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On the values of repeated games with signals ∗

Hugo Gimbert † , Jérôme Renault ‡, Sylvain Sorin §, Xavier Venel ¶, Wies law Zielonka ‖

June 16, 2014

Abstract

We study the existence of different notions of values in two-person zero-sum repeated

games where the state evolves and players receive signals. We provide some examples

showing that the limsup value and the uniform value may not exist in general. Then,

we show the existence of the value for any Borel payoff function if the players observe a

public signal including the actions played. We prove also two other positive results without

assumptions on the signaling structure: the existence of the sup-value and the existence of

the uniform value in recursive games with non-negative payoffs.

1 Introduction

The aim of this article is to study two-player zero-sum general repeated games with signals
(sometimes called “stochastic games with partial observation”). At each stage, both players
choose some actions. This generates a stage payoff then a new state and new signals are
randomly chosen according to a transition function. Shapley [23] studied the special case of
stochastic games where the players observe, at each stage, the current state and the past actions.

There are several ways to analyze these games. In this article, we will first use a point of
view coming from the literature of “game determinacy” (Gale and Stewart [3]). One defines
an evaluation on the set of infinite histories and then study the existence of the value in the
normal form game. Several evaluations will be considered.

In the initial model of Gale and Stewart [3] of two-person zero-sum dynamic game with
perfect information, there is no state variable. The players choose, one after the other, an
action from a finite set and both observe the previous choices. Given a subset A of the set of
plays (infinite sequences of actions), player 1 wins if and only if the actual play belongs to the
set A: the payoff function is the indicator function of A. Gale and Stewart proved that the
game is determined: either player 1 has a winning strategy or player 2 has a winning strategy,
if A is open or closed with respect to the product topology. This result was then extended to
more and more general classes of sets until Martin [13] proved the determinacy for every Borel
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set. When A is an arbitrary subset of plays, Gale and Stewart [3] showed that the game may
be not determined.

In 1969, Blackwell [1] introduced a model where the players play simultaneously (and are
still told their choices). Due to the lag of information, the determinacy problem is not well
defined. Instead, one investigates the probability that the play belongs to A. When A is a
Gδ-set, a countable intersection of open sets, Blackwell proved that there exists a real number
v, the value of the game, such that for each ε > 0, player 1 can ensure that the probability to
be in A is greater than v−ε, whereas player 2 can ensure that the probability is less than v+ε.
Following this literature of determinacy, Maitra and Sudderth studied stochastic games (in the
framework of Shapley’s model) and the largest payoff obtained infinitely often. They prove
the existence of a value, called limsup value, in the countable framework [8], in the Borelian
framework [9] and in a finitely additive setting [10]. In the two first cases, they assume some
finiteness assumption at least on the action space on one side. Their result especially applies
to finite stochastic games where the payoff is the limsup of the mean expected payoff.

The result of Blackwell was extended by Martin [14] to any Borel-measurable evaluation
function defined on the set of plays, whereas Maitra and Sudderth [11] extended to Borel-
measurable evaluation function their own result in the finitely additive setting. In all these
results, the players observe past actions and the current state.

Another notion used in the study of stochastic games (where a play generates a sequence of
stage payoffs) is the uniform value where some uniformity condition is required. Basically one
looks at the largest amount that can be obtained by a given strategy for a family of evaluations
(corresponding to longer and longer games). There are examples where the uniform value does
not exist : Lehrer and Sorin [7] describe such a game with a countable set of states and only one
player having a finite action set. On the other hand, Rosenberg, Solan and Vieille [20] proved
the existence of the uniform value in partial observation Markov Decision Processes (one player)
when the set of states and the set of actions are finite. This result was extended by Renault
[18] to general action space.

The case of stochastic games with standard signaling, i.e. where the players observes the
state and the actions played has been solved by Mertens and Neyman [16]. They proved the
existence of a uniform value for games with a finite set of state and finite sets of actions. In
fact, their proof also shows the existence of a value for the limsup of the mean payoff, as studied
in Maitra and Sudderth and that both values are equal.

The aim of this paper is to provide new existence results when the players are observing only
signals on state and actions. In Section 2, we define the model and present several specific Borel
evaluations. We prove the existence of a value in games where the evaluation of a play is the
largest stage payoff obtained along it, called sup evaluation and study several examples where
the limsup value does not exist. Section 3 is the core of this paper. We focus on the case of
symmetric signaling structure: repeated games where both players have the same information
at each stage, and prove that a value exists for any Borel evaluation. For the proof, we introduce
an auxiliary problem where the player observes the state and the actions played and we apply
the generalization of Martin’s result to (standard) stochastic games. Finally, in Section 4, we
introduce formally the notion of uniform value and prove its existence in recursive game with
non-negative payoff.

2 Repeated game with signals and Borel evaluation
{model}

Given a set X , we denote by ∆f (X) the set of probabilities with finite support on X . For any
element x ∈ X , δx stands for the Dirac measure concentrated on x.
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2.1 Model

A repeated game form with signals Γ = (X, I, J, C,D, π, q) is defined by a countable set of states
X , two finite sets of actions I and J , two finite sets of signals C and D, an initial distribution
π ∈ ∆f (X ×C ×D) and a transition function q from X × I ×J to ∆f (X ×C ×D). A repeated
game with signals (Γ, g) is a pair of a repeated game form and a stage payoff function g from
X × I × J to [0, 1].
This corresponds to the general model of repeated game introduced in Mertens, Sorin and Zamir
[15].

The game is played as follows. First, a triple (x1, c1, d1) is drawn according to the probability
π. The initial state is x1, player 1 learns c1 whereas player 2 learns d1. Then, independently,
player 1 chooses an action i1 in I and player 2 chooses an action j1 in J . A new triple (x2, c2, d2)
is drawn according to the probability distribution q(x1, i1, j1), the new state is x2, player 1 learns
c2, player 2 learns d2 and so on. At each stage n players choose actions in and jn and a triple
(cn+1, dn+1, xn+1) is drawn according to q(xn, in, jn), where xn is the current state, inducing
the signals received by the players and the state at the next stage.

For each n > 1, we denote by Hn = (X ×C ×D × I × J)n−1 ×X ×C ×D the set of finite
histories of length n, by H1

n = (C × I)n−1 × C the set of histories of length n for player 1 and
by H2

n = (D × J)n−1 ×D the set of histories of length n for player 2. Let H = ∪n>1Hn.
Assuming perfect recall, a behavioral strategy for player 1 is a sequence σ = (σn)n>1, where

σn, the strategy at stage n, is a mapping from H1
n to ∆(I), with the interpretation that σn(h)

is the lottery on actions used by player 1 after h ∈ H1
n. In particular, the strategy σ1 at stage

1 is simply a mapping from C to ∆(I) giving the law of the first action played by player 1
as a function of his initial signal. Similarly, a behavorial strategy for player 2 is a sequence
τ = (τn)n>1, where τn is a mapping from H2

n to ∆(J). We denote by Σ and T the sets of
behavioral strategies of player 1 and player 2, respectively.

If for every n > 1 and h ∈ H1
n, σn(h) is a Dirac measure then the strategy is pure. A mixed

strategy is a distribution over pure strategies.
No additional measurability assumptions on the strategies are needed since the set of states

is countable and the sets of actions and signals are finite. It is standard that a pair of strategies
(σ, τ) induce a probability Pσ,τ on the set of plays H∞ = (X ×C ×D× I × J)∞ endowed with
the σ-algebra H∞ generated by the cylinders above the elements of H . We denote by Eσ,τ the
corresponding expectation.

Note also that since the initial distribution π has finite support and the sets of actions are
finite, there exists a finite subset H0

n ⊂ Hn such that for all strategies (σ, τ) the set of histories
that are reached at stage n with a positive probability is included H0

n.
Historically, the first models of repeated games assumed that both cn+1 and dn+1 contain

(in, jn) (standard signalling on the moves also called “full monitoring”).
A stochastic game corresponds to the case where the state is known: both cn+1 and dn+1 contain
xn+1.
A game with incomplete information corresponds to the case where the state is fixed : x1 =
xn, ∀n, but not necessarily known by the players.
Several extensions have been proposed and studied, see e.g. Neyman and Sorin [17] in particular
Chapters 3, 21, 25, 28.
It has been noticed since Kohlberg and Zamir [6] that games with incomplete information could
be analyzed like stochastic games when the information is symmetric: cn+1 = dn+1 and contains
(in, jn). Since then this approach has been extended, see e.g. Sorin [26] and the analysis in the
current article shows that general repeated games with symmetric information are the natural
extension of standard stochastic games. However the state variable is no longer xn ∈ X but
the (common) conditional probability computed by the players: the law of xn in ∆(X).
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2.2 Borel evaluation and results

We now describe several ways to evaluate each play and the corresponding concepts. We follow
the game determinacy literature and define an evaluation function f on infinite plays. Then we
study the existence of the value of the normal form game (Σ, T , f). We will consider especially
four evaluations: the general Borel evaluation, the sup evaluation, the limsup evaluation and
the limsup-mean evaluation.

An evaluation is a H∞-measurable function from the set of plays H∞ to [0, 1].

Definition 1. Given an evaluation f , the game Γ has a value if

sup
σ

inf
τ
Eσ,τ (f) = inf

τ
sup
σ

Eσ,τ (f) .

This real is called the value and denoted by v(f).

Given a repeated game (Γ, g), we will study several specific evaluations defined through the
stage payoff function g.

2.2.1 Borel evaluation: sup-evaluation
{bor2}

The first evaluation is the supremum evaluation where a play is evaluated by the largest payoff
obtained along it.

Definition 2. γs is the sup evaluation defined by

∀h ∈ H∞, γ
s(h) = sup

n>1
g(xn, in, jn).

In (Σ, T , γs), the maxmin, the minmax, and the value (called the sup-value if it exists) are
respectively denoted by vs, vs and vs.

The specificity of this evaluation is that for every n > 1, the maximal stage payoff obtained
before n is a lower bound of the evaluation on the current play. We prove that the sup value
always exists.

{sup}

Theorem 3. A repeated game (Γ, g) with the sup evaluation has a value vs.

In order to prove this result, we use the following result. We call strategic evaluation a
function F from Σ × τ to [0, 1]. It is clear that an evaluation f induces naturally a strategic
evaluation by F (σ, τ) = Eσ,τ (f) .

{FF}

Proposition 4. Let (Fn)n>1 be an increasing sequence of strategic evaluations from Σ× τ to
[0, 1] that converges to some function F . Assume that

• Σ and τ are compact convex sets,

• for every n > 1, Fn(σ, .) is lower semicontinuous and quasiconvex on τ for every σ ∈ σ,

• for every n > 1, Fn(., τ) is upper semicontinuous and quasiconcave on Σ for every τ ∈ τ .

Then the normal form game (Σ,τ , F ) has a value v.

A more general version of this proposition can be found in Mertens, Sorin and Zamir [15]
(Part A, Exercise 2, section 1.f. p.10).

Proof of Theorem 3. Let n > 1 and define the strategic evaluation Fn by:

Fn(σ, τ) = Eσ,τ

(
sup
t6n

g(xt, it, jt)

)
.
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Players remember their own previous actions so by Kuhn’s theorem, there is equivalence between
mixed strategies and behaviorial strategies. The sets of mixed strategies are naturally convex.
The number of histories of length n having positive probability is included in a finite set and
therefore the set of pure strategies is finite. For every n > 1, the function Fn(σ, τ) is thus the
linear extension of a finite game. In particular Fn(σ, .) is lower semicontinuous and quasiconvex
on τ for every σ ∈ Σ and upper semicontinuous and quasiconcave on Σ for every τ ∈ τ .

Finally, the sequence (Fn)n∈N is increasing to

F (σ, τ) = Eπ,σ,τ

(
sup
t
g(xt, it, jt)

)
.

It follows from Proposition 4 that the game Γ with the sup-evaluation has a value.

2.2.2 Borel evaluation: lim sup evaluation

Several authors have especially focused on the lim sup evaluation and the lim sup-mean evalu-
ation.

Definition 5. γ∗ is the limsup evaluation defined by

∀h ∈ H∞, γ
∗(h) = lim sup

n
g(xn, in, jn).

In (Σ, T , γ∗), the maxmin, the minmax, and the value (called the limsup value, if it exists) are
respectively denoted by v∗, v∗ and v∗.

Definition 6. γ∗m is the limsup-mean evaluation defined by

∀h ∈ H∞, γ
∗
m(h) = lim sup

n

1

n

n∑

t=1

g(xt, it, jt).

In (Σ, T , γ∗m), the maxmin, the minmax, and the value (called the limsup-mean value, if it
exists) are respectively denoted by v∗m, v∗m and v∗m.

The limsup-mean evaluation is closely related to the limsup evaluation. Indeed, the analysis
of the limsup-mean evaluation of a stochastic game can be reduced to the study of the limsup
evaluation of an auxiliary stochastic game having as set of states the set of finite histories of
the original game.

These evaluations were especially studied by Maitra and Sudderth [8] [9]. They proved the
existence of the limsup value in a stochastic game with a countable set of states and finite sets
of actions when the players observe the state and the actions played. Next they extended in [9]
this result to a Borel measurable evaluation.

In general, a repeated game with signals has no value with respect to the limsup evaluation
as shown in the following three examples. In each case, we also show that the limsup-mean
value does not exist.

{guess}

Example 1. We consider a recursive game where the players observe neither the state nor the
action played by the other player. We say that the players are in the dark.

This example, due to Shmaya, is also described in Rosenberg, Solan and Vieille [22] and can
be interpreted as “pick the largest integer”.

The set of states is finite X = {s1, s2, s3, 0∗, 1∗,−1∗, 2∗,−2∗}, the action set of player 1 is
I = {T,B}, the action set of player 2 is J = {L,R}, and the transition is given by

L R L R L R
T
B

(
s1 −2∗

s1 −2∗

) (
s2 1/2(−1∗) + 1/2(s3)

1/2(1∗) + 1/2(s1) 0∗

) (
s3 s3
2∗ 2∗

)

s1 s2 s3
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The payoff is 0 in states s1,s2, and s3. For example, if the state is s2 and if player 1 plays T
and player 2 plays R then with probability 1/2 the payoff is −1 forever, and with probability
1/2 the next state is s3.

Claim: The game which starts in s2 has no limsup value: v∗ = −1/2 < 1/2 = v∗.

Since the game is recursive, the limsup-mean evaluation and the limsup evaluation coincide,
so there is no limsup-mean value either. It also follows that the uniform value, defined formally
in Section 4, does not exist.

Proof: The situation is symmetric, so we consider what player 1 can guarantee.
Given a strategy σ of player 1, let εn be the probability that player 1 plays B for the first time
at stage n (afterwards the game is essentially over from player 1’s viewpoint), and ε∗ be the
probability that player 1 plays T forever.
Player 2 can reply as follows: fix ε > 0, and consider N such that

∑∞
n=N εn 6 ε. Define the

strategy τ which plays L until stage N − 1 and R at stage N . For any n > N , we have:

Es2,σ,τ (g(xn, in, jn)) 6 ε∗(−1/2) +

(
N−1∑

n=1

εn

)
(−1/2) + ε (1/2) 6 −1/2 + ε.

It follows that player 1 can not guarantee more than −1/2 in the limsup sense. �

{semiguess}

Example 2. We consider a recursive game where one player is more informed than the other:
player 2 observes the state variable and the past actions played whereas player 1 observes
neither the state nor the actions played.

This structure of information has been studied for example by Rosenberg, Solan, and Vieille
[21], Renault [19], and Gensbittel, Oliu-Barton, and Venel [4]. They proved the existence of
the uniform value under the additional assumption that the more informed player controls the
evolution of the beliefs of the other player on the state variable.

The set of states is finite X = {s1, s2, s3, 0∗, 1/2∗,−1∗, 2∗}, the action set of player 1 is
I = {T,B}, the action set of player 2 is J = {L,R}, and the transition is given by

L R L R
T
B

(
s2 1/2(−1∗) + 1/2(s3)

(−1/2)∗ 0∗

) (
s3 s3
2∗ 2∗

)

s2 s3

We focus on the game which starts in s2. Both players can guarantee 0 in the sup evaluation by
playing respectively T and L forever. Since the game is recursive, the limsup-mean evaluation
and the limsup evaluation are equals.

Claim: The game which starts in s2 has no limsup value: v∗ = −1/2 < −1/6 = v∗.

Proof: The computation of the maxmin with respect to the limsup-mean evaluation is similar
to the computation of Example 2. The reader can check that player 1 cannot guarantee more
than −1/2.

We now prove that the minmax is equal to −1/6. Contrary to Example 2, player 2 observes
the state and actions, nevertheless the game is from his strategical point of view finished as
soon as B or R is played. Therefore a strategy of player 2 is defined by the probability εn that
he plays R for the first time at stage n and the probability ε∗ that he plays L forever.

Fix ε > 0, and consider N such that
∑∞

n=N εn 6 ε. Player 1’s replies can be reduced to
the two following strategies: σ1 which plays T forever and, σ2 which plays T until stage N − 1
and B at stage N . All the other strategies are yielding a payoff smaller with an ε-error. The
strategy σ1 yields 0 ε∗ + (1− ε∗)(−1/2) and the strategy σ2 yields (−1/2)ε∗ + (1− ε∗)1/2− ε.
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The previous payoff functions are almost the payoff of the two-by-two game where player 1
chooses σ1 or σ2 and player 2 chooses either never to play R or to play R at least once.

(
0 −1/2

−1/2 1/2

)

The value of this game is −1/6, giving the result. �

{bigmatch}

Example 3. In the previous examples, the state is not known by both players. Notice that
in a game with absorbing payoffs the knowledge of the state is irrelevant, We consider now a
stochastic game where both players observe the state. In addition player 2 observes the past
actions played whereas player 1 observes only the state.

This game is a variant of the Big Match introduced by Blackwell and Ferguson [2]. In the
original version, both player 1 and player 2 were observing the state and past actions.

L R
T
B

(
1∗ 0∗

0 1

)

Claim: The game with the sup evaluation has a value vs = 1. The game with the limsup eval-
uation and the game with the limsup-mean evaluation do not have a value: v∗ = v∗m = 0 <

1/2 = v∗m = v∗.

Proof: We first prove the existence of the value with respect to the sup evaluation. Player 1
can guarantee the payoff 1. Let ε > 0, and σ be the strategy which plays T with probability ǫ
and B with probability 1− ǫ. This strategy yields a sup evaluation greater than 1− ε. Since 1
is the maximum payoff, it is the value: vs = 1.

We now focus on the limsup evaluation and the limsup-mean evaluation. The reader can
check that player 1 can not guarantee more than 0 with a proof similar to the one in Example
1 and Example 2 both in the limsup evaluation and the limsup-mean evaluation.

Let us compute what player 2 can guarantee with respect to the limsup evaluation. The
computation is similar for the limsup-mean evaluation. First, player 2 can guarantee 1/2 by
playing the following mixed strategy: with probability 1/2, play L at every stage and with
probability 1/2, play R at every stage.

We now prove that it is the best payoff that player 2 can achieve. Fix a strategy τ for player
2 and consider the induced law P on the set H∞ = {L,R}∞ of infinite sequences of L and R
induced by τ when player 1 plays B at every stage. Denote by βn the probability that player
2 plays L at stage n. If there exists a stage N such that βN > 1/2, then playing B until N − 1
and T at stage N yields a payoff greater than 1/2 to player 1. If for every n, βn 6 1/2, then
the payoff at every stage is in expectation smaller than 1/2 and therefore the expected limsup
payoff is greater than 1/2. �

3 Symmetric repeated game with Borel evaluation
{sec:symmetric}

Contrary to the sup-evaluation, in general the existence of the value for a given evaluation
depends on the signaling structure. In Section 2, we analyzed three games without lim sup-
mean value. In this section, we prove that if the signaling structure is symmetric as defined
next, the value always exists for every evaluation.
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3.1 Model and Results

Definition 7. A symmetric signaling repeated game form is a repeated game form with signals
Γ = (X, I, J, C,D, π, q) such that there exists a set S with C = D = I × J × S satisfying

∀(x, i, j) ∈ X × I × J,
∑

s,x′

q(x, i, j)(x′, (i, j, s), (i, j, s)) = 1.

and the initial distribution π is also symmetric: π(x, c, d) > 0 implies c = d.

Intuitively, at each stage of a symmetric signaling repeated game form the players observe
both actions played and a public signal s. It will be convenient to write such a game form as a
tuple Γ = (X, I, J, S, π, q) and since for such a game:
q(x, i, j)(x′, (i′, j′, s′), (i′′, j′′, s′′)) > 0 only if i = i′ = i′′ and j = j′ = j′′ and s′ = s′′,
without loss of generality, we can and will write q(x, i, j)(x′, s) as a shorthand for
q(x, i, j)(x′, (i, j, s), (i, j, s)). With this notation q(x, i, j) and the initial distribution π are ele-
ments of ∆f (X × S). The set of observed plays is then V∞ = (S × I × J)∞.

{theo3}

Theorem 8. Let Γ be a symmetric signaling repeated game form. For every evaluation f , the
game Γ has a value.

{corotheo3}

Corollary 9. A symmetric signaling repeated game (Γ, g) has a limsup value and a limsup-mean
value.

3.2 Proof of Theorem 8

Let us first give an outline of the proof. Given a symmetric signaling repeated game form Γ and
a Borel evaluation f , we construct an auxiliary standard stochastic game Γ̂ (where the players

observe the state and the actions) and a Borel evaluation f̂ on the corresponding set of plays.

We use the existence of the value in the game Γ̂ with respect to the evaluation f̂ to deduce the
existence of the value in the original game. The key idea is to define a conditional probability
with respect to the σ-algebra of observed plays, compatible with the family of probability dis-
tributions generated by the players (Sections 3.2.1-3.2.3). Then we define the function f̂ and

the game Γ̂ (Section 3.2.4) and conclude.

Let Γ be a symmetric signaling repeated game form, we do not assume the Borel evaluation
to be fixed for the moment.

Let Hn = (X × S × I × J)n−1 × X × S, H = ∪n>1Hn, the set of histories and H∞ =
(X × S × I × J)∞, the set of plays.
For all h ∈ H∞, define h|n ∈ Hn as the projection of h on the n first stages.
For all hn ∈ Hn, denote by h

+
n the cylinder generated by hn in H∞ : h+n = {h ∈ H∞, h|n = hn}

and by Hn the corresponding σ-algebra. H∞ denotes the σ-algebra generated by ∪nHn.
Let Vn = (S × I × J)n−1 × S = H1

n = H2
n, V = ∪n>1Vn and V∞ = (S × I × J)∞.

For all v ∈ V∞, define v|n ∈ Vn as the projection of v on the n first stages.
For all vn ∈ Vn, denote by v+n the cylinder generated by vn in V∞ : v+n = {v ∈ V∞, v|n = vn}
and by Vn the corresponding σ-algebra. V∞ is the σ-algebra generated by ∪nVn.

We denote by Θ the application from H∞ to V∞ which forgets all the states: more precisely,
Θ(x1, s1, i1, j1, . . . , xn, sn, in, jn, . . .) = (s1, i1, j1, . . . , sn, in, jn, . . .). We use the same notation
for the corresponding application defined from H to V .
We denote by V∗

n (resp. V∗
∞) the image of Vn (resp. V∞) by Θ−1 which are sub σ-algebras

of Hn (resp. H∞). Explicitly, for vn ∈ Vn, v
∗
n denotes the cylinder generated by vn in H∞ :

v∗n = {h ∈ H∞, Θ(h)|n = vn}, V∗
n are the corresponding σ-algebras and V∗

∞ the σ-algebra
generated by their union.
Any Vn (resp. V∞)-measurable function ℓ on V∞ induces a V∗

n (resp. V∗
∞)-measurable function

ℓ ◦Θ on H∞.
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Define α from H to [0, 1] where for hn = (x1, s1, i1, j1, . . . , xn, sn):

α(hn) = π(x1, s1)Π
n−1
t=1 q(xt, it, jt)(xt+1, st+1)

and similarly, β from V to [0, 1] where for vn = (s1, i1, j1, . . . , sn):

β(vn) =
∑

hn∈Hn;Θ(hn)=vn

α(hn).

Let Hn = {hn ∈ Hn; α(hn) > 0} and V n = Θ(Hn) and recall that these sets are finite.

We introduce now the set of plays that can occur during the game as H∞ = ∩nH
+

n and
V∞ = Θ(H∞) = ∩nV n. Remark that both are measurable subsets of H∞ and V∞ respectively.

For every pair of strategies (σ, τ), we denote by Pσ,τ the probability distribution induced
over the set of plays (H∞,H∞) and by Qσ,τ the probability distribution over the set of observed
plays (V∞,V∞). Thus Qσ,τ is the image of Pσ,τ under Θ. Note that supp(Pσ,τ ) ⊂ H∞.We
denote respectively by EPσ,τ

and EQσ,τ
the corresponding expectations.

It turns out that for technical reasons it is much more convenient to work with the space
V∞ rather than with V∞ ( and with H∞ rather than with H∞). And then, abusing slightly the
notation, V∞ and Vn will tacitly denote the restrictions to V∞ of the corresponding σ-algebras
defined on V∞. On rare occasions this can lead to a confusion and then we will write for example
Vn to denote the σ-algebra {U ∩ V∞ | U ∈ Vn} the restriction of Vn to V∞.

3.2.1 Regular conditional probability of finite time events with respect to finite

observed histories
{sec:finite}

For m > n > 1 we define Φn,m from H∞ × V∞ to [0, 1] by:

Φn,m(h, v) =





∑
h′,h′|n=h|n,Θ(h′|m)=v|m

α(h′|m)

β(v|m)
if Θ(h|n) = v|n

0 otherwise.

This corresponds to the joint probability of the players on the realization of the history h up
to stage n, given the observed history v up to stage m.
Since Φn,m(h, v) depends only on h|n and v|m we can see Φn,m as a function defined on Hn×V m

and note that its support is included in Hn×Vm. On the other hand, since each set U ∈ Hn is a
finite union of cylinders h+n for hn ∈ Hn such that h+n ⊂ U , Φn,m can be seen as a mapping from
Hn × V∞ into [0, 1], where Φn,m(U, v) =

∑
hn,h

+
n⊆U Φn,m(hn, v). Bearing this last observation

in mind we have:
{lem:kernel}

Lemma 10. For every m > n > 1, Φn,m is a probability kernel from (V∞,Vm) to (H∞,Hn).

Proof. Since
∑

hn∈Hn

Φn,m(hn, v) = 1 for v ∈ V∞, Φn,m(·, v) defines a probability on Hn.
Moreover, for any U ∈ Hn, Φn,m(U, v) is a function of the m first components of v hence is
Vm−measurable.

{link}

Lemma 11. Let m > n > 1 and (σ, τ) be a pair of strategies. Then, for every vm ∈ V m such
that Qσ,τ (v

+
m) = Pσ,τ (v

∗
m) > 0, and every hn ∈ Hn:

Pσ,τ (h
+
n |v

∗
m) = Φn,m(hn, vm).

Proof. Let vm = (s1, i1, j1, ..., sm) and hn ∈ Hn.

Pσ,τ (h
+
n |v

∗
m) =

Pσ,τ (h
+
n ∩ v∗m)

Pσ,τ (v∗m)

=





∑
h′,h′|n=hn,θ(h′|

m
)=vm

α(h′|m)W (i1, j1, ..., jm−1)

β(vm)W (i1, j1, ..., jm−1)
if Θ(hn) = vm|n

0 otherwise

9



where W (i1, j1, ..., jm−1) = Πt6m−1σ(vm|t)(it)τ(vm|t)(jt). After simplification, we recognize
on the right the definition of Φn,m(vm, hn).

We deduce the following lemma:
{phi-m-n}

Lemma 12. For every pair of strategies (σ, τ), each W ∈ Vm and U ∈ Hn we have:

Pσ,τ (U ∩Θ−1(W )) =

∫

W

Φn,m(U, v)Qσ,τ (dv). (1) {eq:mn}

Proof. Clearly it suffices to prove (1) for cylinders U = h+n and W = v+m with β(vm) > 0.
We have

∫

v
+
m

Φn,m(hn, v)Qσ,τ (dv) = Φn,m(hn, vm)Qσ,τ (v
+
m)

= Pσ,τ (h
+
n |v

∗
m)Qσ,τ (v

+
m)

= Pσ,τ (h
+
n |v

∗
m)Pσ,τ (v

∗
m)

= Pσ,τ (h
+
n ∩ v∗m).

Note that (1) can be equivalently written as: for every pair of strategies (σ, τ), eachW ∗ ∈ V
∗

m

and U ∈ Hn

Pσ,τ (U ∩W ∗) =

∫

W∗

Φn,m(U,Θ(h))Pσ,τ (dh). (2) {eq:mn^*}

3.2.2 Regular conditional probability of finite time events with respect to infinite

observed histories
{sec:dwa}

In this paragraph, we prove that instead of defining one application Φn,m for every pair (m,n)
such thatm > n > 1, one can define a unique probability kernel Φn from (Ωn,V∞) to (H∞,Hn),
with Qσ,τ(Ωn) = 1, for all (σ, τ), such that the extension of Lemma 12 holds.

For h ∈ H∞, let

Ωh = {v ∈ V∞ | Φn,m(h, v) converges as m ↑ ∞}.

The domain Ωh is measurable (see Kallenberg [5] p.6 for example). Recall that Ωh depends
only on h|n and write also Ωh|n for Ωh. Let then

Ωn =
⋂

hn∈Hn

Ωhn
.

We define Φn : H∞ × V∞ → [0, 1] by Φn = limm→∞ Φn,m on H∞ × Ωn and 0 otherwise.
As a limit of a sequence of measurable mappings Φn is measurable (see Kallenberg [5] p.6 for
example).

{phi-n}

Lemma 13. (i) For each pair of strategies (σ, τ), Qσ,τ (Ωn) = 1.

(ii) For each v ∈ Ωn,
∑

hn∈Hn
Φn(hn, v) = 1.

(iii) For each U ∈ Hn the mapping v 7→ Φn(U, v) is a measurable mapping from (V∞,V∞) to
R.

(iv) For each pair of strategies (σ, τ), for each U ∈ Hn and each W ∈ V∞

Pσ,τ (U ∩Θ−1(W )) =

∫

W

Φn(U, v) Qσ,τ (dv). (3) {eq:n}
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Proof. (i) For hn ∈ Hn and each pair of strategies σ, τ we define on H∞ a sequence of random
variables Zhn,m, m > n,

Zhn,m = Pσ,τ [h
+
n | V

∗
m] .

As a conditional expectation of a bounded random variable with respect to an increasing
sequence of σ-algebras, Zhn,m is a martingale (with respect to Pσ,τ ), hence converges Pσ,τ -
almost surely and in L1 to the random variable Zhn

= Pσ,τ [h
+
n |V

∗
∞].

For m > n, we define the mappings ψn,m[hn] : H∞ → [0, 1],

ψn,m[hn](h) = Φn,m(hn,Θ(h)).

Let us show that for each hn ∈ Hn, ψm,n[hn] is a version of the conditional expectation
EPσ,τ

[1hn
|V∗

m] = Pσ,τ [h
+
n | V

∗
m]. First note that ψn,m[hn] is (H∞,V∗

m) measurable. Lemma 11

implies that, for h ∈ supp(Pσ,τ ) ⊂ H∞, ψn,m[hn](h) = Φn,m(hn,Θ(h)) = Pσ,τ (h
+
n | v|∗m) =

Pσ,τ (h
+
n | V∗

m)(h), where v = Θ(h). Hence the claim.
Since ψn,m[hn] is a version of Pσ,τ (h

+
n |V

∗
m), its limit ψn[hn] exists and is a version of

Pσ,τ (h
+
n |V

∗
∞), Pσ,τ -almost surely. In particular

(C1) the set Θ−1(Ωhn
) = {h ∈ H∞ | limm ψn,m[hn](h) exists} is V∗

∞ measurable and has
Pσ,τ -measure 1,

(C2) for each W ∗ ∈ V∗
∞,
∫
W∗

ψn[hn](h) Pσ,τ (dh) =
∫
W∗

E[1h
+
n

|V∗
∞] Pσ,τ = Pσ,τ (W

∗ ∩ h+n ).

Note that (C1) implies that Qσ,τ(Ωn) = 1.

(ii) If v ∈ Ωn then, for all hn ∈ Hn, Φn,m(hn, v) converges to Φn(hn, v). But, by Lemma 10,∑
hn∈Hn

Φn,m(hn, v) = 1. The sum being with finitely many non-zero terms one has
∑

hn∈Hn
Φn(hn, v) =

1.

(iii) was proved before the Lemma.

(iv) Since
∫
W

Φn(hn, v)Qσ,τ (dv) =
∫
Θ−1(W )

ψn[hn](h)Pσ,τ (dh) for W ∈ V∞, using (C2) we
get

Pσ,τ (h
+
n ∩Θ−1(W )) =

∫

W

Φn(hn, v) Qσ,τ (dv)

for U ∈ V∞.

3.2.3 Regular conditional probability of infinite time events with respect to infi-

nite observed histories
{sec:trzy}

In this section, using Kolmogorov extension theorem we construct from the sequence Φn of
probability kernels from (Ωn,V∞) to (H∞,Hn), one probability kernel Φ from (Ω∞,V∞) to
(H∞,Hn), with Qσ,τ(Ω∞) = 1, for all (σ, τ).

{phi}

Lemma 14. There exists a measurable subset Ω∞ of V∞ such that, for all strategies σ, τ ,

• Qσ,τ (Ω∞) = 1 and

• there exists a probability kernel Φ from (Ω∞,V∞) to (H∞,H∞) such that for eachW ∈ V∞

and U ∈ H∞

Pσ,τ (U ∩Θ−1(W )) =

∫

W

Φ(U, v) Qσ,τ (dv). (4) {eq:final}
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Before proceeding to the proof some remarks are in order.
A probability kernel having the property given above is called a regular conditional proba-

bility.
For given strategies σ and τ the existence of a transition kernel κα,β from (V∞,V∞) to

(H∞,H∞) such that for each U ∈ V∞ and A ∈ H∞

Pσ,τ (A ∩Θ−1(U)) =

∫

U

κσ,τ (A, v) Qσ,τ (dv)

is well known provided that V∞ is a Polish space and V∞ is the Borel σ-algebra. In the current
framework it is easy to introduce an appropriate metric on V∞ such that this condition is
satisfied thus the existence of κσ,τ is immediately assured.

The difficulty in our case comes from the fact that we look for a regular conditional proba-
bility which is common for all probabilities Pσ,τ , where (σ, τ) range over all strategies of both
players.

Proof. We follow the notations of the proof of Lemma 13 and define Ω∞ = ∩n>1Ωn. Let
(σ, τ) be a couple of strategies. For every n > 1, Qσ,τ (Ωn) = 1, hence Qσ,τ (Ω∞) = 1. By
Lemma 13(ii), given v ∈ Ω∞, the sequence {Φn(·, v)}n>1 of probabilities on {(H∞,Hn)}n>1 is
well defined. Let us show that this sequence satisfies the condition of Kolmogorov’s extension
theorem.

In fact Φn,m(·, v) is defined on the power set of Hn by

∀A ⊂ Hn, Φn,m(A, v) =
∑

hn∈A

Φn,m(hn, v).

Thus for every hn ∈ Hn, we have

Φn,m(hn, v) =
Pσ,τ (v|∗m ∩ h+n )

Pσ,τ (v|∗m)

=
Pσ,τ (v|∗m ∩ (hn × I × J ×X × S)+)

Pσ,τ (v|∗m)

= Φn+1,m(hn × (I × J ×X × S), v).

Taking the limit, we obtain the same equality for Φn and Φn+1 hence the compatibility condi-
tion. By the Kolmogorov extension theorem for each v ∈ Ω there exists a measure Φ(·, v) on
(H∞,H∞) such that,

Φ(h+n , v) = Φn(h
+
n , v)

for each n and each hn ∈ Hn.
Let us prove that, for each U ∈ H∞, the mapping v 7→ Φ(U, v) is V∞-measurable on Ω∞.
Let C be the class of sets A ∈ H∞ such that Φ(A, ·) has this property. By Lemma 13,

C contains the π-system consisting of cylinders generating H∞. To show that H∞ ⊆ C it
suffices to show that C is a λ-system. Let Ai be an increasing sequence of sets belonging to C.
Since, for each v ∈ V∞, Φ(·, v) is a measure, we have Φ(∪nAn, v) = supn Φ(An, v). However,
v 7→ supn Φ(An, v) is measurable as a supremum of measurable mappings v 7→ Φ(An, v). Let
A ⊃ B be two sets belonging to C. Then Φ(A \ B, v) + Φ(B, v) = Φ(A, v) by additivity of
measure and v 7→ Φ(A \B, v) = Φ(A, v) − Φ(B, v) is measurable as a difference of measurable
mappings.

To prove (4), take a measurable subset W of V∞ and consider the set function

H∞ ∋ U 7→

∫

W

Φ(U, dv)Qσ,τ (dv).

Since Φ(·, v) is nonnegative this set function is a measure on (H∞,H∞). However by Lemma (13)
this mapping is equal to U 7→ Pσ,τ (U ∩Θ−1(W )) for U belonging to the π-system of cylinders

12



generating H∞. But two measures equal on a generating π-system are equal, which terminates
the proof of (4).

A standard property of probability kernels and the fact that Ω∞ has measure 1 imply:
{cor:transfer}

Corollary 15. Let f : H∞ → [0, 1] be H∞-measurable mapping. Then the mapping f̂ : V∞ →
[0, 1] defined by:

f̂(v) =

{∫
H∞

f(h)Φ(dh, v) if v ∈ Ω∞,

0 otherwise

is V∞-measurable and
EPσ,τ

[f ] = EQσ,τ
[f̂ ], ∀σ, τ.

3.2.4 Conclusion
{sec:conclusion}

Given a symmetric signaling repeated game Γ we define a stochastic game Γ̂.
The sets of actions I and J are the same as in Γ. The set of states is V = ∪n>1Vn and the
transition q̂ from V × I × J to ∆(V ) is given by

∀vn ∈ Vn, ∀i ∈ I, ∀j ∈ J, q̂(vn, i, j) =
∑

s∈S

ψ(vn, i, j, s)δvn,i,j,s,

where ψ(vn, i, j, s) =
β(vn, i, j, s)

β(vn)
.

Note that if vn ∈ Vn then the support of q̂(vn, i, j) is included in Vn+1, in particular is finite.
Moreover, if q̂(vn, i, j)(vn+1) > 0 then vn+1|n = vn.

The initial distribution of Γ̂ is the marginal distribution πS of π on S, if s ∈ S = V1, then
πS(s) =

∑
x∈X π(x, s) and πS(v) = 0 for v ∈ V \ V1.

Let us note that the original game Γ and the auxiliary game Γ̂ have the same sets of
strategies.

Indeed a behavioral strategy in Γ is a mapping from V to probability distributions over
actions. Thus each behavioral strategy in Γ is a stationary strategy in Γ̂. On the other hand
however, each state of Γ̂ “contains” all previously visited states and all played actions thus, for
all useful purposes, in Γ̂ behavioral strategies and stationary strategies coincide.

Now suppose that (v1, i1, j1, v2, i2, j2, · · · ) is a play in Γ̂. Then vn+1|n = vn for all n and
there exists v ∈ V∞ such that v|n = vn for all n. Thus defining a payoff on infinite histories in

Γ̂ amounts to defining a payoff on V∞. Given a Borel function f on H∞ consider the function
f̂ defined in Corollary 15. It satisfies

EPσ,τ
(f) = EQσ,τ

(
f̂
)
, (5) {eq_final}

i.e. the result of playing in Γ with strategies (σ, τ) and payoff f is the same as playing in Γ̂

with the same strategies and payoff f̂ .
By Martin [14] or Maitra and Sudderth [12], the stochastic game Γ̂ with payoff f̂ has value

implying that Γ with payoff f has value.

Remark 1. The same proof applies for an N -person game form with symmetric signaling: the
players know the previous moves and a common public signal on the state and have Borel payoff
functions fm,m = 1, · · · , N .
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4 Uniform value in recursive games with non-negative

payoffs
{uniform}

In Section 2 and Section 3, we focused on Borel evaluations. In this last Section, we focus on
the family of mean average of the n first stage payoffs and the corresponding uniform value.

Definition 16. For each n > 1, the mean expected payoff induced by (σ, τ) during the first n
stages is:

γn(σ, τ) = Eσ,τ

(
1

n

n∑

t=1

g(xt, it, jt)

)
.

{stoc_uni_1}{stoc_uni}
Definition 17. Let v be a real number.
A strategy σ∗ of player 1 guarantees v in the uniform sense in (Γ, g) if for all η > 0 there exists
n0 > 1 such that

∀n > n0, ∀τ ∈ T , γn(σ
∗, τ) > v − η. (6)

Player 1 can guarantee v in the uniform sense in (Γ, g) if for all ε > 0 there exists a strategy
σ∗ ∈ Σ which guarantees v − ε in the uniform sense.
A symmetric notion holds for player 2.

Definition 18. The uniform maxmin, denoted by v∞, is the supremum of all the payoff that
player 1 can guarantee in the uniform sense. A uniform minmax denoted by v∞ is defined in
a dual way.
If both players can guarantee v in the uniform sense, then v is the uniform value of the game
(Γ, g) and denoted by v∞.

Many existence results have been proven in the literature concerning the uniform value and
uniform maxmin and minmax, see e.g. Mertens, Sorin and Zamir [15] or Sorin [25]. Mertens
and Neyman [16] proved that in a stochastic game with a finite state space and finite actions
spaces, where the players observe past payoffs and the state, the uniform value exists. Moreover
the uniform value is equal to the limsup-mean value and for every ε > 0 there exists a strategy
which guarantees v∞ − ε both in the limsup-mean sense and in the uniform sense.

In general the uniform value does not exist (either in games with incomplete information
on both sides or in stochastic games with signals on the actions) and in particular it depends
upon the signaling structure.

Remark 2. For n > 1, the n-stage game (Γn, g) is the zero-sum game with normal form
(Σ, T , γn) and value vn. It is interesting to note that in the special case of symmetric sig-
naling repeated games with a finite set of states and finite set of signals, a uniform value may
not exist, since even the sequence of values vn may not converge (Ziliotto [27]), but there exists
a value for any Borel evaluation by Theorem 8.

We focus now on the specific case of recursive games with non-negative payoff defined as
follows.

Definition 19. A state is absorbing if the probability to stay in this state is 1 for all actions
and the payoff is also independent of the actions played. A repeated game is recursive if the
payoff is equal to 0 outside the absorbing states. If all absorbing payoffs are non negative, the
game is recursive and non negative.

Solan and Vieille [24] have shown the existence of a uniform value in non-negative recursive
games where the players observe the state and past actions played. We show that the result is
true without assumption on the signals to the players.

In a recursive game, the limsup-mean evaluation and the limsup evaluation coincide. If
the recursive game has non-negative payoffs, the sup-evaluation, the limsup evaluation and the
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limsup-mean evaluation both coincide. So Theorem 3 implies the existence of the value with
respect to these evaluations. Using a proof similar to the proof of Theorem 3, we obtain the
stronger theorem.

{recursive}

Theorem 20. A recursive game with non-negative payoffs has a uniform value v∞, equal to
the sup value and the limsup value. Moreover there exists a strategy of Player 2 that guarantees
v∞.

The proof of the existence of the uniform value is similar to the proof of Proposition 4 while
using a specific sequence of strategic evaluations.

Proof of Theorem 20. The sequence of stage payoffs is non decreasing on each history: 0 until
absorption occurs and then constant, equal to some non negative real. In particular, the payoff
converges and the lim sup can be replaced by a limit.

Let σ be a strategy of player 1 and τ be a strategy of player 2, then γn(σ, τ) is non decreasing
in n. This implies that the corresponding sequence of values (vn)n∈N is non decreasing in n.
Denote v = supn vn and let us show that v is the uniform value.

Fix ε > 0, consider N such that vN > v − ε and σ∗ a strategy of player 1 which is optimal
in ΓN . We have for each τ and, for every n > N ,

γn(σ
∗, τ) > γN (σ∗, τ) > vN > v − ε.

Hence the strategy σ∗ guarantees v − ε in the uniform sense. This is true for every positive ǫ,
thus player 1 guarantees v in the uniform sense.
Using the monotone convergence theorem, we also have

γ∗(σ∗, τ) = Eσ∗,τ

(
lim
n

1

n

n∑

t=1

g(xt, it, jt)

)
= lim

n
Eσ∗,τ

(
1

n

n∑

t=1

g(xt, it, jt)

)
> v − ε.

We now show that player 2 can also guarantee v in the uniform sense. Consider for every n,
the set:

Kn = {τ, ∀σ, γn(σ, τ) 6 v}.

Kn is non empty because it contains an optimal strategy for player 2 in Γn (since vn 6 v).
The set of strategies of player 2 is compact, hence by continuity of the n-stage payoff γn, Kn is
itself compact. γn 6 γn+1 implies Kn+1 ⊂ Kn hence ∩nKn 6= ∅: there exists τ∗ such that for
every strategy of player 1, σ and for every positive integer n, γn(σ, τ) 6 v. It follows that both
players can guarantee v, thus v is the uniform value.
By the monotone convergence theorem, we also have

γ∗(σ, τ∗) = Eσ,τ∗

(
lim
n

1

n

n∑

t=1

g(xt, it, jt)

)
= lim

n
Eσ,τ∗

(
1

n

n∑

t=1

g(xt, it, jt)

)
6 v.

Hence v is the sup and limsup value.

Remark 3. The fact that the sequence of n-stage values (vn)n>1 is non decreasing is not enough
to ensure the existence of the uniform value. For example, consider the Big Match [2] with no
signals: vn = 1/2 for each n but there is no uniform value.

Remark 4. The theorem states the existence of a 0-optimal strategy for player 2 but player 1
may only have ε-optimal strategies. For example, in the following MDP, there are two absorbing
states, two non-absorbing states with payoff 0 and two actions Top and Bottom:

(
1/2(s1) + 1/2(s2)

0∗

) (
s2
1∗

)

s1 s2
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The starting state is s1 and player 1 observes nothing. A good strategy is to play Top for a
long time and then Bottom. While playing Bottom, the process absorbs and with a strictly
positive probability the absorption occurs in state s1 with absorbing payoff 0. So player 1 has
no strategy which guarantees the uniform value of 1.
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