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Abstract

Structural adhesives are frequently used for applications (mostly in the automotive field) in which they are

exposed to dynamic loads at high strain rates, that can cause plastic straining. Thus, such plastic behav-

ior must be included and correctly reproduced by finite element simulations, for instance, to predict the

worthiness of the structure against crash conditions.

This work makes use of a recently developed general framework for non-linear constitutive models, based 
on a variational formulation in which, at every load increment, the updates satisfy a minimum principle. 
The problem is faced in general terms, operating on potentials from which the constitutive equations are 
obtained; thus different behaviors can be treated by the specific models which are implemented in the po-

tentials. This paper describes the application of this approach to the case of a structural bi-component epoxy 
adhesive, with the aim of describing its behavior under compression at different test velocities. A widely 
available data set on compression tests (at strain rate up to 103 s−1) has been utilized to identify the para-

meters of the potentials and to evaluate the capability of the models to reproduce the measurements.

Keywords

Adhesives, elasto-viscoplasticity, strain rate

1. Introduction

In many applications of the adhesives, e.g. in the automotive and transportation

fields, impact conditions are common or, however, they must be considered for de-

sign. Relevant applications are in the production of structural members for which

the traditional joining techniques (welding, riveting) are replaced by adhesive bond-

ing. In such cases, the adhesive itself must not only ensure a strength level no lower

than that offered by the traditional techniques, but it can also be required to act as

* To whom correspondence should be addressed. Tel.: +39 011 5646934; Fax: +39 011 5646999; e-mail:

luca.goglio@polito.it
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an additional medium for dissipating energy. An example of this is represented by

the structural foams, recently available on the market, used to fill car body beams.

The virtual validation of the structure against crash conditions is carried out by

Finite Element Method (FEM) simulations, in which the behavior of new mate-

rials such as adhesives must be correctly reproduced by means of models which

must include their typical features, i.e. non-linear elastic and viscous behavior, and

moreover the strain rate dependence should be accounted for. Clearly, in addition to

their mathematical development, the models must be supported by experiments that

should, on the one hand, allow for assessing the quantitative values of the related

parameters, and, on the other hand, validate their capability to reproduce the real-

ity. About this aspect, it must be remarked that, unlike the case of metals and other

structural materials (for which many results are available), not many studies have

been published regarding the strain rate dependence of adhesives under impact.

Regarding the simulation of the (non-linear) material behavior, considerable

advance has been made in the last decade by the development of models under

a variational formulation. The main advantages of such approaches are that: (i) they

can be regarded under a unifying minimum principle, (ii) they are very flexible in

the sense that they can accommodate a wide collection of material behaviors by

varying the potentials assumed and (iii) they are suitable for error estimation. How-

ever, their application is not so widespread yet; thus there is a considerable interest

in testing their capability to model practical cases. At the same time, there is a prac-

tical need to show how the material parameters appearing in the adopted formulae

(potentials, etc.) can be identified from an experimental data base.

This paper is structured as follows. First, the theoretical formulation is briefly

described in terms of mathematical quantities and principles involved (this is done

also with the aim to give an essential outline to the reader not familiar with the vari-

ational formulation; clearly, the specialized literature must be consulted for a deeper

insight). Second, the experimental tests and results are described. Then the choice

of the models and the identification of the parameters are presented and the final

conclusions are drawn.

Symbols

Main Quantities

cj (j th) eigenvalue

C right Cauchy–Green strain tensor

D rate of deformation tensor

F deformation gradient tensor

J Jacobian of F

L spatial gradient of the velocity tensor
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m material constant (viscous potential)

mj (j th) eigenvector

Mj (j th) eigenprojection matrix

Ne,Np number of parameters (elastic, plastic)

P first Piola–Kirchhoff stress tensor

R rotation matrix

q accumulated plastic deformation

Q internal state variable

t time

X reference configuration (undeformed)

x present configuration (deformed)

W energy potential

αe
k material constants (elastic potential)

α,α
p
k material constants (plastic potential)

β1, β2 Lagrange multipliers

εe
j (j th) elastic logarithmic strain

λ stretch

μe,μe
k material constants (elastic potential)

μ,μ
p
k material constants (plastic potential)

�0 yield stress

σ Cauchy stress tensor

φ,ψ dissipative potentials

	 incremental potential (to be minimized)

Subscripts, Superscripts, Indices and Operators

e elastic

i inelastic

p plastic

v viscous

j coordinate index
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n time step index

−1 inverse (matrix or tensor)

T transpose (matrix or tensor)

ˆ isochoric

• time derivative (rate)


 increment

⊗ dyadic product

: inner product

2. Mathematical Background

2.1. Principles of the Continuum Mechanics Formulation

To account for the non-linear behavior, the formulation is based on the typical quan-

tities of continuum mechanics. First, the conservative aspect of the phenomenon is

considered by assuming an energy potential [1], in the form W = W(F,Fi,Q). In

W,F = ∂x/∂X accounts for the total deformation, whilst Fi represents the inelastic

deformation only; they are related by the multiplicative decomposition F = FeFi

in which the elastic part Fe also appears [2]. Q contains other internal variables to

account for hardening. The whole set of internal variables formally includes both

Fi and Q, a priori considered as independent. Later, in the process of adapting the

formulation to specific constitutive behaviors (viscoplasticity), we will introduce

relations linking Fi and Q (e.g. a flow rule in plasticity — Section 2.2.2). These re-

lations should be seen as non-holonomic constraints between Fi and Q, which have

to be taken into account in the minimization process, and which in practice render

Fi dependent on the subset of internal variables Q. Thus, for the sake of clarity, we

make the distinction between Fi and Q from the onset. By taking the time derivative

of W , which gives its rate of change, one obtains:

Ẇ = ∂W

∂F
: Ḟ + ∂W

∂Fi
: Ḟi + ∂W

∂Q
: Q̇. (1)

Second, the non-conservative aspects are considered by means of two pseudo-

potentials φ = φ(Ḟ), that accounts for the dependence of the material behavior on

the total rate of deformation, and ψ = ψ(Ḟi, Q̇), that accounts for the dependence

on the rate of inelastic deformation as well as on the rate of the internal variables.

It can be proven [3] that the following relationships hold:

P = ∂W

∂F
+ ∂φ

∂Ḟ
, (2)

∂W

∂Fi
+ ∂ψ

∂Ḟi
= 0,

∂W

∂Q
+ ∂ψ

∂Q̇
= 0. (3a, b)
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Equation (2) shows how the first Piola–Kirchhoff tensor can be expressed from ap-

propriate potentials and equation (3a, b) define the restrictions on the evolution of

the internal variables (originated from the self-equilibrium of the stresses conju-

gated to Fi and Q).

On the basis of the previous mathematical properties, the essence of the varia-

tional formulation is the definition of the potential 	 , based on the work performed

by the Piola–Kirchhoff stress (which is energetically conjugated to the rate of the

deformation gradient) in the time interval (0, tf ):

	 =
∫ tf

0

P : Ḟ dt. (4)

In case of (hyper-)elastic material, the value of 	 would depend on the final state

only. Due to the inelastic behavior, 	 depends also on the path followed during

the evolution of the system. By minimizing the work, after several mathematical

manipulations, it can be found that [4]:

δ	 = P(tf ) : δF(tf ). (5)

This allows for obtaining an expression for P:

P(tf ) = ∂	(F(tf );F(0),Fi(0),Q(0))

∂F(tf )
, (6)

in which it is worth noting the dependence on all variables in the initial state (t = 0),

and on F only in the final state (t = tf ). In incremental terms, from the state n to

the state n + 1, equation (6) becomes:

Pn+1 = ∂	(Fn+1;Fn,Fi
n,Qn)

∂Fn+1
. (7)

The incremental potential 	(Fn+1;Fn,Fi
n,Qn) can be written in the form [3]:

	
(

Fn+1;Fn,Fi
n,Qn

)

= 
tφ(
◦
F) + min

Fi
n+1,Qn+1

{

Wn+1 − Wn + 
tψ
(

◦
Fi,

◦
Q

)}

, (8)

where
◦
F(Fn+1),

◦
Fi(Fi

n+1) and
◦
Q(Qn+1) are, respectively, approximations of the

rates Ḟ, Ḟi and Q̇. Equation (8) restates the constitutive equation (2) (from which P

can be obtained) and, at the same time, satisfies the conditions (3) on the internal

variables by means of the included minimization. The functions W,φ,ψ contained

in (8) may assume different forms, according to the models adopted. The energy W

is, in general terms, additively expressed as:

W = ϕ(F) + ϕe(Fe) + ϕi(Fi,Q), (9)

where ϕ,ϕe, ϕi are potentials related to the particular models adopted, as described

in the following section.
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Figure 1. Rheological model for the elasto-viscoplastic behavior; ϕ potential of the elastic branch,

ϕe elastic potential of the Maxwell branch, ϕp plastic potential and ψ viscoplastic potential.

2.2. Models and Parameters

In this work the material is described as elasto-viscoplastic, by means of the rhe-

ological model shown in Fig. 1. The outline of this particular elasto-viscoplastic

model is also shown in [6]. The upper branch is purely elastic, and the associ-

ated potential is a function of the total deformation gradient ϕ = ϕ(F). The lower

(Maxwell) branch accounts for the inelastic behavior, since the inelasticity is vis-

coplastic, and the superscript i of the inelastic deformation gradient Fi in the

previous formulae is replaced in the following by p to represent the viscoplastic

deformation gradient Fp. The internal variables Q account for the modifications of

the material due to plasticity. The energy potential of the model is written as:

W = ϕ(F) + ϕe(Fe) + ϕp(Fp,Q) = ϕ(F) + ϕe(FFp−1) + ϕp(Fp,Q), (10)

where ϕ(F) and ϕe(Fe) correspond to the elastic behavior of the springs, and

ϕp(Fp,Q) accounts for the material strain hardening. In addition, the viscous be-

havior is accounted for by a dissipative potential ψ = ψ(Ḟp, Q̇) which explicitly

depends on the rate of change of the internal variables. In this model no depen-

dence is assumed on the rate of the total deformation gradient Ḟ, i.e. φ = φ(Ḟ) = 0.

2.2.1. Elastic Branch

In this branch, the potential ϕ(F) is split into an isochoric part, i.e., a function of

the isochoric Cauchy–Green strain tensor Ĉ, and a volumetric part, i.e., a function

of J , the Jacobian of F:

ϕ(F) = ϕ(Ĉ) + U(J ). (11)

Thus it is assumed that the whole volumetric contribution of the model is contained

in U .

The explicit dependence on the Cauchy–Green strain holds because (as it is ob-

vious) the energy is only related to material stretching (whilst F is also influenced

by rigid body rotation), and thus it is possible to write:

ϕ(Ĉ) = ϕ(c1, c2, c3), (12)
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where c1, c2, c3 are the eigenvalues of Ĉ.

The volumetric part is a function of the Jacobian only, and is written as:

U(J ) = K

2
[ln(J )]2, (13)

where K is a volumetric material constant. It is evident from equation (13) that in

case of an isochoric deformation J = 1 and U = 0.

2.2.2. Viscoplastic Branch

For this branch, the isochoric deformation gradient F̂ is decomposed as follows:

F̂ = F̂eFp, (14)

in which F̂e is the elastic deformation gradient, corresponding to the spring, and

Fp is the viscoplastic deformation gradient, corresponding to the friction element,

which is intrinsically isochoric (det Fp = 1). The viscoplastic rate of deformation

tensor is assumed to coincide with the viscoplastic spatial gradient of velocity (i.e.

the plastic spin is null), and so

Dp = 1

2
(Lp + LpT) = Lp = ḞpFp−1. (15)

From equation (15) the flow rule follows:

Ḟp = DpFp. (16)

The viscoplastic rate of deformation tensor is expressed by means of a spectral de-

composition, with the additional assumptions of a von Mises-type plasticity model:

Dp = q̇

3
∑

j=1

qj mj ⊗ mj = q̇

3
∑

j=1

qj Mj , (17)

qj ∈ KQ =
{

pj ∈ ℜ,

3
∑

j=1

pj = 0;
3

∑

j=1

p2
j = 3/2

}

, (18)

Mj ∈ KM = {Nj ∈ Sym;Nj : Nj = 1,Ni : Nj = 0, i �= j}, (19)

where q̇ is the rate of accumulated plastic deformation, qj are linear combination

coefficients, mj and Mj are, respectively, the eigenvalues and the eigenprojections

of Dp. The conditions of isochoric deformation and the radius of the von Mises

yield surface (set of scalars KQ) are enforced by equation (18), while equation (19)

enforces the eigenprojections to be symmetric orthogonal (set of second-order ten-

sors KM ).

The viscoplastic deformations are incrementally updated by means of an ex-

ponential mapping. The increments of viscoplastic deformation gradient and vis-

coplastic Cauchy–Green strain are respectively:


Fp = F
p

n+1F
p−1
n = 
R exp[
tDp], (20)
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Cp = (
Fp)T
Fp = F
p−T
n C

p

n+1F
p−1
n = exp[
tDp]2, (21)

where the rotation increment 
R comes from the polar decomposition of 
Fp.

From equation (21) and considering equation (17) it follows that

1

2
ln(
Cp) = 
tDp = 
tq̇

3
∑

j=1

qj Mj = 
q

3
∑

j=1

qj Mj , (22)

where 
q = 
tq̇ . Substituting equation (22) in equation (20) it is found that

F
p

n+1 = exp

[


q

3
∑

j=1

qj Mj

]

F
p
n. (23)

Here the rotation 
R appearing in equation (20) has been disregarded since the

constitutive expressions depend on the Cauchy–Green tensor in which the rotation

terms are eliminated. The potentials of the viscoplastic branch can now be defined

by means of the internal variables q, qj and Mj only.

The elastic potential of the branch is written as a function of the eigenvalues

of Ĉe, similarly to the case of equation (12):

ϕe(Ĉe) = ϕe
(

ce
1, c

e
2, c

e
3

)

. (24)

The plastic potential ϕp accounts for the strain hardening of the material. In case of

isotropic hardening the potential is defined as

ϕp = ϕp(q), where q =
∫ t

0

q̇ dt. (25)

In incremental terms the accumulated plastic deformation can be written as:

qn+1 = qn + 
tq̇ = qn + 
q. (26)

The dissipative viscoplastic potential ψ depends on Dp and, under the adopted hy-

potheses, on q̇ only:

ψ(Dp) = ψ

(


q


t

)

= ψ(q̇) =
{

ψ̄(q̇), if q̇ � 0,

+∞, if q̇ < 0,
(27)

where in the first case ψ̄ is a convenient formula for the potential, whilst the second

case has the meaning of a penalization that constraints the rate q̇ to be non-negative.

2.3. Adopted Models

Within this work the following models have been used in the potentials.

2.3.1. Elastic Potential

Two different models have been tested to account for the elastic behavior. The first

is the Hencky model

ϕe = μe
3

∑

j=1

(

εe
j

)2
, (28)
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in which μe is a material constant, and εe
j the j th component of elastic logarithmic

strain. Alternatively, also Ogden-type models have been tested:

ϕe =
3

∑

j=1

Ne
∑

k=1

μe
k

αe
k

((

exp
(

εe
j

))αe
k − 1

)

, (29)

where μe
k and αe

k are material constants, and Ne is the number of terms included.

2.3.2. Plastic Potential

A general model has been tested in the form

ϕp = �0q + 1

2
Hq2 + μ

(

q + 1

α
exp(−αq)

)

+
Np
∑

k=1

μ
p
k

α
p
k + 1

(q)α
p
k+1, (30)

in which �0 is the yield stress and H is the plastic modulus (linear hardening),

μ and α are material constants of the exponential law (saturation), and μ
p
k and α

p
k

are material constants of the power law that includes Np terms. According to the

coefficients included, equation (30) can account for many material models adopted

in plasticity.

2.3.3. Viscous Potential

The Perzyna [5] potential

ψ(q̇) =

⎧

⎨

⎩

mY0q̇0

m + 1

(

q̇

q̇0

)(m+1)/m

, if q̇ � 0,

+∞, if q̇ < 0,

(31)

has been adopted where m and Y0 are material constants, q̇0 is a reference rate. In

this work it is assumed that Y0 coincides with the yield stress �0.

2.4. Minimization at Each Increment

It is assumed that the potential ϕ(F̂) is null, thus only the volumetric contribution

U(J ) can be present in the elastic branch. The minimization problem (8) can be

rewritten as

	(Fn+1) = 	(Cn+1)

= 
U(Jn+1) + min

q,Mj ,qj

{


ϕe
(

Ĉe
n+1

)

+ 
ϕp(qn+1) + 
tψ

(


q


t

)}

,

(32)

where:


U(Jn+1) = U(Jn+1) − U(Jn), (33)


ϕe
(

Ĉe
n+1

)

= ϕe
(

Ĉe
n+1

)

− ϕe
(

Ĉe
n

)

, (34)


ϕp(qn+1) = ϕp(qn+1) − ϕp(qn). (35)

9



During each increment, the internal variables qj and Mj must satisfy the conditions

(18) and (19), respectively, and 
q � 0.

Following a procedure similar to that shown in [3], it is possible to show

that the minimization with respect to Mj implies co-linearity of Ĉe
n+1, Ĉpr =

F
p−T
n Ĉn+1F

p−1
n and Dp. The minimum conditions with respect to 
q,qj give the

system of simultaneous non-linear equations:

−∂
ϕe

∂εe
i


q + β1 + 2β2qi = 0, i = 1,2,3, (36a, b, c)

−
3

∑

j=1

∂
ϕe

∂εe
i

qj + ∂
ϕp

∂
q
+ ∂ψ

∂q̇
= 0, (37)

3
∑

j=1

qj = 0, (38)

3
∑

j=1

q2
j − 3

2
= 0, (39)

in which, besides the already mentioned variables 
q,q1, q2, q3, also appear the

Lagrange multipliers β1 and β2 which enforce the conditions of isochoric defor-

mation and the radius of the von Mises yield surface. The system of equations is

solved numerically.

The particular case of uniaxial stress is treated without loss of generality. After

minimization, the Piola–Kirchhof stress is evaluated as

Pn+1 = 2Fn+1
∂	(Cn+1)

∂Cn+1

= Fn+1

[

2J
−2/3
n+1 DEV

(

∂ϕ

∂Ĉn+1

+ ∂ϕe

∂Ĉn+1

+ 
t
∂φ

∂Ĉn+1

)

+ ∂U

∂Jn+1
Jn+1C−1

n+1

]

,

(40)

where DEV(A) = A − 1
3
(A : C)C−1. Assuming isochoric behavior (J = 1) the

deformation gradient F and the Cauchy–Green strain C tensors become:

F = F̂ =
[

λ 0 0

0 1/
√

λ 0

0 0 1/
√

λ

]

(41)

and

C = Ĉ = F2, (42)

where λ is the stretch in the uniaxial loading direction.
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Denoting σ = σ11, the only non-zero component of the Cauchy stress, the volu-

metric incremental relationship becomes

pn+1 = ∂U

∂Jn+1
= σ

3
. (43)

Substituting expressions (41), (42) and (43) in (40), and recalling the relationship

σ = J−1PFT between Cauchy and Piola–Kirchhoff stress tensors, it is found that

σn+1 = Cn+1

[

2DEV

(

∂ϕ

∂Ĉn+1

+ ∂ϕe

∂Ĉn+1

+ 
t
∂φ

∂Ĉn+1

)

+ pn+1C−1
n+1

]

. (44)

3. Experimental

3.1. Test Configuration

The experimental tests, described in more detail in [7], were designed to investigate

the influence of the strain rate on the material response over a wide range, from 1 ×
10−3 s−1 to 3 × 103 s−1. The stress–strain curves were measured from specimens

made entirely of the adhesive, to avoid the influence of the adherends and joint

geometry on the results.

Due to the very large range of strain rates considered, two different test facil-

ities were needed: the tests at strain rates lower than 20 s−1 were carried out on

a universal servo-hydraulic testing machine, while the tests at higher strain rates,

up to 3.0 × 103 s−1, were carried out on a Split Hopkinson Pressure Bar (SHPB).

Traditionally, the use of the SHPB has been typical for compression tests on met-

als [8], but in recent years several studies [9–12] have considered other kinds of

materials like polymers, foams, ceramics, etc. and have also tested under differ-

ent stress states (tension, torsion, bending) by means of special set-ups. However,

studies specifically concerning adhesives are relatively rare [13, 14].

The standard SHPB configuration performs dynamic compression tests, usually

on cylindrical specimens. Figure 2 shows the simplified sketch of a compression

SHPB. The test starts when the impact of the striker bar against the input bar gen-

erates a compression pulse. The pulse propagates along the input bar, then it is

partially reflected and partially transmitted through the specimen and the output

bar. By measuring the reflected pulse on the input bar and the transmitted pulse on

Figure 2. SHPB compression test configuration.
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the output bar it is possible to reconstruct the dynamic stress–strain curve of the

tested material by means of the following equations [8]:

σspecimen(t) = E0
A0

A
εtransmitted(t), (45)

εspecimen(t) = −2c0

L

∫

εreflected(t) · dt, (46)

ε̇specimen(t) = −2c0

L
εreflected(t), (47)

where A and L are, respectively, the cross-section and length of the specimen;

A0, c0 and E0 are cross-section, wave velocity and elastic modulus of the bar, re-

spectively.

Among the cases of structural adhesives and curing methods tested in [7], the

results chosen for this work are those on the bi-component, cold cured Loctite Hysol

9466 epoxy (Henkel, Düsseldorf, Germany). All specimens were made by injecting

the adhesive into Teflon® moulds and curing them at room temperature for 24 h.

After removal they were aged for one week before testing. The specimens for static

and dynamic compression tests were cylinders with a diameter of 10 mm. For the

tests carried out on the hydraulic machine (on which the crosshead speed can be

adjusted), the adopted length values were 10 mm for strain rates up to 0.5×101 s−1

and 4 mm for higher strain rates. The length values adopted to obtain the desired

nominal (in the sense that the actual strain rate depends also on the intensity of the

impact and can be assessed only after the test) strain rate on the SHPB varied from

4 mm (3.0 × 103 s−1) to 10 mm (1.5 × 103 s−1).

In [7] are reported also cases of tensile tests carried out on specimens with

threaded ends. To test them at high strain rates, a modified version of the SHPB

was used, in which the tensile pulse is created by means of a reflection system [12].

Due to the lower precision of this system, the results obtained were not suitable

for the type of processing carried out in the present work, thus only results from

compression tests are considered here. Moreover, the failures in these tension tests

are — unlike the case of compression — substantially brittle and thus give little

information about the inelastic behavior of the adhesive.

3.2. Results

Figure 3 shows the results of the compression tests for the cold-cured samples (two

replicates for each case). The progressive growth of the curves under increasing

strain rate can be noticed and the dynamic stress–strain curves present approxi-

mately the same shape as the static ones. A generic curve contains: an elastic initial

part (linear with good approximation); a rounded knee; and a wide plateau, initially

softening (at high strain rate) then progressively hardening. The shorter extension

of the curves corresponding to nominal strain rate from 1.2×103 to 2.0×103 s−1 is

due to the fact that, under the same displacement applied by the bar to the specimen

end, the longer the specimen, the lower the total strain. The relevant corresponding

12



Figure 3. Experimental compression test results on the Hysol 9466 at different strain rates (a and b

denote the two replicates).

Table 1.

Nominal strain rate, actual mean strain rate, elastic limit, 2% proof stress (for each replicate the values

are separated by “,” in the box)

ε̇nominal (s−1) ε̇actual,mean (s−1) E (GPa) Rp0.2 (MPa)

Static tests 1.0 × 10−3 1.00 × 10−3,1.00 × 10−3 1.98,2.20 −47,−47

1.0 × 10−2 1.10 × 10−2,1.00 × 10−2 2.00,1.99 −52,−53

1.0 × 10−1 1.15 × 10−1,1.13 × 10−1 1.92,1.93 −60,−61

Dynamic tests 5.0 × 10−1 5.23 × 10−1,5.11 × 10−1 1.85,1.90 −74,−75

Hydraulic machine 5.0 × 100 4.83 × 100,4.98 × 100 2.01,2.25 −86,−86

1.2 × 101 1.21 × 101,1.21 × 101 1.99,1.95 −93,−95

Dynamic tests 1.5 × 103 1.49 × 103,1.48 × 103 (2.17,2.24) −126,−122

SHPB 2.0 × 103 2.01 × 103,2.00 × 103 (2.30,2.09) −131,−126

3.0 × 103 3.04 × 103,2.99 × 103 (2.44,2.30) −143,−142

Data in parentheses are affected by measurement inaccuracy but are reported for completeness only.

numerical data are reported in Table 1. As expected, the values of elastic modulus

at high strain rate are in general slightly higher than those obtained statically or at

low strain rate. Much more relevant is the increase in absolute value of the elastic

limit with the strain rate, that changes from about −47 MPa in static condition to

about −143 MPa at 3.0 × 103 s−1.
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4. Identification of the Parameters

The uniaxial case has been implemented in the MATLAB® code (The MathWorks

Inc., Natick, MA, USA), with the aim of building a tool able to determine the values

of the different parameters that appear in the models by reproducing the experimen-

tal results. The advantage of doing so is that the computation time is much shorter

than it would be required using an actual FEM code; moreover, no additional prob-

lem related to discretization (meshing, element formulation) is introduced.

The identification of the parameters is based on a least squares algorithm that

minimizes the difference between model response and measurements. The experi-

mental curves are the average of the two replicates. For the elastic potentials both

the Hencky and Ogden (Ne = 1,2,3) models were tried. The plastic potential cases

have been tested with H forced to be zero or left unconstrained, and with the num-

ber of terms in the power law Np = 1,2,3. The viscous potential is in all cases that

of Perzyna. Table 2 gives a complete list of the tested combinations, for a total of

24 cases. The number of parameters simultaneously identified varies from 8 (elastic

potential Hencky, case 1) to 18 (elastic potential Ogden N e = 3, case 6). The com-

putation time is of the order of some hours per case on a 64 bit PC. For the sake of

brevity only a small selection of the results from the 24 cases is reported here, in

terms of the corresponding strain–stress diagrams and values of the parameters.

Regarding the role of the elastic potential, the use of the Ogden vs. the simpler

Hencky model was tested to account for the possible non-linear elasticity. It was

found that for this material the Ogden model did not offer any advantages. This is

probably caused by the fact that the “S” shape of the curves is due to plasticity and

not to hyperelasticity: the elastic behavior is substantially linear and, therefore, the

Hencky model is already adequate.

Regarding the plastic potential, the tests have tried to identify the contributions

of the different terms, in particular that of linear strain hardening (H ) and that of the

Table 2.

List of the 24 tested combinations of models for the elastic and plastic potentials

Elastic potential Plastic potential

H = 0 H unconstrained

Hencky Np = 1 Np = 2 Np = 3 Np = 1 Np = 2 Np = 3

Case 1 2 3 4 5 6

Ogden Ne = 1 Np = 1 Np = 2 Np = 3 Np = 1 Np = 2 Np = 3

Case 1 2 3 4 5 6

Ogden Ne = 2 Np = 1 Np = 2 Np = 3 Np = 1 Np = 2 Np = 3

Case 1 2 3 4 5 6

Ogden Ne = 3 Np = 1 Np = 2 Np = 3 Np = 1 Np = 2 Np = 3

Case 1 2 3 4 5 6

Viscous potential: Perzyna in all cases.
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power law. The yield �0 and the exponential part of the potential (more adequate

to describe the knee) have always been included. In general, all cases have proven

to perform satisfactorily, in the sense that the experimental curves are reproduced,

even when a limited number of parameters are used. The major improvement that

can be achieved, by increasing the complexity of the model, is obtained when going

from cases 1, 2 and 4 (quite similar to each other) to cases 3, 5 and 6 (also similar

to each other) that are able to reproduce — at least the trend — the softening.

The general conclusion is that a model of reasonable complexity can reproduce the

desired behavior; for instance, the case with linear strain hardening and Np = 1

already shows post-yield softening.

As an example, the cases Hencky # 1 (H = 0, Np = 1), Hencky # 5 (H un-

constrained, Np = 2), and the most complex Ogden Ne = 3 # 6 (H unconstrained,

Np = 3) are plotted in Figs 4, 5 and 6, respectively. Table 3 lists the corresponding

parameters. The main difference among them is that the simplest case of Fig. 4 does

not describe the stress peak and the subsequent slight softening, which are already

(even if not completely) reproduced by the case in Fig. 5. It can be noticed from

Fig. 6 that no significant improvement is added by the most complex case.

Regarding the viscous potential, it is interesting to notice how the implemented

model accounts for the strain rate dependence by reproducing quite well the ex-

perimental curves, in a strain rate range that spans over six orders of magnitude

(10−3–103 s−1). This justifies the choice of the potential adopted, although the

Perzyna model had been initially proposed (and usually applied) for materials with

linear strain hardening. The m coefficient in (31) remains approximately in the

range 8–9 in all cases. Conversely, the reference rate q̇0 interacts with the other

Figure 4. Experimental (symbols) and simulated (lines) stress–strain curves at different strain rates;

model Hencky # 1.
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Figure 5. Experimental (symbols) and simulated (lines) stress–strain curves at different strain rates;

model Hencky # 5.

Figure 6. Experimental (symbols) and simulated (lines) stress–strain curves at different strain rates;

model Ogden Ne = 3 # 6.

parameters of the simulation and is more subjected to changes from case to case.

Considering the graphs presented in Figs 4, 5 and 6, the only objection that can be

raised is that if one extrapolates the curves of the model towards higher strain, they

all tend to superpose each other. This behavior, physically not plausible, is due to
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Table 3.

Model parameters for the cases Hencky # 1, Hencky # 5, Ogden Ne = 3 # 6

Hencky # 1 Hencky # 5 Ogden Ne = 3 # 6

μe
1
, μe 759.17 775.76 15171

μe
2

– – 988.17

μe
3

– – −1508.2

αe
1

– – 0.82038

αe
2

– – 0.85850

αe
3

– – 8.1714

�0 24.994 22.525 15.507

H – −202.74 −342.23

μ 5.0436 17.970 32.330

α 80798 115.01 75.979

α
p
1

3.5871 10.069 5.6594

α
p
2

– 1.4307 1.5239

α
p
3

– – 3.2143

μ
p
1

381.44 2002.4 942.59

μ
p
2

– 332.53 660.63

μ
p
3

– – −575.49

q̇0 1.0628 × 10−2 1.2147 × 10−2 5.0476 × 10−4

m 8.9796 8.4443 8.5219

the mathematical structure of the potential. Nevertheless, in the strain range tested

the model response is correct.

5. Conclusions

The variational formulation of the elasto-viscoplastic material model has been ap-

plied to the case of a structural bi-component epoxy adhesive, with the aim of

reproducing its behavior under compression at different test velocities. The work

has been carried out within a variational framework previously developed, that

makes it possible to tackle the problem at general level, accommodating differ-

ent models according to the specific potentials implemented. The natural use of

this formulation is the implementation in non-linear finite element codes. However,

in the present work it has been utilized analytically, due to the uni-axiality of the

problem.

The main aspects which have been considered in this work are the choice of the

potentials and the evaluation of the capability for reproducing the experiments. As

far as elasticity is concerned, since this adhesive is stiff and linear elastic, a Hencky

potential shows to be adequate. Regarding plasticity, the adopted potential — which

combines the typical behaviors (linear hardening, saturation, power law) — is also
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able to reproduce material softening with a limited number of parameters. Finally,

what is perhaps more remarkable is the capability of the adopted Perzyna potential

to fit the curves at different strain rates, from quasi-static conditions to 103 s−1.
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