois · Steven Le Corre · Malek Zarroug ·
Patrick Rozycki · Nicolas Moës

Abstract Finite element simulations of impact problems
on highly compressible media often lead to poor accuracy
due to mesh distortion. In explicit dynamics, poorly shaped
elements also reduce the stable time step. In order to have
satisfactory results and an acceptable computational time,
the structure has to be remeshed regularly. A remeshing pro-
cess can be a burdensome task, especially for 3D problems
with complex geometries. In explicit methods, remeshing can
also be time consuming compared to the time required for the
computation. In this article, we propose to use the extended
finite element method (X-FEM) to simplify the remeshing
work. This simplification relies on the fact that the X-FEM
allows to remesh with meshes that do not match the shape
of the deformed structure. A unique simple structured mesh
can be used whenever remeshing is needed. A specific algo-
rithm is designed in order to ensure data transfer between
successive meshes in the X-FEM context. Several examples
demonstrate the efficiency of the proposed method. The final
part of the article is dedicated to the treatment of impact
problems. It is shown that the use of the penalty method with
X-FEM in explicit dynamics leads to a decrease of the sta-
ble time step. We propose a specific mass scaling strategy to
overcome this issue.
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1 Introduction

Many problems involving very large deformation cannot be
efficiently computed by the same Lagrangian mesh through-
out the simulation. As the material undergoes severe strains,
elements aspect ratios deteriorate [4]. This leads to a sig-
nificant loss of accuracy in the approximation. The mesh is
no longer able to represent a good approximation: it fails
to satisfy the completeness condition. In worst cases, several
elements may invert, the Jacobian determinants become neg-
ative, which may lead to the loss of positive definitiveness of
the stiffness matrix and thus important local errors that may
abort the calculation. Another drawback of the distorsion in
explicit dynamics is that the stable time step is considerably
reduced [2].

A classical solution to avoid these problems is to use
arbitrary Lagrangian Eulerian methods (ALE). Contrary to
purely Lagrangian methods, the mesh motion is independent
of the material motion and can be chosen in a way to elim-
inate distortion. These methods seem very attractive since
they take advantage of both Lagrangian and Eulerian descrip-
tions. Nevertheless their practical use is not straightforward.
The choice of a judicious mesh motion can be a quite difficult
task, particularly due to the fact that boundary nodes or mate-
rial interfaces nodes in the case of multi material problems
can only move in tangential direction [2]. The extended finite
element method (X-FEM) is known to be an efficient solution
to deal with arbitrary discontinuities like cracks, voids and
inhomogeneities [9,17,18]. Within this method, the geom-
etry of the discontinuity is independent of the mesh and is
represented by a level-set function [20]. Several authors pro-
posed to couple X-FEM with ALE to solve bi-material prob-
lems [11,23]. The results are satisfactory. In ALE methods,
in addition to the mesh motion two other essential points
require special care. The first one is that the topology of
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the mesh does not change during the simulation, the number
of nodes remains the same so it has to be chosen carefully
from the beginning of the calculation. The second one is that
ALE equations involve convective terms to take into account
transport of material through the mesh. The computation of
these terms need the use of advection algorithms which can
be computationally expensive.

Another class of methods, referred by Benson [4] as the
“rezoning method”, can be seen as a good alternative to
ALE methods. The basic idea is to run a calculation with a
Lagrangian mesh until it becomes excessively distorted and
then generate a new undistorted mesh. The solution fields are
mapped from the old distorted mesh to this new mesh, which
is used as a Lagrangian mesh to continue the calculation. We
can notice that the remeshing work has to be done on the
deformed configuration in order to ensure a good quality for
the new mesh [12]. The new mesh can be built by adapting the
old one. Some places can be refined by dividing elements but
then some transition elements have to be introduced for the
mesh to be conform. This process can really become heavy
in three dimensions [8] so that it is often decided to replace
the old mesh by a completely new one. This last method
is also a better way to get a new mesh with good quality
shape.

However, the difficulty arises from the fact that the new
mesh has to approximate the boundary of the deformed body
as good as possible. Within this context, X-FEM can be
seen as a relevant solution since the mesh does not have
to conform to the external interfaces. The new mesh can
simply be a regular and structured mesh independent of the
shape of the deformed body. The only condition to satisfy
is that the deformed body lies inside the structured new
mesh. This idea has been recently used within the Euleri-
an Finite Cover Method (FCM) to treat quasi-static equi-
librium problems with large deformation [22]. The authors
propose to remesh with a regular and structured mesh after
each Newton–Raphson solving step. The regular mesh is the
same during the entire simulation, that is why it is called the
“Eulerian mesh”.

In this work, we use the possibility offered by X-FEM
to remesh on structured meshes in the context of dynamics
simulations. The remeshing process is not done at each time
step but only when the current mesh is no longer able to han-
dle the deformation. The new structured mesh does not have
to remain the same during the whole simulation, it can be
changed for a finer one for example. We present a specific
algorithm to map the quantities from the old mesh to the
new one. The main point of our work is to take advantage of
the regularity of the new mesh to save computational time.
Another great advantage of this method is that the remeshing
operation can be automatized. Contrary to most rezoning
methods available now, it does not require any user inter-
vention.

2 X-FEM in non-linear explicit dynamics

2.1 Governing equations

Let us consider a body in its initial configuration �0. The
vector X denotes the position of a material point in this ref-
erence configuration. The motion of the body is described by
x = φ(X, t) where x is the position of the material point X
at time t . The displacement of a material point can be writ-
ten as u(X, t) = x − X = φ(X, t) − X . The deformation
gradient is defined by

F = ∇0φ(X, t) = ∂x/∂X, (1)

where ∇0 indicates the gradient operator with respect to
material coordinate X . The Jacobian of the transformation
is J = det F. The body is subjected to a force per unit
mass b. The strong form of the balance of momentum can be
expressed as follows:

∇0 · P + ρ0b = ρ0ü in �0, (2)

where P is the nominal stress, ρ0 the density in the reference
configuration and ü the acceleration of a material point. The
displacement is prescribed as u = u on �0,u and the nomi-
nal traction vector as n0 · P = t0 on �0,t . Initial conditions
are also imposed: u(X, 0) = u0(X) and u̇(X, 0) = u̇0(X).
The weak form of the momentum equations including natu-
ral (Neumann type) boundary conditions is therefore given
by:
∫

�0

δu · ρ0üd�0 +
∫

�0

δFT : Pd�0

=
∫

�0

ρ0δu · bd�0 +
∫

�0,t

δu · t0d�0, (3)

where test functions δu belong to a space of C0 functions
which vanishes on the boundary of imposed displacements
�0

u . The first term in the left-hand side of the above equation
represents the virtual inertial work, the second term is the
virtual internal work. The whole right-hand side term is the
virtual external work.

The mechanical behavior of the material is supposed to
follow an hyperelastic law. As this kind of constitutive model
is path-independent, the second Piola–Kirchhoff stress S can
be expressed as the derivative of a stored energy function ψ :

S = 2∂ψ/∂C where C = FT · F, (4)

is the right Cauchy-green strain tensor. For numerical exam-
ples, we use the Neo-Hookean constitutive model in which
the stored energy is defined by

ψ(C) = λ(ln J )2/2 − μ ln J + μ(trace(C)− 3)/2, (5)
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where λ and μ are the Lamé constants. The second Piola–
Kirchhoff stress is then given by:

S = μ(I − C−1)+ λ(ln J )C−1, (6)

and P can be obtained by P = S · FT .

2.2 Spatial discretization with non-matching meshes on
interface

The X-FEM relies on the idea of enriching the finite-element
approximation by additional functions through the concept
of partition of unity [14]. The enrichment functions can be
used to model discontinuities inside the elements like cracks,
voids or inhomogeneities and also to improve accuracy in
problems where the behavior of the solution field is known
analytically, like stress around crack tip for example.

We consider a domain�0 divided into finite elements. Let
N = {n1, n2, . . . , nm} be a set of m nodes in the mesh and let
�0

g ⊂ �0 be the region where some enrichment is needed.
The general form of the X-FEM displacement approximation
can be expressed as follow:

uh(X) =
∑

nI ∈N

φI (X)uI +
∑

n J ∈Ng

φJ (X)ψ(X)aJ , (7)

where the nodal set Ng is defined as Ng = {n J /n J ∈ N , ωJ ∩
�0

g �= ∅} whereωJ is the support of the nodal shape function
φJ (X), i.e. the union of all elements containing n J as a node.
The additional degrees of freedom are denoted as aJ , they
usually do not have a physical significance but they allow
one to deal with discontinuities. The functionψ(X) is called
the enrichment function.

Modeling holes is a somewhat special since there is no
need for additional degrees of freedom. The classical shape
functions for the displacement are simply multiplied by an
enrichment function V (X) whose value is 1 if the node lies
outside the void and 0 if it is inside [21] The displacement
field can be written as

uh(X) =
∑

nI ∈N

φI (X)V (X)uI =
∑

nI ∈N

φ̂I (X)uI . (8)

Nodes whose support is entirely inside the void are removed
from the calculation (see Fig. 1). The interface between the
material and the void is implicitly described as the zero level
of a level-set function ϕ(X). This function gives the signed
distance of any point X to the interface: ϕ(X) is positive if X
lies in the void, negative in the material. As the other fields,
ϕ is interpolated on the mesh by:

ϕ(X) =
∑

nI ∈N

φI (X)ϕI (9)

We can notice for example that for linear tetrahedral ele-
ments, the level-set function is linear within each element.

Fig. 1 Nodes of the grid used in the X-FEM approach

Substituting the trial and test functions from their approx-
imation (7) in the weak form (3) and using the arbitrariness
of test functions, the following semi-discrete system of equa-
tions is obtained:

M · ü + f int = f ext (10)

Mass matrix terms MI J are given by:

MI J =
∫

�0

ρφ̂I φ̂J d�0 (11)

The internal nodal force vector f int
I is expressed as:

f int
I =

∫

�0

∂φ̂I

∂X
· P d�0. (12)

The external nodal force vector f ext
I is expressed as:

f ext
I =

∫

�0

φ̂Iρ0b d�0 +
∫

�0

φ̂I t0d�0 (13)

In practice, instead of using φ̂I (X), elements that intersect
the voids are cut along the iso-zero of the level-set and then
partitioned in sub-elements. The weak form is only integrated
in the sub-elements and elements that belong to the matter
part [21] (see Fig. 2).

2.3 Time discretization

The numerical time integration is performed through the well
known central differences explicit scheme. The mass matrix
is usually diagonalized by a lumping technique so that the
discrete momentum equations do not require the solution of
any system of equations. The method is stable if the time step
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Fig. 2 For elements crossed by the iso-zero of the level-set, integration
is done on sub-elements inside matter

remains lower than a critical value�tcrit . In a linear finite ele-
ment analysis without damping, one can demonstrate that

�tcrit = 2

ωmax
≤ min

(
le
ce

)
, (14)

where ωmax is the maximum frequency of the system, le is a
characteristic length of element e in deformed configuration
and ce is the current wavespeed in element e. For non-
linear problems, no stability theorem can be found. The crit-
ical time step is calculated for the linearized system and then
a reduction factor is applied.

Rozycki et al. [19] showed that the critical time step in
the X-FEM could be the same as the one in classical FEM
provided the use of a specific lumping technique. For a com-
plete review of the mass lumping strategies for X-FEM, one
can also refer to Menouillard et al. [15].

We use the central difference algorithm as detailed in
Belytschko et al. [2] where the time step can be variable.
As pointed out by the authors, this is more suitable for
finite strains since the stable time step changes during the
simulation as the mesh deforms and as the deformation
of the material makes the wave speed change. The time
increment between the iteration n and n + 1 is denoted by
�t = tn+1 − tn . Each time increment can be decomposed as
follows:

1. Update of nodal displacements:

un+1 = un +�t u̇n + �t2

2
ün, (15)

2. First partial update of nodal velocities:

u̇n+ 1
2 = u̇n + �t

2
ün, (16)

3. Computation of nodal accelerations:

ün+1 = M−1 · (− f int,n+1 + f ext,n+1), (17)

4. Second partial update of nodal velocities:

u̇n+1 = u̇n+ 1
2 + �t

2
ün+1. (18)

3 Remeshing on a regular grid

The main issue in remeshing is to handle data transfer
between two meshes. We have to define a way to transmit
the solution fields. Two kinds of data are distinguished in the
literature: variables stored at nodes and variables stored at
integration points. For nodal variables, collocation methods
are widely used. They can be decomposed in three steps:

1. Identification: for each new node, find in which old ele-
ment it is located;

2. Inversion: find the local coordinate of the new node in the
old element;

3. Interpolation: use the interpolation on the old mesh to find
the respective nodal value of the new node.

Other methods based on averaging procedure can be used
to transfer nodal fields between incompatible meshes. For
example, the least-square method allows to minimize the
square of the difference between two interpolations of the
same field. This method is also known as the L2 projection
and is widely used in dynamics to transfer initial conditions
on a mesh [2]. Another method based on Lagrange multi-
pliers and called the Mortar method is often used to transfer
fields between interfaces in domain decomposition problems
or contact problems. In the case of incompatible meshes, this
method is very close to the least-square method. Opposite to
the collocation method, the least-square and the Mortar meth-
ods do not imply any loss of information when transferring
from a fine mesh to a coarse one. Moreover they allow to keep
the duality between two fields on the new mesh. However,
these averaging methods require the inversion of a global
mass matrix and the construction of integral cross products
of shape functions defined on different meshes. Despite their
advantages in terms of accuracy, these methods can make the
data transfer very time consuming in an explicit context. Fur-
thermore, in our case, the boundaries of the new and the old
mesh will not match exactly so that such projection methods
do not seem easily applicable. That is why we choose to use
the collocation method.

For internal variables, usually known at Gauss points, the
task is much more difficult because they have to stay com-
patible with other variables after the projection. This has to
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Fig. 3 X-FEM allows to remesh the deformed configuration with a
non-conforming regular mesh

be taken into account in elasto-plastic models for example.
Several authors [5,13] proposed methods to ensure the equi-
librium during the data transfer. We will not further detail
these methods since our study focuses on hyperelastic bodies.

For nodal fields, a similar problem can arise. In explicit
dynamics if we transfer all kinematics nodal fields: displace-
ments, velocities and accelerations, we cannot ensure that
the conservation of linear momentum (3) will be satisfied
on the new mesh. To avoid these problems, we choose to
transfer only displacements and velocities. The acceleration
field is then deduced from the above by means of the linear
momentum equation (17). The procedure can therefore be
summarized as:

1. Projection of un+1 () and u̇n+ 1
2 () from mesh 1 to

mesh 2;
2. Computation of ün+1 on mesh 2 by (17).

3.1 Scan conversion technique

The use of the X-FEM allows to remesh the deformed con-
figuration with regular and non-conforming grids (cf. Fig. 3).
We can take advantage of the regularity of the new mesh to
deal efficiently with the identification step required for the
collocation.

Scan conversion (or rasterization) is a standard technique
in computer graphics for displaying filled polygons on a grid
of pixels [6]. The goal of the method is to determine effi-
ciently pixels which lie inside polygons. Let us consider a
convex polygon on a regular 2D grid in the plane (x, y).
We begin by classifying the edges of the polygon according
to the highest y coordinate of their extremities. For each grid
row that intersects the polygon, we determine which edges

are intersected and find the left and right intersection points
xL and xR (Fig. 4). We can then conclude that each grid point
between xL and xR is inside the polygon. As pointed in [6] the
computational complexity of the scan conversion algorithm
is O(e + r + n)where e the number of edges of the polygon,
r the number of rows that intersects the polygon and n the
number of grid points inside. If the sides of the polygon are
not smaller than the grid spacing, r and e become negligible
compared to n and the complexity reduces to O(n).

function ScanPolygonConvex(Polygone P)
sort the edges of P by their maximum y coordinate;
for each scanline y (from top to bottom) do

select the two edges that intersect the scanline;
compute the intersecting points xL et xR ;
add all nodes with a x coordinate between xL and xR to the
set of nodes scanned by P;

end

Algorithm 1: Scan conversion algorithm for a two-
dimensional convex polygon.

For the 3D Case, the former 2D scan conversion technique
is adapted and limited to the case of tetrahedra in a uniform
regular grid. We first define the intersection of the consid-
ered tetrahedron with a horizontal plane at height z, which
therefore forms a 2D polygon (triangle or quadrangle) in the
considered plane. This polygon is then scanned by the 2D
technique described in the previous section.

Figure 5 represents the slicing of a tetrahedron to form
polygons. The complexity of the algorithm is also linear in
the number of grid points inside the polyhedron.

function ScanTetrahedron(Tetrahedron T)
sort the faces of T by their maximum z coordinate;
for each scanplan z (from top to bottom) do

select the faces that intersect the scanplan;
build the polygon P resulting from the intersection
between the scanplan and the selected faces;
apply the 2D function ScanPolygonConvex to P;
add all nodes scanned by P to the set of nodes
scanned by T;

end

Algorithm 2: Scan conversion algorithm for a tetrahe-
dron.

In our problems, we scan every deformed old elements and
sub elements to find which nodes of the new regular mesh
are inside. The complexity of the algorithm is linear in the
number of nodes of the new mesh recovered by the old mesh.

3.2 Building of the level-set on the new mesh

In order to continue the computation after a remeshing step,
we also need to locate the position of the level-set on the new
mesh.
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Fig. 4 Principle of the scan
conversion of a polygon in 2D.
a Case where edge1 and edge2
are activated. b Case where
edge2 and edge3 are activated

Fig. 5 Principle of the scan
conversion of a tetrahedron

Opposite to the displacement, the level-set is not a
Lagrangian field but an Eulerian one. The level-set is known
for a given position and not for a given material point. When
the mesh moves, the level-set stored at a node still repre-
sents the distance between this node and the interface in the
initial configuration but not in the deformed one. When the
initial mesh is deformed, the level-set field is then no longer
a distance function. If this field is transferred directly by col-
location, it will lead to a wrong positioning of the interface
for the new mesh. This can be shown by a simple example
in one dimension in Fig. 6.

One could imagine to reinitialize the level-set to a dis-
tance function on the first mesh in its deformed configuration
before doing the transfer to the second mesh. The reinitialisa-
tion or redistanciation of a level-set is usually done by finding
the level-set φ satisfying the above transport equation:

∂φ

∂t
+ sign(φo)(|∇φ| − 1) = 0 (19)

whereφ(x, t = 0) = φo is the initial value of the level-set. In
order to alleviate oscillations phenomenon, this equation is
solved by means of specific algorithm (ENO, WENO) which
can be computationally expensive. More efficient scheme
like the Fast Marching Methods can also be used to accelerate
the process, but anyway it will require additional iterations
which are not suitable for explicit dynamics.

Another way to obtain a distance function is to discretize
the interface � and to simply evaluate the distance using its
definition:

D(x) = min
yε�

|x − y|sign(φo) (20)

This method can be directly applied on the new mesh; there
is no projection to do. That is the reason why we choose this
solution. Moreover, we propose here a more efficient strategy
using the information obtained during the scan to rebuild the
level-set on the new mesh.
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Fig. 6 The level-set field is no
longer a distance function in the
deformed configuration. If no
reinitialisation step is done,
collocation leads to a wrong
positioning of the iso-zero

First of all, we know if a node has been scanned by a ele-
ment (or sub-element) in the matter or in the void. We can
conclude on the sign of the level-set for this node: negative in
the matter and positive in the void. We then have to evaluate
the distance. During the integration, the initial mesh has been
cut along the iso-zero of the level-set, so we have access to a
mesh of the deformed contour. This mesh is called the bound-
ary mesh and is made of triangular facets. For each node of
the new mesh, we can loop over boundary facets, calculate
the distance to each facet and then select the minimum dis-
tance and the closest facet. The cost of this simple algorithm
is O(N ∗ F) where N is the number of new nodes and F
the number of facets of the boundary mesh. In 3D, this can
be expensive and useless because we only need to know the
level-set near its iso-zero. We propose here a fast algorithm
which takes advantage of the informations obtained during
the scan conversion phase.

The first step of this algorithm is to select a group of nodes
on the new mesh where the level-set function has to be known.
This group will be called the “new narrow band nodes”.
A simple way to define these nodes is to consider that they are
the nodes scanned by old elements close to the level-set. The
first task is therefore to select a group of elements close to the
level-set in the old mesh which will be called the “old narrow
band elements”, as illustrated in Fig. 7. This set is made of
old elements cut by the iso-zero of the level-set function that
represents the boundary of the structure. In order to be sure to
have a sufficiently large band, we also include the neighbors
of the cut old elements which lie inside the matter.

Then the “new narrow band nodes” can be constructed
by taking the nodes scanned in this band of old elements
(Fig. 8a). Because of robustness issue that will be described
later, the neighboring nodes of these nodes are also included
to the new narrow band. This is illustrated on Fig. 8b.

Doing so, we have limited the number of nodes where the
level-set will be evaluated. To further improve this proce-
dure, one can also reduce the number of facets to be taken
into account for each node. Each facet has been created by
the cutting operation of an element of the old mesh so a link

Fig. 7 “Old narrow band” elements

can be established between the facets and the elements of the
“old narrow band elements”. A facet is set to be potentially
close to the element that it crosses and to the neighbor of this
element (see Fig. 9). Thus, an element of the “old narrow
band elements” is associated to a group of eventually close
facets. Defining those local groups, any node scanned in the
narrow band can be related to a small amount of facets which
makes the cost of the calculation of the level-set proportional
to the number of nodes in the narrow band.

3.3 Algorithm robustness

An important issue is to ensure the reliability of the pro-
posed algorithm. First of all, we can easily check that the
algorithm proposed allows to obtain exactly the same results
when choosing a second mesh identical to the first one.

A second important point is to ensure that no node is for-
gotten during scan operation. Such an error can come from
the fact that our algorithm employs floating point values.
Rounding operations during the scan conversion can lead to
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Fig. 8 Construction of the
“new narrow band” nodes.
a Phase 1. b Phase 2

Fig. 9 A facet is potentially close to its “parents” elements and to his
neighbors

miss a node very close to the edge of an element. We have to
introduce a tolerance ε when we test whether a node lies into
an old element. In practice, it can be seen as a small increase
in the element size (Fig. 10). Thus, for example when a new
node is exactly on one edge common to two old elements, it
is scanned by both. In the future, a good improvement would
be to design an algorithm using only integers as it is usually
done in computer graphics.

In the distance calculation, we have to take care to get all
facets possibly close to a node. This is the reason why we
take the neighbors of the old elements to construct the narrow
band of a facet. This can avoid the critical case illustrated in
Fig. 11, when the closest facet to a node does not cross the
element by which it was scanned.

Another critical situation that could happen in the X-FEM
context is that new nodes having to be considered on the new
mesh can be unrecovered by the old mesh. If they are not
scanned, no displacement or velocity fields can be transferred
to them (see Fig. 12). This case is avoided by the fact that
we include the neighbors of the nodes scanned in the “old
narrow band elements” to construct the “new narrow band
nodes”. If new nodes are not scanned, we use their closest

Fig. 10 Introduction of a tolerance in order to ensure that no nodes are
forgotten

Fig. 11 The closest facet to a node does not cross the element by which
it was scanned

facet to find which is their closest deformed element and then
we extrapolate the solution fields (see Fig. 13).

3.4 Numerical examples

In this section, we study several examples in order to test the
validity of the algorithm described above. The goal of the

8



Fig. 12 Some non-scanned nodes have to be taken into account for the
computation on the new mesh

two first examples is to check two important features of
the algorithm: the level-set evaluation on the new mesh
and the accuracy of data transfer. The third example illus-
trates the main advantages of the method: the reduction of
the distortion rate and the increase of the critical time step.

3.4.1 Example 1: free fall of a sphere

In order to test the efficiency of our algorithm, we begin with
a very basic problem: the free fall of a sphere. The value of
the sphere radius is 2.4 m. The problem is first discretized
with a regular tetrahedral mesh whose characteristic length
is 0.4 m. This mesh was built from a hexahedral one and each
hexahedron was cut into six tetrahedra. Two different cutting
directions were used for two consecutive hexahedra in order
to obtain an isotropic mesh. During the explicit computation,
the initial mesh is replaced by a new one built in a similar
way but with a characteristic length of 0.2 m (see Fig. 14).

The sphere undergoes a rigid body motion. Displacement
and velocity fields are uniform. Data transfer is therefore
straightforward. We see in Fig. 15 that those fields perfectly
match the analytical solution before and after remeshing.

The first step of the level-set computation is to select the
“old narrow band elements” on the initial mesh. This band
is made of the elements crossed by the level-set iso-zero
and their neighbors (see Fig. 16). This group of elements
cover nodes on the new mesh. These nodes and their neigh-
bors make up the “new narrow band nodes” (see Fig. 17).
The new iso-zero of the level-set is computed only on this

Fig. 13 Management of data
transfer for unscanned nodes:
(a) finding the closest,
(b) extrapolation of the fields
values

Fig. 14 Two meshes are used
during the computation
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Fig. 15 Evolution of kinematic fields. a Displacement. b Velocity

small amount of nodes. In this example, there are 12,980
nodes in the “new narrow band” whereas the initial mesh
contained 24,389 nodes. The computational cost to get the
level-set is divided by two compared to a straight forward
approach.

The second simplification of our algorithm then consists
in reducing the number of facets tested to obtain the closest
one. The iso-zero of the level-set initially contains 3,456 fac-
ets. The number of facets tested for each node of the “new
narrow band” varies from one node to another between 20

and 200 facets and depends on the curvature of the iso-zero.
An average number of about 100 facets are tested per node.

Thanks to these two simplification processes, the total
number of nodes times facets investigated for the level-
set computation is about 1,298,000. With the straight for-
ward approach, the distance computation would have been
done at 24,389 nodes with 3,456 facets, which leads to
84,288,384 computations. Hence, the presented method
enables to reduce the computational effort by a factor 65.
This first example is very promising. For industrial problems,
we can expect that the number of nodes near the level-set is
very small compared to the total number of nodes on the new
mesh so that the benefit of our algorithms will be much more
significant.

3.4.2 Example 2: dynamic traction test

In order to show the relevance of the data transfer approach,
we propose in this section a simulation on a nearly cubic
part subjected to dynamic loading. The dimensions of the
part are 1 m × 1 m × 1.05 m. The boundary conditions are
a complete clamping of the lower face and a sudden traction
of 45,000 N on the upper face. The lateral faces can only
move in the traction direction. This case can be compared to
the solution of a rod under a state of uniaxial strain. For the
material, we choose the Neo-Hookean model described in
Sect. 2.1, whose parameters are typical of a polymeric foam:
ρ = 22 kg m−3, λ = 66,428 Pa and μ = 16,607 Pa.

The part is discretized with a mesh of characteristic length
0.1 m. The loaded face is not meshed, but implicitly repre-
sented by the iso-zero of a level-set. We compare the results
obtained without remeshing and with five successive reme-
shing steps. At each remeshing step, the new mesh used
to discretize the deformed configuration is chosen equal to
the initial mesh. Displacements of a point on the loaded
face obtained with and without remeshing are compared in
Fig. 18. Results for both simulations are nearly identical.
A small gap appears between the two displacements from

Fig. 16 Old narrow band
elements on mesh 1. a 3D view.
b Cut view
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Fig. 17 New narrow band
nodes on mesh 2

Fig. 18 Dynamic traction test: displacement of the loaded boundary

t = 0.008 s. After, this gap tends to reduce and becomes
close to zero at t = 0.013 s.

We also compare global variables obtained from both sim-
ulations. Figure 19 shows the evolution of kinetic and inter-
nal energies. The results are also quite similar. Small gaps
appear for both energies at different instants. The projection
sometimes increases the gap and sometimes decreases it but
always remains in an acceptable range.

In order to further analyze the influence of the number of
projections, we compute the error of kinetic energy, inter-
nal energy (see Fig. 20) and the error on the part volume
(see Fig. 21) for different numbers of remeshing steps. We
can see that the effect of the remeshing is rather random. The
remeshing does not lead to an automatic decrease or increase
of energy and volume. Errors induced from a remeshing can
be erased by the next one. For some particular numbers of
projections (especially 5 and 7), one can notice errors of about
10% which could be worrying. Nevertheless, this is due to
the particular design of this test where the part upper bound-
ary is straight and raises progressively on a regular mesh.
The projection error is therefore amplified because several
elements are cut in the same way. For a more complex geom-
etry, this phenomena is expected to be perfectly random so

Fig. 19 Dynamic traction test: evolution in time of kinetic (a) and
internal energies (b)

that the error will not be so exaggerated. The approximation
induced by the projection technique is therefore acceptable.

3.4.3 Example 3: dynamic compression test

We consider here the same part than in the previous exam-
ple but we change the load to a compression of 90,000 N on
the upper face. The mesh is chosen identical to the previous
case. Displacements obtained without remeshing can be seen
in Fig. 22 where a compression ratio of 60% was reached.

123
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Fig. 20 Dynamic traction test: evolution of the relative error of the
kinetic (a) and the internal energy (b) with the number of remeshing
steps

Fig. 21 Dynamic traction test: evolution of the relative error of the
initial volume with the number of remeshing steps

In order to estimate the distortion of the mesh, we use a
simple aspect ratio quality factor defined by:

Q = α
hmax

ρ
= α

hmaxS

3V
(21)

whereα =
√

6
12 is a normalization coefficient allowing to have

a quality equal to 1 for an equilateral tetrahedron, hmax is the
length of the longest edge, ρ is the radius of the inscribed
sphere, S is the sum of face surfaces and V is the volume.

Fig. 22 Dynamic compression test: displacement of one point of the
loaded face

Fig. 23 Dynamic compression test: evolution in time of the maximum
aspect ratio of elements with different remeshing frequencies

Our mesh is made of tetrahedra with an initial aspect ratio
of 1.71. During the compression stage, from the beginning
to t = 0.016 s, the maximum aspect ratio increases and gets
close to 5 so that the accuracy of results for these elements
is no longer guaranteed. Furthermore, the critical time step,
which is directly linked to the elements shape, decreases dra-
matically, starting from 3.5 × 10−4 to 3.87 × 10−5 s. This
can be excessively time consuming in an industrial context.

To highlight the way our remeshing strategy enables to
overcome those two problems, different situations of reme-
shing were tested: 2, 3 and 4 successive remeshing steps dur-
ing the compression stage. For each test, the projection mesh
used to remesh the deformed part is identical to the initial
one. As shown in Fig. 23, the distortion goes back to its ini-
tial value at each remeshing, which is expected because of the
perfect regularity of the new mesh. Furthermore, the value
of the critical time step is maintained at higher values thanks
to the remeshing (Fig. 24). Even if the time step does not go
back to its initial value (the wave velocity is not the same in
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Fig. 24 Dynamic compression test: evolution in time of the critical
time step for different remeshing strategies

the deformed configuration), the four remeshing steps allow
to multiply the time step obtained without remeshing by a
factor four approximately.

This last test finally validates the principle of the pro-
posed technique and demonstrates its efficiency in the con-
text of dynamic simulations implying large deformations.
Nevertheless, the considered situations are still geometrically
rather simple and the next section will focus on more complex
deformations induced by impacts on compressible bodies.

4 Impact problems

Impact situations are present in many industrial problems,
from manufacturing processes to the crash of automobiles.
It seems important to include the modeling of these phenom-
ena in our method.

During an impact, one or several bodies stay in contact
until the vanishing of waves results in a release of contact
forces. We can distinguish two main approaches to treat
contact constraints: the Lagrange multiplier method and the
penalty method. These two methods have been used as the
basis of most contact algorithms [24].

The main principle of Lagrange methods is to ensure the
equality of the displacements at the contact interface between
two bodies by means of Lagrange multipliers, which can be
seen as normal tensions. The advantage of this approach is the
exact respect of the non-penetration condition but its draw-
back is that it requires the introduction of new degrees of
freedom. Furthermore, in explicit dynamics, the Lagrange
multiplier method implies the solution of an implicit sys-
tem at each time step [7], which can be time consuming if
contact interfaces are large. With the usual penalty method,
the normal tensions are approximated by forces which are
proportional to the penetration. The major drawback of this
method is that some interpenetration of the contacting bodies

Fig. 25 One dimensional approach of the penalty method

Fig. 26 One dimensional approach of the penalty method with the
X-FEM

Fig. 27 One dimensional penalty test case: evolution of the critical
time step with the fraction of matter for different values of the penalty
function k

is allowed. Nevertheless, in the case of large deformations
we consider here, this approximation can be considered as
precise enough. Despite this little drawback, this method is
easy to implement and computationally efficient because it
does not involve any additional degrees of freedom. The
major problem induced by this method is that in contrast
to Lagrange multipliers method, the penalty method always
decreases the critical time step [2]. The choice between the
two methods depends on the accuracy needed and on the time
of computation wanted. In our case, the use of the X-FEM
has also to be considered to make a choice.

In the X-FEM context, contact interfaces are not meshed.
This particularity has to be taken into account in the contact
algorithms. The use of the X-FEM with the Lagrange mul-
tipliers method requires special care to satisfy the inf-sup
condition needed for mixed formulations. Geniaut et al. [10]
and Béchet et al. [1,16] have proposed specific algorithms
for statics problems to define the appropriate Lagrange mul-
tipliers discretization space. For large deformation dynamics
problems, the search of this discretization space has to be
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Fig. 28 One dimensional penalty test case: evolution of the critical
time step according to the fraction of matter with added mass for dif-
ferent values of the penalty factor k

Fig. 29 One dimensional impact test

done at each time step since the contact interfaces are moving
so that the computational cost of this operation can become
very important in an explicit framework. Furthermore, when
remeshing is needed, we cannot ensure that the transfer of
Lagrange multipliers leads to the conformance with the inf-
sup condition on the new mesh. In this context, the penalty
method seems to be a more suitable choice.

In the following section, we will describe the use of the
penalty method in explicit dynamics in classical finite ele-
ments. We will then emphasize the special treatments due to
the introduction of the X-FEM. Finally, we will discuss on
its reliability through some numerical examples.

4.1 Penalty method

The penalty method originates in optimization theory. Its
application in contact problems consists in adding the above
term to the weak form of the linear momentum:

δGP =
∫

�c

k′

2
δ(g2

N )H(gN )d� (22)

where gN is the normal gap function between two bodies,
�c is the contact interface, k′ is the penalty parameter and
H(gN ) is the Heaviside function:

H(gN ) =
{

1 if gn > 0
0 if gn < 0

The non-penetration condition is supposed to be better
satisfied as the penalty parameter k′ is increased. The

Table 1 One dimensional impact test: numerical values

Young modulus E = 2.1E11 Pa
Density ρ = 7,800 kg m−3

Cross section S = 6.4516 × 10−4 m2

Length l = 0.254 m
Half initial gap g = 2.54 × 10−4 m
Velocity vo = 5.1359 m s−1

Penalty parameter k = 0.1

Fig. 30 One dimensional impact test: representation of the X-FEM
mesh

penalty method (Fig. 25) can be seen as the addition of a
spring between two bodies in order to keep them separated.
It increases the stiffness of the elements at the boundary in
contact. In the context of explicit methods, this leads to a
decrease of the critical time step [3]. This feature can be eas-
ily demonstrated in 1D considering the impact of a truss on a
rigid wall. The stability is governed by the element in contact
associated with the penalty spring.

The mass and the linearized stiffness matrices are respec-
tively given by:

M = ρSl

2

[
1 0
0 1

]
and K = E S

l

[
1 −1

−1 1 + k

]

where k = l

E S
k′.

By applying the eigenvalue element inequality, we obtain
the FEM critical time step �tFEM

c :

�tFEM
c = l

c

2√
2 + k + √

4 + k2
(23)

The critical time step decreases as the inverse of penalty
parameter k. For example, if k is chosen equal to 10 (i.e. the
penalty spring is ten time more stiff than the material), the
time step is decreased by 58%.

4.2 Use of the penalty method in explicit dynamics with
X-FEM

4.2.1 Stability

Within the X-FEM, the penalty traction has to be applied on
a surface which is not meshed. For a one dimensional case
this can be modeled by attaching the penalty spring at the
boundary of the material part of the X-FEM element.

As clear from Fig. 26, the boundary element is crossed by
the interface at a distance εl of its length l. For such a case,
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Fig. 31 One dimensional impact test: evolution of the X-FEM critical time step with (a) and without (b) mass scaling

the mass and the linearized stiffness matrices are then given
by:

M = 1

2
ρSl

[
ε 0
0 ε

]

K = E S

l

[
ε + (1 − ε)2k −ε + ε(1 − ε)k

−ε + ε(1 − ε)k ε + ε2k

]

where ε represents the fraction of matter in the X-FEM
element.

Applying again the eigenvalues criterion, the critical time
step is obtained by:

�tc = l

c

2
√
ε√

2ε + k − 2kε + 2ε2k + √
4ε2 − 8ε2k + 8ε3k + k2 − 4k2ε + 8k2ε2 − 8k2ε3 + 4ε4k2

As illustrated on Fig. 27, if the material fraction ε tend to
zero, then the critical time step tend to zero.

The meshing procedure with X-FEM is independent of
the position of the boundary, so that the parameter ε is not
controlled and the values of the critical time step can be
extremely low. This is not acceptable for industrial applica-
tions. To overcome this drawback, we propose to add mass on
the X-FEM element. The added mass corresponds to the com-
plementary mass of the “void part” of the X-FEM element.
The mass matrix is therefore identical to the one obtained in
finite element whereas the stiffness remains the one of the
X-FEM element:

M = 1

2
ρSl

[
1 0
0 1

]
K = E S

l

[
ε + (1 − ε)2k −ε + ε(1 − ε)k

−ε + ε(1 − ε)k ε + ε2k

]

The critical time step is then given by:

�tc = l

c

2√
2ε + k − 2kε + 2ε2k + √

4ε2 − 8ε2k + 8ε3k + k2 − 4k2ε + 8k2ε2 − 8k2ε3 + 4ε4k2

When ε tend to zero, the critical time step tend to a bounded

limit equal to
l

c

√
2

k
. In Fig. 28, we plot the X-FEM critical

time step normalized by the one obtained in finite element
with penalty�tFEM

c . We can observe that this ratio is always
greater than one. Thanks to mass addition, the X-FEM time
step stays greater than the one in finite elements.

This technique is a mass scaling method which has the
particularity to add a naturally bounded quantity of mass.
This additive mass is low compared to the mass of the

complete structure so it is expected not to affect significantly
the results.

4.2.2 One dimensional impact example

In order to check the reliability of the proposed method, we
consider the 1D case of two linear elastic rods moving with
equal speed in opposite directions (see Fig. 29). We call g
the half distance initially separating the two rods.

The numerical values are given in Table 1.
We compare the results obtained by classical FEM and by

X-FEM. For both cases, each rod is discretized with 20 ele-
ments. In the X-FEM case, the impacting boundaries of the
rods are not meshed: the fraction of matter for the impacting
element of the rod on the left-hand side is denoted as ε1,
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whereas it is denoted as ε2 for the rod at the right-hand side
(see Fig. 30).

The stability of the explicit scheme is governed by the two
impacting elements properties associated with the penalty
spring. The time steps will differ a bit from the previous
study since here the two impacted bodies are deformables.

For the FEM case (meshed boundaries), the computation
of the critical time step is based on the eigenvalues of the
above matrices:

M = ρSl

2

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ K = E S

l

⎡
⎢⎢⎣

1 −1 0 0
−1 1 + k −k 0
0 −k 1 + k −1
0 0 −1 1

⎤
⎥⎥⎦

which lead to the following FEM critical time step:

�tFEM
c = l

c

√
2

1 + k + √
1 + k2

(24)

For the X-FEM case without mass scaling, the element
matrices depend on ε1 and ε2:

M = ρSl

2

⎡
⎢⎢⎣
ε1 0 0 0
0 ε1 0 0
0 0 ε2 0
0 0 0 ε2

⎤
⎥⎥⎦

K = E S

l

⎡
⎢⎢⎣

ε1 + k(1 − ε1)
2 −ε1 + kε1(1 − ε1) −kε2(1 − ε1) −k(1 − ε1)(1 − ε2)

−ε1 + kε1(1 − ε1) ε1 + kε2
1 −kε1ε2 −kε1(1 − ε2)

−kε2(1 − ε1) −kε1ε2 ε2 + kε2
2 −ε2 + kε2(1 − ε2)

−k(1 − ε1)(1 − ε2) −kε1(1 − ε2) −ε2 + kε2(1 − ε2) ε2 + k(1 − ε2)
2

⎤
⎥⎥⎦

An analytical formula of the critical time step for the
X-FEM would be difficult to analyse. We just represent in
Fig. 31 the evolution of the time step for different values
of ε1 and ε2 with and without mass scaling. This time step
is normalized by the time step obtained with classical finite
element �tFEM

c (see Eq. 24). As in the previous study, the
X-FEM time step tends to zero when ε1 or ε2 tend to zero.
This drawback disappears when using the mass scaling tech-
nique: the X-FEM time step even becomes greater than the
FEM one.

For a case where ε1 = 0.1 and ε2 = 0.9, we compare the
results obtained by FEM and X-FEM. The mass scaling for
X-FEM leads to a mass addition of 2.61% of the total mass.
The evolution of displacements, velocities, accelerations and
contact forces at the two contacting boundaries for FEM and
X-FEM are represented in Figs. 32 and 33.

We can see that displacements, velocities and contact
forces obtained with X-FEM are very close to the classi-
cal FEM solutions. However, some differences between the
results of the two methods can be observed for the accel-
eration. Analytically, the acceleration is always zero except
at the impact and at the release instants where it tends to

infinity. Obviously, such an evolution cannot be represented
numerically: one only gets maximum values at impact and
release times as well as numerical oscillations between these
two states. These oscillations are minimized in the X-FEM
thanks to the mass addition.

In Fig. 34, we can also observe the differences between
X-FEM and FEM in the evolution of kinetic energy. As exp-
ected, the addition of mass with the X-FEM leads to a small
increase of kinetic energy at the impact time. However, this
increase does not involve significant differences between
X-FEM and FEM since the mass addition is limited to 2.61%
of the total mass.

This example shows that the X-FEM with mass addition
allows to obtain accurate results while keeping a reasonable
time step.

4.3 Remeshing during impact

We have demonstrated in the previous paragraph the pos-
sibility to treat impact problem within X-FEM. We know

focus on the effects of the remeshing process on the impact
treatment, therefore combining the remeshing technique of
Sect. 3 and the present penalty technique.

4.3.1 Procedure

As mentioned in Sect. 3, for a remeshing occurring at time
tn+1, we only transfer the predictors of displacements and

velocities: un+1 and u̇n+ 1
2 . The acceleration ün+1 is evalu-

ated by resolution of the equilibrium equation on the second
mesh. The velocity u̇n+1 is deduced from this acceleration.

The contact condition will be taken into account in the
computation of ün+1. In explicit methods, the acceleration
at time tn+1 does not affect the displacement at the same
time. That is why Carpenter et al. [7] pointed that the contact
condition has to be treated for the forward increment. This
means that the computation of ün+1 will use contact forces
depending on the penetration predicted for time tn+2. We can
conclude that there is no contact force to transfer between the
old and the new meshes in explicit dynamics.

Due to the change of discretization between both meshes,
the penetration on the second mesh at time tn+1 will differ
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Fig. 32 One dimensional impact test: evolution of displacements
(a) and velocities (b) at contacting boundaries, comparison between
the FEM and X-FEM solutions for ε1 = 0.1, ε2 = 0.9 and k = 0.1.

from the penetration at the same time on the first mesh. In
a Lagrange multiplier method, the impenetrability condition
is ensured on the first mesh whereas interpenetration appears
in the second one due to projection. The computation of
Lagrange multipliers on the second mesh would be neces-
sary to overcome this issue. In the penalty method, some
interpenetration is allowed, so there is no reason to try to
eliminate it on the second mesh. Thus, the accuracy of the
results will not be affected by the remeshing procedure with
the penalty method.

4.3.2 Numerical example

We now consider a 3D example involving remeshing during
impact. We aim to simulate the impact of a sphere against a
rigid plane. The sphere, of initial radius 0.3 m has an initial

Fig. 33 One dimensional impact test: evolution of acceleration (a) and
contact force (b) at contacting boundaries, comparison between the
FEM and X-FEM solutions for ε1 = 0.1, ε2 = 0.9 and k = 0.1

velocity of 10 m s−1. We use a regular isotropic mesh, of char-
acteristic length 0.05 m, made of tetrahedra built according
to the process described in Sect. 3.4.1. The geometry of the
sphere is described by a level-set function and the plane is
not discretized but described by an analytical function. The
initial gap between the sphere and the plane is set to 0.005 m
so that contact occurs at the beginning of the computation.
During the impact, the deformed sphere is remeshed by our
projection method on a mesh identical to the initial one as
described in Fig. 35.

The wave propagation due to impact is shown in Figs. 36
and 37, where one can see the distribution of the displace-
ments in a cutting plane of the sphere at different time steps.

In Fig. 38, we compare the evolution of kinetic and inter-
nal energies with and without remeshing. These energies
are also compared to the one obtained with ABAQUS code.
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Fig. 34 One dimensional impact test: evolution of kinetic energy, com-
parison between the FEM and X-FEM solutions for ε1 = 0.1, ε2 = 0.9
and k = 0.1

We can observe a fairly good agreement between the three
simulations. The remeshing leads to a small increase of the
kinetic energy and a small decrease of the internal energy.
These gaps seem reasonable compared to the amount of
energy involved in this problem and to the other discreti-
zation errors.

The penetration is almost the same from one mesh to
another after the remeshing. This is illustrated in Fig. 39
where the displacement of an impacting point was plotted.

Finally, we can observe the benefit coming from the reme-
shing on the distortion rate (Fig. 40) and on the critical time
step (Fig. 41). Without remeshing, the aspect ratio increases
to values close to 4 whereas it is kept under 2.8 by the reme-
shing operation. Furthermore, as visible from Fig. 41, the
remeshing also allows to keep a bigger time step while the
material undergoes severe deformations. On this example,
at the most deformed state (t = 0.019 s), the time step is
multiplied by 4.

5 Conclusion

In this paper, we propose a new strategy to deal with impact
problems on highly compressible media in the framework
of explicit dynamics. The basic idea is to use the X-FEM to
simplify the remeshing work needed for this kind of prob-
lems. This simplification relies on the fact that the X-FEM
allows to remesh with meshes that do not match the shape
of the deformed structure. A simple structured mesh can be
used each time whenever a remeshing is needed.

The data transfer between successive meshes is done by
a collocation method. An important step in that process is
to locate the new nodes inside the old mesh. The fact of

Fig. 35 Impact of a sphere:
state of the sphere at the
beginning of the simulation on
mesh 1 (a) and at the beginning
of the simulation on mesh 2 (b)

Fig. 36 Impact of a sphere:
displacement field at iteration
100 (a) and 300 (b)
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Fig. 37 Impact of a sphere:
displacement field at iteration
500 (a) and 680 (b)

Fig. 38 Impact of a sphere: evolution of kinetic and internal energies

Fig. 39 Impact of a sphere: evolution of the displacement at a contact-
ing point

using regular and structured meshes makes this step consid-
erably easier: we can use a specific search algorithm based
on computational graphics methods to save computational

Fig. 40 Evolution of maximum aspect ratio

Fig. 41 Evolution of the critical time step

time. Special care is devoted to the building of the iso
zero of the level-set representing the deformed piece on the
new mesh.
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Efficiency and accuracy of the proposed algorithms are
tested on several examples. We particularly demonstrate that
the remeshing strategy allows to limit the distortion and to
keep a reasonable time step when the material is submitted
to severe strains. The method therefore brings all the satis-
fying improvements one expects from a remeshing process.
Naturally, compared to other remeshing techniques, our use
of regular grids can be considered as non-optimal and yet
somewhat academic. The extension to a more adapted mesh,
which will be the subject of further works, leads to heavier
calculations.

In order to be able to deal with more realistic physical
situations, the treatment of an impacting rigid body was also
implemented, the contact problem being treated through a
penalty method. As the use of such a method with X-FEM
in explicit dynamics leaded to a decrease of the critical time
step, we proposed a specific mass lumping strategy for the
X-FEM elements to overcome this issue. Excellent agree-
ment with reference solution results are obtained for 1D and
3D examples.
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