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ABSTRACT: A multi-scale approach is devoted to the analysis of hygro-elastic internal stresses in
porous composite materials. Voids in composite materials are known to cause significant reduction
of mechanical properties. Moreover, in a humid environment they also affect the moisture
absorption and the induced internal stresses. In this work, a self-consistent approach is used to
estimate internal stresses induced by moisture absorption in composite materials with porous
matrices. This study shows that the interaction between voids and moisture has a severe impact
on the transient hygro-elastic stresses at both microscopic (fiber and matrix) and macroscopic
(ply) scales.
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INTRODUCTION

M
OISTURE ABSORPTION IN polymer matrix composites generates hygro-elastic internal
stresses. These stresses are related to the intrinsic heterogeneous nature of composite

materials due to the different hygroscopic swelling of the basic constituents (fiber and
matrix) and adjacent plies. Multi-scale approaches have been recently developed in order
to estimate the internal stresses due to hygroscopic loads at the macroscopic ply scale and
at the constituent local scale. Each ply is considered as a homogenized anisotropic
continuum. The displacements along a single ply are unknown and must be determined by
solving the strain compatibility equations and the stress balance equations [1,2].
In previous studies, the corresponding stresses occurring at the micro-scale are deduced
by extending the Eshelby–Kröner self-consistent model [3–5] or Mori–Tanaka
approach [6,7] to hygro-elastic loads. However, these studies consider a perfect composite
material without voids: the material is assumed to be perfect. In reality, the manufacturing
process of composite materials induces defects such as voids in the matrix. The presence of
voids, even at very low volume fraction in polymer matrix composites, causes significant
reduction of mechanical properties such as strength and stiffness [8,9]. Consequently,
it is interesting to analyze how the presence of voids interact with humid environments.
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In this study, a self-consistent approach is used to estimate the internal stresses induced by
moisture absorption for composite materials with porous matrices at different scales.

An uncoupled approach is shown in this study, where the moisture content in the
composite structure is first calculated to estimate the hygro-elastic stresses. The presence of
voids affects the diffusion process in composite materials. For a Fickian behavior, the
effective diffusion coefficient and the moisture saturation level are strongly modified.
With the model proposed by Woo and Piggot [10], it is possible to predict the effective
diffusion coefficient Deff linked to the diffusion coefficient of the constitutive matrix Dm

and to the void content. In our study, the diffusion process is assumed to follow Fick’s law
and the moisture content is calculated for void contents up to 5%. Specimens with low
void contents display classical Fickian behavior [9].

The mechanical macroscopic properties of the composite are obtained by considering
the self-consistent model, the properties of the constituents, and the void content in the
porous matrix. This approach reveals that the effective hygro-elastic properties (elastic
stiffnesses and coefficients of moisture expansion) are strongly affected by the void
content.

The internal stresses at the ply scale are calculated by using the classical equations of
solid mechanics. The corresponding local stresses in the constituents (fibers and matrix)
are deduced by using a self-consistent approach.

Thus, this study highlights the influence of voids on the transient hygro-elastic stresses.
The simulations show that the increase of the void content may induce a change on the
sign of stresses (from compressive to tensile state) revealing the strong interaction between
porosity and humidity.

CALCULATION OF THE EFFECTIVE DIFFUSION COEFFICIENT

Model of Woo and Piggott

The aim of this section is to calculate the effective diffusion coefficient for a composite
material containing voids. Woo and Piggott [10] used an electrical analogy model to
calculate the effective diffusion coefficient. Indeed, transport of electrons and transport of
molecules are, to a large extent, governed by the same laws. Thus, the diffusivity
(reciprocal of resistivity R) for molecules is treated in the same way as conductivity for
electrons.

A simple composite model, in which fibers are packed in a square array, is considered.
The representative unit cell, involving a quarter of a fiber cross-section, is presented in
Figure 1(a), where a is the thickness of the square unit cell, t is the thickness of the
interphase between fiber and matrix, and r is the fiber radius. �y is a thickness element
(0� y� r). Rm, Ri, and Rf are, the resistances of the matrix, interphase, and fiber
respectively, Wm, Wi, Wf are the thicknesses of the matrix, interphase, and fiber,
respectively. For y� r, the thicknesses are:

Wm ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ tÞ2 � y2

p
Wi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ tÞ2 � y2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y

p
2

Wf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p
:

8><
>: ð1Þ
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The fiber volume fraction v f relates the square size a, to the fiber diameter 2r by the
expression:

r

a
¼ 2

ffiffiffiffiffi
v f

�

r
: ð2Þ

For a current passing from the bottom to the top of the cell, each element, from y¼ 0
to y¼ r, has three resistances in parallel. Thus, the resistance �R for the element of
thickness �y is:

�R ¼ �y
Wm

Rm
þ
Wi

Ri
þ
Wf

Rf

� ��1

: ð3Þ
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Figure 1. (a) Unit cell used for electrical analogy [10], (b) simplified unit cell, (c) unit cell with voids.
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Then, the resistance in the part of the unit cell delimited by 0� y� r is obtained:

R ¼

Z r

0

Wm

Rm
þ
Wi

Ri
þ
Wf

Rf

� ��1

dy: ð4Þ

To obtain the total resistance in the unit cell, the resistance of the region y¼ r to y¼
rþ t (where there is no fiber) and the resistance of the region y¼ rþ t to y¼ a (where there
is only the matrix) are added.

Considering that the diffusion coefficient is the reciprocal of the resistance, Woo and
Piggot have finally expressed the effective diffusion coefficient Deff in dimensionless form:

Deff

Dm
¼ DmðID1 þ ID2Þ þ 1�

ðrþ tÞ

a

� ��1

ð5Þ

where:

ID1 ¼

Z r

0

½ðDi �DmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ t2Þ � y2

p
þ ðDf �DiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p
þDma�

�1dy

ID2 ¼
�=2� sin�1 r=rþ tð Þ � 2=

ffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p� �
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c=1þ c

p
� tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c=1þ c

p
t0

� �� �h i
Di �Dmð Þ

c¼
ðrþ tÞðDi �DmÞ

aDm
and t0 ¼ tan

1

2
sin�1 r

rþ t

� 	� �
:

9>>>>>>>>>=
>>>>>>>>>;
:

Model of Woo and Piggot in Porous Composite Media

The diffusion coefficient of the interphase is usually unknown. Experiments indicate
that it is higher than that of the matrix one [11]. The results obtained by Woo and
Piggot [10] show that, for Di410Dm, the diffusion is controlled by the ratio tDi/rDm rather
than Di/Dm and t/r independently. Consequently, the authors propose to separate the
interphase from the fiber, as shown in Figure 1(b).

Considering the simplified unit cell (Figure 1(b)), Wm, Wi, and Wf become:

Wm ¼ a� t�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p
Wi ¼ t

Wf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p
:

9>>>=
>>>;
: ð6Þ

By using Equation (5), we obtain:

Deff

Dm
¼

Dm

Dm �Df

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c

1� c
�
�

2

r( )
þ

Dmt

Dmða� tÞ þDit
þ
a� r� t

a

" #�1
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with

c ¼
rðDm �DfÞ

Dmða� tÞ þDit
: ð7Þ

Assuming that the diffusion coefficient of voids is also high, the same approach is used
to introduce the voids in the unit cell (Figure 1(c)). tv represents the width of voids and
Dv their diffusivity.

Finally, the diffusion coefficient of porous composite media is:

Deff

Dm
¼

Dm

Dm �Df

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p tan�1

ffiffiffiffiffiffiffiffiffiffiffi
1þ c

1� c

r
�
�

2

( )
þ

Dmtc

ðDm �DfÞr
þ

Dmða� r� tÞ

Dmða� tvÞ þDvtv

" #�1

with

c ¼
rðDm �DfÞ

Dmða� t� tvÞ þDitþDvtv
: ð8Þ

Numerical Applications

The effective diffusion coefficient is calculated by considering the unit cell depicted in
Figure 1(c) without interphase (t¼ 0). The fiber volume fraction is 60% and the assumed
diffusion coefficient of the voids is Dv¼ 10Dm. By assuming that the fiber does not
absorb any moisture (case of carbon fiber for instance): Df ¼ 0.

Figure 2 shows the variation of the ratio Deff/Dm as function of void content. Table 1
illustrates the values of Deff/Dm calculated for different void contents.

0

0.2

0.4

0.6

0.8

1

1.2

876543210

vv (%)

Deff/Dm

Figure 2. Evolution of Deff/Dm as function of void content.

Table 1. Values of Deff/Dm as function of void content.

vv (%) 0 1 2 3 4 5 6 7 8

Deff/Dm 0.25 0.36 0.47 0.57 0.67 0.77 0.86 0.96 1.05
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We notice obviously that the ratio Deff/Dm for a porous material is higher than
a material without voids. The presence of voids in a composite material accelerates the
diffusion process. Figure 2 shows the quasi-linear variation of Deff/Dm where each
0.1 increase of this ratio corresponds to 1% increase of voids. With 8% voids, the diffusion
coefficient of the composite is higher than the matrix one (Figure 2). However, for such
high void contents, deviations from Fickian behavior could be observed [9].

PREDICTION OF THE HOMOGENIZED HYGRO-ELASTIC

PROPERTIES OF A PLY

A self-consistent (SC) model is used in order to determine the homogenized hygro-
elastic properties of a ply. We consider a hygro-elastic orthotropic behavior and the
Eshelby–Kröner self-consistent model [5].

The multi-scale hygro-elastic orthotropic behavior can be written as:

�� ¼ L� : "� � ���C�ð Þ ð9Þ

where L� is the elasticity tensor of the phase �, " the strains due to elastic and hygroscopic
solicitations, � the coefficients of moisture expansion (CME), and �C the moisture
content increment.

The macroscopic stresses and strains (the macroscopic scale is denoted by the
superscript I) are the volume averages of the microscopic stresses and strains [12]:

��h i�¼f,m, v ¼ �I

"�h i�¼f,m, v ¼ "

)
ð10Þ

where f, m, and v are respectively the subscripts � for the fiber, the matrix, and the voids.
By using Eshelby’s formalism, we obtain the following relation between macroscopic

and microscopic fields [5]:

"� ¼ L� þ LI : RI
� ��1

: LI þ LI : RI
� �

: "I þ L� : ���C� � LI : �I�CI

 �

ð11Þ

where RI represents the reaction tensor that expresses the elastic interactions due to the
morphology assumed for the elementary constituents of the composite material.

The combination of Hill’s average relation (10) with the preceding equations gives:

"I ¼ L� þ LI : RI
� ��1

: LI þ LI : RI
� �

: "I þ L� : ���C� � LI : �I�CI

 �D E

�¼f,m, v
: ð12Þ

The equation develops as:

"I ¼ L� þ LI : RI
� ��1

: LI þ LI : RI
� �D E

�¼f,m, v
: "I

þ L� þ LI : RI
� ��1

: L� : ���C� � LI : �I�CI

 �D E

�¼f,m, v
: ð13Þ
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Since this relation must be satisfied for any hygro-mechanical state {"I, �CI, �Cf, �Cm,
�Cv}, the first term of the right member of Equation (13) must be equal to I, while the
second term must be nil:

L� þ LI : RI
� ��1

: LI þ LI : RI
� �D E

�¼f,m, v
¼ I ð14Þ

L� þ LI : RI
� ��1

: L� : ���C� � LI : �I�CI

 �D E

�¼f,m, v
¼ 0: ð15Þ

Equation (14) yields the macroscopic elastic stiffness:

LI ¼ L� þ LI : RI
� ��1

: LI þ LI : RI
� �

: L�
D E

�¼f,m, v
: ð16Þ

Equation (16) shows that the presence of voids modifies the macroscopic elastic
properties. Knowing that the elastic tensor of voids is nil, this modification is just related
to the void volume fraction.

The development of Equation (15) gives:

L� þ LI : RI
� ��1

: L� : ���C�
D E

�¼f,m, v
¼ L� þ LI : RI

� ��1
: LI : �I�CI

D E
�¼f,m, v

: ð17Þ

Since, LI, �I, and �CI are constants, we may extract them from the summation:

L� þ LI : RI
� ��1
D E�1

�¼f,m, v
: L� þ LI : RI
� ��1

: L� : ���C �
D E

�¼f,m, v
¼ LI : �I�CI: ð18Þ

Finally, an explicit form for the macroscopic CME of a porous composite material
is obtained:

�I ¼
1

�CI
LI�1 : L� þ LI : RI

� ��1
D E�1

�¼f,m, v
: L� þ LI : RI
� ��1

: L� : ���C�
D E

�¼f,m, v
: ð19Þ

Since the increment of moisture content in fiber and the elastic tensor of voids are nil,
we obtain the simplification:

�I ¼ vm
�Cm

�CI
LI�1 : L� þ LI : RI

� ��1
D E�1

�¼f,m, v
: Lm þ LI : RI
� ��1

: Lm : �m ð20Þ

where vm stands for the volume fraction of the matrix in the considered ply
(vmþ v fþ vv¼ 1).

The moisture content of the composite as a function of the moisture contents of the resin
and voids is given by the expression [13]:

�CI ¼
vm�m�Cm þ ve�e

�I
ð21Þ
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where �I, �m, and �e are the composite, matrix, and water densities, respectively;
ve represents the volume fraction of voids filled with water.

Finally, we obtain the macroscopic CME of the composite:

�I ¼
vm�I�Cm

vm�m�Cm þ ve�e
LI�1

: L� þ LI : RI
� ��1
D E�1

�¼f,m, v
: Lm þ LI : RI
� ��1

: Lm : �m: ð22Þ

The effect of void content on the hygroscopic properties of the composite T300/5208 is
studied. The mechanical and hygroscopic properties of the carbon fiber T300 and epoxy
matrix are summarized in Tables 2 and 3 [14,15].

Table 4 illustrates the values of the �Cm/�CI ratio in relation to the saturation of the
composite, as well as the values of the hygroscopic expansion coefficients as function of
void content. We note that the water density �e is 1000 kg/m3, the matrix and composite
ones are, respectively, 1200 and 1590 kg/m3.

Figure 3 shows the variation of the transverse CME as function of void content.
Contrary to the effective diffusion coefficient, the hygroscopic expansion coefficients
decrease with the growth of the void volume fraction. Then, the presence of voids in the
composite involves an accelerated diffusion process along with a less important
hygroscopic expansion of the material.

Table 4. Hygroscopic expansion coefficients as function
of void content.

vv (%) "Cm/"CI b1 b2

0 3.31 0.02 0.88
1 2.49 0.01 0.65
2 1.99 0.012 0.51
3 1.66 0.009 0.42
4 1.42 0.008 0.35
5 1.24 0.007 0.30

Table 3. Hygroscopic properties of T300/5208 constituents.

Material b1 b2

T300 0 0
N5208 0.6 0.6

Table 2. Mechanical properties of T300/5208 constituents.

Material E1 (GPa) E2, E3 (GPa) t12, t13 G23 (GPa) G12 (GPa)

T300 230 15 0.2 7 15
N5208 2.9 2.9 0.35 1.07 1.07
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MOISTURE CONTENT

Macroscopic Moisture Contents

Consider an initially dry, 4mm thin composite pipe, where inner and outer radii are
a and b, respectively, and let the laminate be exposed to an ambient fluid with
boundary moisture content C0. The composite cylinder is made up of T300/5208
carbon/epoxy plies alternatively oriented at �558 versus the longitudinal axis. The
macroscopic moisture content, CI(r, t), is a solution of the following system with Fick’s
Equation (23), where Deff is the transverse effective diffusion coefficient deduced from
Woo and Piggot’s model.

The moisture content is calculated for void contents up to 5%. The values of Deff are
extracted from Table 1 by considering a diffusion coefficient for the N5208 epoxy resin
equal to Dm¼ 7.31.10�8mm2/s [15]:

@CI

@t
¼ Deff

@2CI

@r2
þ
1

r

@CI

@r

� �
, a5r5b ð23Þ

CIðaÞ ¼ CIðbÞ ¼ C0

CIðr, 0Þ ¼ 0

9=
;: ð24Þ

Figure 4 depicts the macroscopic moisture content profiles inside the composite pipe
without voids. After 200 months, a uniform saturation level of 1.67% (corresponding to an
external relative humidity of 100%) is reached.

When the void content is 5%, the macroscopic moisture content at saturation is equal
to 4.73% (Figure 5) and the time to reach the saturation is 70 months (the effective
diffusion coefficient for 5% voids is three times higher).

To make a comparison between the different void contents, the average of the moisture
contents (25) is considered as a function of square root of time. With this representation,

β m
2

0
543210

0.2

0.4

0.6

0.8

1

 vv(%)

β I
2

Figure 3. Variation of the transverse CME as function of void content.
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it is conceivable to compare the moisture contents at saturation and the diffusion
coefficients.

Ct ¼
1

e

Z e

0

CIðr, tÞdr: ð25Þ

Figure 6 shows, up to the saturation level, a linear evolution (Fickian behavior) of the
moisture contents as a function of square root of time. The presence of voids in
the composite involves an accelerated diffusion process (the slope is a growing function of
the void content) and higher moisture saturation level.

Moisture Contents in the Resin and Voids

To determine, in the next part of the article, the transient local stresses, we need to know
the moisture contents in the resin and voids. The methodology proposed in this study is
based on the stability of the CME during the diffusion process whatever the void content.
The coefficient of moisture expansion �I is conventionally defined as the free expansion

0
43210

1

2

3

4

5

e (mm)

CI (%)
1 month 5 months
10 months 30 months
50 months 70 months

Figure 5. T300/5208 moisture content profiles for vv¼5%.
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0.4

0.8

1.2

1.6

2
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CI (%) 1 month 5 months
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50 months 200 months

Figure 4. T300/5208 moisture content profiles for vv¼0%.
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hygroscopic strain of a unidirectional laminate "Hsat induced by absorbed average moisture
content CI

sat:
at saturation:

�I ¼
"Hsat:
CI

sat:

: ð26Þ

In this study, the coefficient of moisture expansion �I is defined as the free expansion
hygroscopic strain of a unidirectional laminate "H induced by absorbed average moisture
content CI at time t (during the transient pattern):

�I ¼
"H

CI
: ð27Þ

Jedidi et al. [16] have experimentally studied the hygrothermal strain as a function of
moisture content up to the saturation state for several unidirectional carbon/epoxy
specimens. The authors emphasize the linear evolution of the hygroscopic strain "H versus
the moisture content CI for each specimen. Therefore, �I can be considered as constant
during the diffusion process whatever the time.

Knowing the value of �I and the macroscopic moisture content�CI, Equation (20) leads
to the moisture content in the resin �Cm for each ply at every time. Figure 7 shows
the moisture content profiles in the matrix for a 5% void content. The time to reach
saturation for the matrix with 5% voids is three times faster compared with the matrix
without void.

The next step consists of estimating, during the diffusion process, the transient moisture
content in the voids for each ply of the composite structure. From the knowledge of
the macroscopic and matrix moisture contents, �CI and �Cm, respectively, Equation (21)
gives ve, the volume fraction of voids filled with water.

Figure 8 shows ve as a function of time for a composite structure in which each ply
presents a porous matrix with 5% voids. For the first time, the voids in the external plies
are quasi-saturated while the voids in the central region of the structure are quasi-dried.
The saturation in water of all the voids takes, as the matrix, 70 months.

0
151050

1

2

3

4

5
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Ct (%)

vv=0
vv=2%
vv=4%

vv=1%
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vv=5%

t

Figure 6. Average moisture contents as function of void content.

11



HYGRO-ELASTIC STRESSES

Permanent Hygro-elastic Stresses

The macroscopic hygro-elastic stresses are calculated by considering the homogenized
hygro-elastic properties and the classical equations of solid mechanics: constitutive laws
of hygroelastic orthotropic materials, strain–displacement relationship, compatibility
and equilibrium equations, and boundary conditions (for a more detailed description of
the model, see Ref. [1]).

Figures 9 and 10 show the transverse and shear stresses, respectively, when the
permanent saturation state is reached in the composite structure, as a function of void
content.

For the moisture permanent state, the transverse stresses are quasi-uniform over the
thickness of the pipe. Compressive stresses, whatever the void content, are predicted.
The transverse stresses decrease with the void content: the maximum transverse stress
is �95MPa for a 0% void content. The discontinuity of the shear stress is due to the

0
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Figure 7. Moisture content in the resin for vv¼ 5%.
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Figure 8. Moisture content in the voids for vv¼ 5%.
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stacking sequence: the composite pipe is made up of T300/5208 plies alternatively oriented
at �558 versus the longitudinal axis.

Finally, higher transverse and shear stresses hold in the structure without voids even
if the moisture content is less important compared with a porous structure. The key factor
is the moisture expansion coefficient which is more important for a structure without voids
(Figure 3).

The corresponding local stresses are deduced by using the self-consistent approach.
By assuming that the fibers do not absorb any moisture, the local stresses–strains

relation in reinforcements (9) becomes:

�f ¼ Lf : "f: ð28Þ
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Figure 9. Permanent transverse stresses.
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Figure 10. Permanent shear stresses.
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Using Eshelby’s formalism, we obtain the following scale transition expression for the
strains in fibers:

" f ¼ Lf þ LI : RI
� ��1

: �I þ LI : RI : "I
� �

: ð29Þ

The use of Equation (29) implies the knowledge of the macroscopic stresses and strains,
and the homogenized properties. If these conditions are satisfied, the local mechanical
states in the epoxy matrix are provided by Hill’s strains and stresses average laws (10):

"m ¼ 1
vm "

I � v f

vm "
f

�m ¼ 1
vm �

I � vf

vm �
f

9=
;: ð30Þ

Figures 11 and 12 show the multi-scale transverse and shear stresses, respectively, as
functions of void content, when the permanent saturation state is reached. At permanent
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Figure 11. Multi-scale permanent transverse stresses.
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Figure 12. Multi-scale permanent shear stresses.
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state, the maximum transverse stress holds in the matrix. The fibers are submitted to the
higher shear stresses. The local stresses decrease with the void content.

Transient Hygro-elastic Stresses

Figures 13 and 14 depict, respectively, the macroscopic transverse and shear stresses,
after 5 months, as functions of void content. The change from a tensile to compressive
state, for the central region of the pipe, emphasizes the influence of the moisture content,
and thus the void content. For 0% void, the weak moisture content in the center of the
pipe induces tensile transverse stresses. Nevertheless, for 5% voids, at the same time, in the
same region, the moisture content is more important and the induced stresses are negative.
In the external plies, whatever the void content, compressive stresses hold caused by the
strong moisture content in these zones. Contrary to the transverse stresses, the shear
stresses are uniform on each ply of the structure.
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Figure 14. Shear stress at t¼ 5 months as function of void content.
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Figure 13. Transverse stress at t¼ 5 months as function of void content.
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Figures 15 and 16 present, respectively, the multi-scale transverse and shear stresses,
during the transient state, at t¼ 5 months, as functions of void content.

The amount of void content involves a change of sign for the transverse stresses in the
matrix. A decrease of the tensile transverse stresses in the fibers is also observed.
The compressive shear stresses in the fibers are sensitive to the void content since an
increase is observed with the void content.

CONCLUSIONS

A multi-scale analysis devoted to the determination of hygro-elastic internal stresses
in porous composite materials is proposed. An uncoupled approach is used to estimate the
internal stresses. The moisture content in the porous composite structure is first calculated
by assuming a Fickian behavior with an effective diffusion coefficient deduced from
Woo and Piggot’s model. A self-consistent approach is used to predict the homogenized
hygro-elastic properties by modeling fibers, matrix, and voids as three distinct phases.
The macroscopic stresses are calculated by using continuum mechanics formalism and the
local stresses derived from the self-consistent model. The proposed approach allows us to
determine the multi-scale internal stresses taking into account the interaction between
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Figure 16. Multi-scale shear stresses at t¼5 months.
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voids contained in the matrix and humid environments. The influence of void content on
the diffusion process and transient hygro-elastic stresses is emphasized, showing the strong
interaction between porosity and humidity: for instance, an increase of the void content
may induce a change from compressive to tensile stresses.
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