Identification of non-homogeneous stress fields in dynamic experiments with a non-parametric method

Ramzi Othman, Souheila Aloui, Arnaud Poitou

Institut de Recherche en Génie Civil et Mécanique, Ecole Centrale de Nantes, 1 Rue de la Noé BP 92101, F-44321 Nantes cedex 3, France

Stress and strain fields are generally assumed homogeneous in high strain rate experiments. Therefore, only mean stress and strain are measured. However, this assumption is not valid for soft materials and/or very high strain rates. For heterogeneous dynamic tests, inverse techniques are usually proposed to identify the stress and strain fields. In this paper, a non-parametric method to identify the stress field is presented. This method is based on a force measurement on the specimen boundary and a displacement (strain) field measurement carried out by a digital image correlation technique. It is applied to measure the strain rate sensitivity of a synthetic rubber (Criblex 80). This new technique estimates the stress field with good accuracy.

Keywords: Rubber, Dynamic equilibrium, High-strain rate, Soft materials, Digital image correlation (DIC)

1. Introduction

In several engineering applications (automobile, aerospace, civil engineering, forming processes, etc.), the structures used can undergo intermediate to high strain rate loadings. In order to design structures that can withstand this kind of loads, constitutive equations, which take into account strain rate sensitivity, are highly appreciated. Consequently, several methods have been developed since the beginning of the 20th century for measuring the stress-strain relationship over a wide range of strain rates. For instance, we can cite servo-hydraulic machines [1–3], drop weight towers [4], split Hopkinson bars [5–9] and slow bars [9–12]. For an extensive review of these techniques, the reader is referred to [13].

In order to develop or identify material constitutive equations, the stress-strain relation should be measured. In the above methods, the stress and strain in a specimen are mostly recovered from boundary measurements. Precisely, the stress is recovered from a force measurement recorded at a sample end. Similarly, the strain is deduced from a displacement recorded at the same or different sample side. This is possible as far as the assumption of homogeneous stress and strain fields is valid [14,15]. In the case of stress or strain heterogeneity, the conventional recovery of stress and strain may lead to significant inaccuracies [16–18].

In the case of dynamic testing of metals, the stress and strain homogeneity is rapidly achieved. This is mainly due to high mechanical wave speeds. Indeed, the dynamic equilibrium is established after a few wave round-trips in the specimen. On the contrary, soft materials have low mechanical wave speeds. Consequently, the dynamic equilibrium is belatedly achieved [18–21]. Considering, for example, a rubber-like material (Young’s modulus $E_r = 10$ MPa and density $\rho_r = 1000$ kg/m3), the axial elastic wave speed is equal to $C_r = \sqrt{E_r/\rho_r} = 100$ m/s. Therefore, the wave takes $\Delta t = L_s/C_r = 50$ μs to go through a sample of length $L_s = 5$ mm. At a strain rate of $\dot{\varepsilon} = 1000$/s, some sample parts achieve a strain $\varepsilon = \dot{\varepsilon} \Delta t \approx 5\%$. In other words, some parts of the sample can be strained to 5% while the sample end is not strained at all. Assuming that the dynamic equilibrium is obtained after three round-trips of the wave, some parts of the sample are strained up to 30% to achieve dynamic equilibrium. In line with this, Sarva et al. [22] presented a dynamic test on polyurea at a strain rate of 7500/s...
In this paper, we propose a non-parametric solution for heterogeneous dynamic experiments. The axial stress is recovered from the displacement field (measured by digital image correlation) and a force measurement on the boundary. This technique is applied to measure the stress field in synthetic rubber at three different strain rates.

Let \(S_X = \{ X ; \Omega_0 ; \sum_{i=1}^{n} \lambda_i = 1 \} \) be the cross-section of normal \(\gamma_1 \) at \(X_1 = \gamma_2 \). It is assumed that the cross-sections \(S_X \) remain plane during the test. Hence, for any point \(X \) of the cross-section \(S_X \), the following equation holds:

\[
\mathbf{u}(X,t) \cdot e_1 = u_1(X_1,t)
\]

where \(\mathbf{u}(X,t) \) is the displacement field and \(u_1 \) is the displacement on \(e_1 \), which only depends on the first spatial coordinate and time. Furthermore, we consider that the force applied to a cross-section \(S_X \) is normal to it and only depends on \(X_1 \) and \(t \). Consequently, this force is written:

\[
F(X_1,t) = F_1(X_1,t) \cdot e_1
\]

We isolate a slice of the specimen of length \(dX_1 \) (Fig. 1). Then we write the second Newton’s law on \(e_1 \) direction. This yields:

\[
F_1(X_1 + dX_1,t) - F_1(X_1,t) = \rho_0 A_0 \frac{\partial^2 u_1}{\partial t^2}(X_1,t)
\]

where \(\rho_0 \) is the initial material density and \(A_0 \) is the initial cross-sectional area of the specimen. Eq. (3) yields:

\[
\frac{\partial F_1}{\partial X_1}(X_1,t) = \rho_0 A_0 \frac{\partial^2 u_1}{\partial t^2}(X_1,t)
\]

By integrating Eq. (4) along the specimen length, we obtain:

\[
F_1(X_1,t) = F_1(0,t) + \rho_0 A_0 \int_{\xi=0}^{\xi=X_1} \frac{\partial^2 u_1}{\partial t^2}(\xi,t) \, d\xi
\]

This last equation is very interesting. It means that the force \(F_1(X_1,t) \), applied to any cross-section \(S_X \), is recoverable knowing the force at \(F_1(X_1 = 0, t) \) and the acceleration field:

\[
\gamma_1(X_1,t) = \frac{\partial^2 u_1}{\partial t^2}(X_1,t)
\]

The force applied at \(X_1 = 0 \) can be measured by any available force transducer or Hopkinson bar method. The acceleration field can be deduced from the displacement field which can be measured by digital image correlation (DIC), for example [36,39]. Therefore, Eq. (5) is a hopeful solution for heterogeneous dynamic experiments. Indeed, we can indentify the force applied to any cross-section of the specimen by measuring the displacement field and the force at one boundary.
The stress field can be assumed uni-axial in dynamic compressive experiments. The Cauchy stress tensor is reduced to:

$$\sigma = \begin{pmatrix} \sigma_{11} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$ \hspace{1cm} (6)

The non-zero component of the Cauchy stress tensor, also called the axial true stress, can be calculated by the following equation:

$$\sigma_{11}(X_1, t) = \frac{F_1(X_1, t)}{A(X_1, t)} = \frac{F_1(0, t)}{A(X_1, t)} + \frac{\rho_0 A_0}{A(X_1, t)} \int_{0}^{X_1} \frac{\partial^2 u_3}{\partial x^2} (\xi, t) \, d\xi$$ \hspace{1cm} (7)

where $A(X_1, t)$ is the area of the cross-section S_1, at a time t. $A(X_1, t)$ can also be inferred from the displacement field obtained by DIC. Therefore, Eq. (7) means that the true stress can also be identified from the displacement field and a force measurement on one boundary.

$A(X_1, t)$ can be identified directly from the displacement field. In this paper, we will deduce $A(X_1, t)$ from the strain field. Mainly, we assume that the strain field is constant in a cross-section S_1, i.e., $\varepsilon(X_1, t) = \varepsilon(X_1, t)$ and $\varepsilon(X_1, t) = \varepsilon(X_1, t)$ where ε and ε are the nominal and true, respectively, strain fields. Then, we get

$$A(X_1, t) = (1 + e_{22}(X_1, t))(1 + e_{22}(X_1, t))A_0$$ \hspace{1cm} (8)

In the case of an isotropic material, $e_{22}(X_1, t) = e_{22}(X_1, t)$. Hence, Eq. (8) is equivalently rewritten:

$$A(X_1, t) = (1 + e_{22}(X_1, t))^2 A_0$$ \hspace{1cm} (9)

As we are interested in heterogeneous dynamic experiments, we define the following coefficients in order to quantify the heterogeneity in the specimen:

$$\alpha_{\varepsilon_{11}}(t) = \sqrt{\frac{\int_{0}^{1} \sigma_{11}(X_1, t) - \langle \sigma_{11} \rangle(t) \, dX_1}{\int_{0}^{1} \langle \sigma_{11} \rangle(t) \, dX_1}}$$ \hspace{1cm} (10)

$$\alpha_{\varepsilon_{11}}(t) = \sqrt{\frac{\int_{0}^{1} \varepsilon_{11}(X_1, t) - \langle \varepsilon_{11} \rangle(t) \, dX_1}{\int_{0}^{1} \langle \varepsilon_{11} \rangle(t) \, dX_1}}$$ \hspace{1cm} (11)

where $\langle \sigma_{11} \rangle(t) = \int_{0}^{1} \sigma_{11}(X_1, t) \, dX_1 / L$ and $\langle \varepsilon_{11} \rangle(t) = \int_{0}^{1} \varepsilon_{11}(X_1, t) \, dX_1 / L$ are the spatial mean value of the axial true stress and strain, respectively. $\alpha_{\varepsilon_{11}}(t)$ represents the heterogeneity of the axial stress in the specimen. When $\alpha_{\varepsilon_{11}}(t)$ vanishes, the stress field is almost homogeneous and can be approximated by its mean value. Similarly, $\alpha_{\varepsilon_{11}}(t)$ represents the heterogeneity of the axial strain in the specimen. In the case of homogeneous strain field, $\alpha_{\varepsilon_{11}}(t) \ll 1$.

3. Application to synthetic rubber

3.1. Method

The non-parametric method was tested with a synthetic rubber (Criblex 80). Its density was equal to 1272 kg/m3. Let L, W_2 and W_3 be the sample length, width in e_2 direction and width in e_3 direction, respectively. In our case $L = W_2 = W_3 = 10$ mm. A speckle pattern was painted on a face of each sample in order to carry out digital image correlation (DIC). Three strain rates were considered: quasi-static, medium strain rate and high strain rate. We are concerned only with uni-axial compression tests.

3.1.1. Quasi-static strain rates

The quasi-static tests were realised on an INSTRON 5584 machine. The applied velocity was 0.6 mm/min and the force measured with a piezo-electric transducer. This force, denoted as $F_0(t)$ was sampled at a frequency of 1 Hz which gives a step time of $\tau = 1$ s.

The set-up was also instrumented with a video camera (PHOTRON Ultima APX). The resolution and the acquisition frequency were 512 × 512 pix2 and 1 frame/s, respectively. These images were analysed by DIC software (ICASOFT 4.62). Therefore, we can infer the 2D displacement field at the filmed surface S_u (see Fig. 2).

3.1.2. Intermediate strain rates

Intermediate strain rate tests were realised with an MTS 819 servo-hydraulic machine instrumented with a piezo-electric force transducer to measure the force at $X_1 = 0$: $F_0(t)$. The tests were carried out with a loading speed equal to 0.6 m/s. This machine was also instrumented with a high speed video camera (PHOTRON Ultima APX) with the acquisition frequency fixed at 10 000 frame/s and a resolution of 128 × 248 pix2. The ICASOFT DIC software is then applied to analyse the obtained images and infer the 2D displacement and strain fields at S_u.

3.1.3. High strain rates

For high strain rate experiments, we used a direct-impact Hopkinson bar (Fig. 3) [40,41]. As rubbers are soft materials, one should use low-impedance bars to increase signal-to-noise ratio. There are two possible solutions: polymeric [42] or hollow [43] bars. In our work, we used a hollow aluminium bar with inner and outer diameters of 14 and 16 mm, respectively. This bar is instrumented with a strain gauge station in order to measure the transmitted wave $\varepsilon_{\text{trans}}(t)$. The output force reads:

Fig. 2. Filmed surface.
where E_b and S_b are the bar Young's modulus and cross-sectional area, respectively, and $\tilde{\epsilon}_{0,\text{tra}}(t)$ the transmitted wave measured at the bar-specimen interface. This wave is deduced from the transmitted wave measured at the gauge station, $\epsilon_{\text{tra}}(t)$, by wave shifting. Let a be the distance between the gauge station and the bar-specimen interface. Hence, the Fourier components of the two transmitted waves are related by:

$$\tilde{\epsilon}_{0,\text{tra}}(\omega) = \exp(\tilde{\xi}(\omega)a)\tilde{\epsilon}_{\text{tra}}(\omega)$$

where $\tilde{\xi}(\omega)$ is the dispersion relation and \tilde{f} is the Fourier transform of f. The dispersion is determined by a method exploiting the bar resonances developed in Ref. [44].

As the bar is hollow, a steel 5-mm thick disc is used in order that the force applied by the specimen is uniform on the bar cross-section. As the disc thickness is insignificant before the excited wavelengths, it should not alter wave propagation.

We choose the bar-specimen interface as the origin of the ξ_1 axis. Therefore, the force at the origin will be the output force:

$$F_0(t) = F_{\text{out}}(t)$$

The 2D displacement and strain fields are determined by DIC technique. The acquisition frequency is fixed at 100 000 frame/s with a resolution of 128 \times 248 pix2. Therefore, $\tau = 10$ μs.

3.2. Analysis

In the previous section, we detailed how we measured, for each set-up, a force at one of the specimen boundaries and a two-dimensional displacement (and strain) field(s). In this section, the stress field is calculated from these measured data. Subsequently, an error measure is defined.

3.2.1. Stress field identification

Let $u_1(X_1,\xi_2 + W_2\xi_2 + \xi_3, t)$ be the axial displacement field in the filmed surface. Similarly, let $\epsilon_{22}(X_1,\xi_2 + W_2\xi_2 + \xi_3, t)$ be the second diagonal strain component in the surface. Subsequently, these two-dimensional fields will simply be denoted $u_1(X_1, X_3, t)$ and $\epsilon_{22}(X_1, X_3, t)$. The DIC software gives the Hencky strain (logarithmic strain). Then, the nominal strain is deduced by:

$$\epsilon_{22}(X_1, X_3, t) = \exp(\epsilon_{22}(X_1, X_3, t)) - 1$$

As we assume a one dimensional compressive test, we compute the average over the ξ_3 direction, of both $u_1(X_1, X_3, t)$ and $\epsilon_{22}(X_1, X_3, t)$. We obtain,

$$U_1(X_1, t) = \frac{1}{W_3} \int_{-W_3}^{W_3} u_1(X_1, X_3, t) \, dX_3$$

and

$$E_{22}(X_1, t) = \frac{1}{W_3} \int_{-W_3}^{W_3} \epsilon_{22}(X_1, X_3, t) \, dX_3$$

We should note that we need to differentiate the displacement in Eq. (7) twice. In this work, the displacement is determined by a local polynomial interpolation method. For example, if we want to compute the acceleration at a time $t_0 = j_0\tau$ and at X_1, i.e., $\epsilon_{11}(X_1, t)$, we consider $(2n + 1)$ values of the displacement:

$$U_1(X_1, (j_0 - n)\tau), \ldots, U_1(X_1, (j_0 + n)\tau).$$

These $(2n + 1)$ points are then interpolated with a polynomial function of degree $m \leq 2n$,

$$P_{m,X_1}(t) = a_0 + a_1t + \cdots + a_m t^m$$

Subsequently, the polynomial function is differentiated twice:

$$P_{m,X_1}^{(2)}(t) = 2a_2 + 6a_3t + \cdots + m(m - 1)a_m t^{m-2}$$

Finally the acceleration reads:

$$\Gamma_1(X_1, t_0) = P_{m,X_1}^{(2)}(t_0)$$

Now, we get a force measurement at one boundary ($F_0(t)$), the axial acceleration field ($\Gamma_1(X_1, t)$) and the second diagonal nominal strain component ($E_{22}(X_1, t)$). By applying Eq. (7) we can deduce the first diagonal Cauchy stress component:

$$\Sigma_{11}(X_1, t) = \frac{F_0(t) + \rho \alpha A_0 \int_{-1}^{X_1} \epsilon_{\text{tra}}(\xi, t) \, d\xi}{A_0(1 + E_{22}(X_1, t))^2}$$

3.2.2. Error measurement

In this section, we detail a method to measure errors of the non-parametric method. The specimen material is homogeneous; therefore, the stress-strain relation should be the same at any point. With the DIC technique, we can get also the first component of the Hencky strain field: $\epsilon_{11}(X_1, \xi_2 + W_2\xi_2 + \xi_3, t)$, which will be simply denoted $\epsilon_{11}(X_1, X_3, t)$. As we assume a uni-axial compression test, we average over the ξ_3 direction:
\[\varepsilon_{11}(X_1, t) = \frac{1}{W_3} \int_0^{W_3} \varepsilon_{11}(X_1, X_3, t) \, dX_3 \] (21)

On the other hand, the non-parametric method gives the uni-axial Cauchy (true) stress field: \(\Sigma_{11}(X_1, t) \). Therefore, we can measure stress-strain relation at any point of the specimen. As assumed at the beginning of this section, the stress-strain relation should not vary from point to point.

The proposed error measurement will be based on the variation of the stress-strain relation from point to point. For any point \(X_1 \), we have \(\varepsilon_{11}(X_1, t) \) and \(\Sigma_{11}(X_1, t) \). Therefore, we can write:

\[\Sigma_{11} = R(X_1, \varepsilon_{11}) \] (22)

Let \(\Sigma_{11}(E_{11}) \) be the average stress-strain relation. It reads:

\[\Sigma_{11}(E_{11}) = \frac{1}{L} \int_0^L R(X_1, \varepsilon_{11}) \, dX_1 \] (23)

We should note that the average stress-strain relation is only defined for \(\varepsilon_{11} < \varepsilon_0 \) where \(\varepsilon_0 \) the lowest strain achieved by all points in the specimen. Subsequently, the error measurement is defined as:

\[\varepsilon = \frac{\int_0^{E_0} \int_0^L |R(X_1, \varepsilon_{11}) - \Sigma_{11}(\varepsilon_{11})| \, dX_1 \, d\varepsilon_{11}}{\int_0^{E_0} \int_0^L |\Sigma_{11}(\varepsilon_{11})| \, dX_1 \, d\varepsilon_{11}} \] (24)

3.3. Results

Firstly, we should note that stresses and strains are negative in compression experiments. However, we choose to plot their absolute values in this section.

In Fig. 4, we plot the Cauchy (true) stress, \(\Sigma_{11} \), as function of time in four points of the specimen. These results are obtained by the non-parametric method from the boundary force and the 2D displacement and strain fields. In Fig. 4(a), (b) and (c), we are interested in results of a quasi-static, intermediate and high strain rate test, respectively. The quasi-static test is clearly homogeneous. On the other hand, the high strain rate stress field is clearly heterogeneous. The intermediate strain rate stress field is in between.

Furthermore, we plot the strain field obtained by the DIC technique Fig. 5. The heterogeneity of the strain field has the same tendency as stress heterogeneity.

These observations are confirmed by Fig. 6(a) where we plot stress homogeneity coefficient (\(a_{11}(t) \)) defined by Eq. (10). The strain homogeneity coefficient (\(a_{\varepsilon_{11}}(t) \)), determined by Eq. (11), is also plotted in Fig. 6(b). Both coefficients have the same tendency. They are lower than 5% for quasi-static tests and higher than 5% for intermediate and high strain rate tests. This confirms that the assumption of stress and strain homogeneity at intermediate and high strain rates is not valid for this rubber.

In Fig. 7, we plot the stress-strain relations at 4 points of the specimen for the three strain rate ranges. We superimpose the average stress-strain relation of all points in the same plot. The stress-strain relations at quasi-static and intermediate strain rates are almost independent of the point on the specimen, which indicates that the stress field obtained at these two strain rates is highly accurate. The errors (see Table 1) are 0.84 and 1.81% for the quasi-static and medium strain rate, respectively. Fig. 7(c) shows stress-strain curves obtained by the high strain rate test.

There is slight variation from point to point. As the tested material is homogeneous, this indicates that there exist some errors. Indeed, the local-polynomial differentiation method adopted in this work has a filtering effect on
the measured displacement field. On one hand, an over-filtering eliminates inertia effects which are important to the calculation of the force gradient. On the other hand, a sub-filtering does not eliminate noise which can be amplified by the differentiation method. At high strain rate, this yields a higher but acceptable error, namely, 5.17% (Table 1).

Furthermore, we compare in Fig. 8 the proposed non-parametric method with the conventional method which assumes stress and strain homogeneity in the specimen. Precisely, we plot in this figure the average stress-strain relations obtained at three strain rates by the non-parametric method. We superimpose in the same figure the stress-strain relations obtained with the conventional method, i.e., the stress and the strain obtained from a force and a displacement, respectively, measurement at the boundary. At quasi-static and intermediate strain rate, we obtained almost the same relation. However, the stress-strain relation obtained at high strain rate by the conventional method is clearly wrong. This confirms once more the relevance of the non-parametric method proposed in this paper.

4. Discussion

The non-parametric method developed in this paper is a powerful and alternative solution to inverse techniques. The main advantage of this method is that it takes into account stress heterogeneity without assuming any a priori knowledge of a constitutive equation. The authors are convinced that the non-parametric method will open an
The application field for DIC techniques in measuring stress field in heterogeneous dynamic experiments. It is, therefore, possible to carry out high strain rate tests on soft materials and obtain accurate stress-strain relations. This technique could be used for several dynamic setups; for example, Taylor impact experiments.

The main limitation of the non-parametric method is the double numerical differentiation in order to infer axial acceleration from displacement measurement. This numerical differentiation may amplify experimental noise. Whatever the differentiation technique, a suitable filtering should be used. Strong filtering may filter inertia effects and the stress field will be homogeneous; on the contrary, weak filtering does not eliminate noise. Although the numerical differentiation is a real problem for the non-parametric method, the results obtained by this method have good accuracy. The obtained stress-strain relations are more accurate than those obtained by a conventional technique assuming dynamic equilibrium. In order to check further the accuracy of the non-parametric method, one can measure force at the two specimen sides and then apply Eq. (5) to calculate one force (let’s say at $X_1 = L$) from the force measured at $X_1 = 0$. An error measure of the non-parametric method will be the difference between the measured and calculated forces at $X_1 = L$.

In this work, we were interested in identifying the Cauchy (true) stress field. To achieve this task, the force applied at any cross-section of the specimen is divided by the current cross-section area. If the Piola-Kirchoff (nominal) stress field is of interest, the identified force had to be identified by the initial cross-section area of the specimen, which is a simpler task, as we do not need to compute the variation of the cross-section area during the test.

5. Conclusions

In this paper, we developed a non-parametric method for stress field identification in high strain rate experiments. It is based on a force measurement at one specimen boundary and a displacement measurement by a digital image correlation technique. This method is applied successfully to a synthetic rubber. This technique allows deduction of the stress-strain relation at any point of the specimen, and is more accurate than the conventional method assuming dynamic equilibrium.
Acknowledgements

The Region Pays de la Loire (France) is highly acknowledged for the financial support to the second author. Furthermore, the authors would like to thank P. Guégan and F. Pasco (Ecole Centrale de Nantes) for their help in the experimental work.

References