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forced with 3D layer-to-layer angle-interlock fabrics are increasingly employed
sistance to delamination and impact damage, which is not observed in classical
s. However, the prediction of the mechanical behavior of such composites is
tricate fibrous architecture. The structure is intimately linked to its history of
uces changes in the reinforcement geometry. The purpose of this work is to

mbrane and bending elastic moduli of the shell-type structure by an asymptotic
re on a periodic unit cell, in the framework of the Love–Kirchhoff plate theory. A
using Abaqus software package is developed, allowing for parameterized geo-
echanical analysis in a systematic and efficient way. This modeling and simula-
der the real composite architecture after infusion and the yarn damage during
roperties are finally validated using numerical computations on 3D heteroge-
parison with experimental tests.
1. Introduction

3D reinforcements have been studied for many years in replace-
ment of laminate structures in composite materials. For instance,
3D interlock geometrical arrangements seem to be a more suitable
solution to the delamination and impact damage, among other op-
tions, than a classical stacking of 2D plies. Accordingly, 3D woven
fabrics may substitute 2D weaves in many applications where they
are not appropriate anymore. Indeed, numerous advantages of 3D
reinforced composites have already been pointed out. Complex
near-net-shape fabrics can be manufactured with better mechani-
cal properties and a decrease of the cutting needs as well as a
reduction of the manufacturing and material costs [1]. They also
display a better ballistic and low speed impact resistance with im-
proved post-impact properties and a good resistance to crack prop-
agation [2]. Cox and Dadkhah put forward a better delamination
resistance, higher ultimate tensile and compressive strains and a
good formability, compared to 2D-ply based laminates [3]. Kuo
et al. pointed out the almost elimination of weak damaged planes
by dissipating loads in all the directions [4]. However, it is worth
mentioning a few drawbacks. In 3D reinforcements, the crimp
due to the network of yarns is much more important than in 2D
weaves and so is the damage due to the weaving and handling of
yarns [5]. Furthermore, an intermediate fiber volume fraction
x: +33 3 27 71 29 81.
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(40–50%), due to the presence of unavoidable spaces between
yarns is inherent to 3D structures, with a rare threshold of 60% [6].

Among 3D interlock structures, the layer-to-layer angle-
interlock configuration provides the best answer to these mechan-
ical requirements together with formability [3]. But very few
industrial applications involving these types of reinforcement were
attempted until now. The main reason is the present lack of knowl-
edge about their mechanical behavior together with the difficulties
encountered when dealing with their geometrical modeling. Their
use just recently began to spread in aeronautics and aerospace
structures (parts prone to impacts, such as rotor blades and landing
gears). The analysis of ballistic protection for bullet-proof vests and
vehicles is under consideration. Future applications could be front
ends and leading edges of ships and boat hulls, sensitive to slam-
ming. All these applications are revealing the potential of 3D inter-
lock composites and show the growing interest of industrials for
this type of materials.

The use of 3D composites requires a realistic geometrical and
material representation in order to perform an accurate mechani-
cal analysis. To do so, the study of the weaving and of the manufac-
turing process leads to a proper understanding of the final
composite structure. During the weaving of a 3D fabric, a global
distortion may occur because of its thickness, the residual stresses
in the yarns and the interlacing [7]. Contrary to the single ply of a
2D woven fabric, the layers of a 3D fabric may translate horizon-
tally due to the take-up motion (Fig. 1). Another modification is
yarn crimp which is a local deformation of the yarn path, due to
yarn interlacing and tension. Yarn crimp may be emphasized



Fig. 1. Idealized architecture (a) and modified architecture after taking-up from the loom (b) [7].
during manufacturing processes (RTM, for example) due to com-
paction and nesting [8,9]. This phenomenon is already observed
in laminate manufacturing [10] and may be more important in dis-
torted yarns of 3D woven fabrics (Fig. 2).

All these modifications of the architecture (crimp, compaction,
nesting), inherent to the manufacturing of 3D composites, lead to
a decrease of the mechanical properties. Their consideration in a
model is necessary to improve the prediction of the mechanical
behavior.

As far as data are concerned, not only the geometry but also the
material properties play a major role in the mechanical analysis of
a textile reinforced composite. The influence of yarn damage due to
the weaving is an important feature which should be taken into ac-
count to get closer to the true homogenized behavior of the com-
posite material. That damage may be much more important in a
3D weaving than for a classical 2D one. Lee et al. studied the tow
damage during the weaving of 3D carbon-fiber orthogonal fabrics
[11]. It is due to abrasion and breaking of fibers when sliding in
the loom. The authors compared single carbon composite yarns be-
fore and after weaving and pointed out a decrease of 12% of the
mechanical strength. Archer et al. also studied the damage occur-
rence during the weaving of carbon-fiber angle-interlock fabrics
[12]. The tensile strength of dry yarns from the fabric was found
to be 9.4% lower than the nominal value before weaving. The
importance of damage in this study will be discussed in more
details in Sections 3.2 and 4.1.

The final architecture in the composite material is thus
dependent of the parameters of the weaving and of the composite
manufacturing process. It is essential to note that a complete
mechanical study must be based on the whole manufacturing his-
tory. Most of the authors only consider one of the aspects of the
manufacturing previously cited. As for example, some mechanical
methods are listed below.

The classical laminate theory is the basis of 2D composite
mechanics and may be used as a starting point in the assessment
of the effective mechanical behavior of 3D interlock composites.
Indeed, in a first approach, the interlock fabric could be considered
as a laminate of 2D fabrics constituted of identical successive warp
Fig. 2. Waviness change (a) and cross-sectio
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and weft layers with different orientations. That decomposition is
clearly inappropriate here since it does not take into account the
waviness of the woven yarns and the ply interconnectivity. Thus,
the classical laminate theory cannot be used anymore in the case
of interlocks or 3D fabrics in general.

Specific semi-analytical and numerical approaches have been
proposed to study the mechanical behavior of 3D reinforced com-
posites, as a replacement for the well-known laminate theory. The
Orientation Averaging Model is an analytical approach developed
by Cox et al. and based on a volume averaging of the straight yarn
matrices [3]. The waviness is taken into account through rigidity
loss factors for each type of yarn, known as knock-down factors.

Some approximate numerical averaging approaches have also
been developed to assess the elastic properties of such composites
using discretization methods such as the XYZ model [13], or using
direct methods of 3D calculation on a modified structure with sim-
pler material properties, such as the Binary Model [14]. In both
models, the in-plane and through-the-thickness moduli are still
overestimated, due to a coarse geometrical modeling (assembled
micro-blocks for the XYZ model or yarns with 2-node elements
for the Binary Model).

More recently, specific textile modeling softwares, such as
Wisetex [15], TexGen [2] or TexEng, have been developed. They
generally include both geometrical modeling (up to the filament
scale) and mechanical simulation. For example, numerical results
in Wisetex generally show a good consistency with experimental
data but may often lead to discrepancies due to the limitations of
the homogenization scheme employed.

In this work, the objective is to ease the mechanical study of a 3D
interlock composite, using a high-performance tool. The final state
of the interlock fabric in the composite depends on the manufactur-
ing parameters (weaving and process), which may produce an
architecture different from the original definition before weaving.
Thus, on account of numerous existing geometries, a parameterized
architecture is developed by means of a Python program, using
Abaqus software in the context of the finite element method. In-
deed, due to the strong heterogeneity and the complex architecture
of such materials, a rigorous periodic homogenization scheme is
n variation (b) due to compaction [10].



Fig. 3. Layer-to-layer angle-interlock architecture.
preferred here to assess the membrane and bending elastic behav-
iors of the equivalent shell-type structure, in the framework of the
Love–Kirchhoff plate theory. Moreover, special attention is paid to
the actual textile geometry and material parameters thanks to opti-
cal observations and measurements of mechanical properties of
yarns extracted from woven fabrics. Hence, this paper proposes a
general numerical tool facilitating the meso-scale geometrical
modeling and the determination of the effective elastic properties
of a 3D interlock composite. The numerical solutions are then com-
pared to experimental tensile and bending results for validation.

2. Composite materials reinforced with 3D interlock woven
fabrics

3D interlock structures are fabrics, which means that they are
directly woven in the three dimensions with Z-yarns along the
thickness linking different layers together. For that matter, Bogd-
anovich and Mohamed pointed out the difference between multi-
layer textiles which generate 3D structures thanks to the stacking
of plies and fabrics like interlocks which are basically 3D [16].
Many types of architectures can be defined but there is no general
data base for now. Boussu et al. recently suggested a unique
parameterized architecture thanks to a complete inventory of the
geometric parameters in order to improve the representation and
classification of 3D interlock structures and better identify the ade-
quate architecture relative to given mechanical requirements [17].
Indeed, all these parameters, among which the number of layers,
the number of yarns by weave repeat and the binding depth, are
essential in any geometrical and/or mechanical modeling. Three
families can be distinguished among the 3D woven structures:

– the orthogonal interlock where the Z-yarns are perpendicular to
the weaving plane and go through the whole thickness only
between two columns of weft yarns;

– the through-thickness angle-interlock where the Z-yarns go
through the whole thickness across more than two columns of
weft yarns;

– the layer-to-layer angle-interlock where the Z-yarns link at
least two plies.

The latter configuration seems to be more suitable to fulfill
many mechanical requirements and formability ones. Moreover,
as the orthogonal and through-thickness angle-interlock structures
have been studied by many authors up to now [4,6,13,14], the
choice of the little-known layer-to-layer architecture has been re-
tained in this study as it allows to investigate the effect of the ori-
entation and waviness of binding yarns on the mechanical
behavior of the composite material.

In the sequel, the architecture considered is an 8-layer rein-
forcement with carbon fibers. The repeated pattern is defined as
follows: the weft binders link two successive plies together. The
paths of the yarns and the section shape are defined using geomet-
rical parameters, such as the fiber volume fraction, waviness, crimp
and nesting of the yarns due to the weaving and composite pro-
cess. A 3D realistic representation of the interlock architecture
has been defined on the basis of optical observations and measure-
ments achieved on cross-sections of the composite (Fig. 3).

3D interlock fabrics are usually woven on classical 2D looms
[16]. The reinforced composite can then be manufactured by
several Liquid Composite Molding (LCM) processes: RTM, VARTM
or Infusion. The latter has been selected because of its growing
popularity in the industry for the ease of preparation thanks to
the lack of the upper part of the mould and the low-level deforma-
tion of the structure when submitted to moderate vacuum. This
manufacturing process is discussed in more details in Section 3.3.
3

3. Influence of manufacturing parameters on the definition of
the 3D interlock composite

An analysis of the weaving and infusion processes is required
for a correct description of the geometry and material properties
of the reinforced composite. First, the weaving itself causes a mod-
ification of the architecture compared to the theoretical one, and
yarn damage. Then, the infusion process is also supposed to affect
the final geometry of the reinforcement in the composite material
due to transverse compaction.

3.1. Effect of tensioning on the architecture during weaving

All the fabrics used in this study are produced with the labora-
tory-scale ARM-Patronic loom, dedicated to the weaving of fabric
samples (Fig. 4). The fibers are made of carbon HexTow� IM7 from
Hexcel (Table 2).

The weaving on classical looms can be divided into the follow-
ing steps: warp beam winding (or warp creel set-up), warp let-off,
warp tensioning, shedding, weft insertion, beating, and taking-up
of the finished fabric [18]. In this case, a few differences are note-
worthy. There is no warp beam winding and let-off. The pristine
bobbins are set up on a creel, the yarns pass through an align-
ment device and then through the eyes of the heedles. Thanks
to the successive raising and lowering of the warp yarns, the weft
yarns can be inserted and beaten. The advancement of the weav-
ing is possible thanks to the translation of the set heedles/reed.
The produced reinforcement has binding warp yarns and straight
weft ones and exhibits some regularity problems. Thereby a
tensioning system is added at the end of the loom in order to
get a more regular and controlled fabric. But the respective roles
of the yarns are reversed with this final tension: the warp yarns
become straight whereas the weft ones turn out to be the linking
yarns. This new architecture is then studied in the sequel. This
reversal is noticed through the cross-section observations (Figs. 6
and 5) and it may change the material strength according to the
direction. This geometrical change has been implemented in the
proposed numerical tool in order to keep a wide range of
interlock representations.

The effect of tensioning on the cross-section shape is also ana-
lyzed. The first interlock fabric displayed lenticular shape for both
types of yarn. The tensioning creates two section shapes: lenticular
for the warp yarns and trapezoidal for the weft ones. This change is
also due to the beating, dependent of the manual action of the
weaver. The straight warp yarns make up parallel channels where



Fig. 4. Scheme of a weaving loom for 3D interlock fabric.

Fig. 5. Fabric woven without tensioning system – wavy warp yarns.

Fig. 6. Fabric woven with tensioning system – straight warp yarns.

Fig. 7. Order of insertion of weft yarns [19].
the untightened weft yarns conform to each other with a trapezoi-
dal section shape. This high density of weft yarns allows better
mechanical properties in this direction. It is essential to keep in
mind that the second architecture is a particular case, due to ten-
sion and beating, of a more general geometry with binding warp
yarns and lenticular cross-sections for all yarns. The tensioning
parameter allows to change the architecture without modifying
the definition of the fabric. In the sequel, a lenticular section shape
is attributed to all the yarns in order to keep the general purpose of
this study.

3.2. Effects of 3D weaving on carbon tows

Two aspects are studied in particular: the yarns passing into the
loom and the waviness and crimp of the weft tows. The handcraf-
ted weaving allows to be more careful with the monitoring and the
change of broken yarns. Warp yarns can be damaged during the
weaving, which in turn may influence the final strength of the
material. The weft yarns are inserted manually and the operator
is assisted for the warp yarns handling. Contrary to 2D fabrics,
yarns are handled many times in 3D interlock fabrics – as many
4

as the number of layers. Warp tows open a shed thanks to the
ertical movements of the heedles in order to stack the weft yarns
on the same vertical orientation.

As an illustration, in Fig. 7, the warp yarns are moved in order to
open a path for the manual insertion of the weft yarn 1, and then
replaced to lock in this yarn and open a path for the weft yarn 2,
and so on for the whole column of weft yarns. Those repeated yarn
motions through the eyes of the heedles give rise to damage by
friction (Fig. 8): in the eyes, against the heedles and against the
other yarns (the wide warp tows are in contact). The warp fila-
ments are weakened due to abrasion. The effect of the reed makes
the damage deeper due to the friction against the warp yarns un-
der tension. The weft tows undergo another effect of the loom.
They are submitted in the rapier to multiple torsion efforts during
the shedding.

As a consequence, the material properties of the yarns and
therefore those of the manufactured fabric and composite decrease
significantly.

The second influence is the waviness of the weft yarns. They are
inserted in the shed and blocked by the warp tows. Then they be-
come wavy as the warp ones are still straight. At the interlacing
points between the warp and weft yarns, a flexural loading occurs
in the latter. As the yarn is thin (6 k carbon yarn), the curvature ra-
dius is low, what may create stress concentration regions and so
promote damage. Furthermore, during the beating, the reed packs
two or three times the weft yarn, what might also increase the pre-
vious damage.

The recognition and the quantization of these phenomena are
important in order to make the numerical model closer to the real-
ity of the composite. Tensile tests are thus performed on single
yarns before and after weaving to evaluate the stiffness decrease
due to the weaving (results are presented in Section 4.1).

3.3. Composite manufacturing process

Composite samples are manufactured prior to characterization.
The choice of infusion (vacuum pressure inferior to 0.1 MPa) was
made among the different LCM processes available, as it is a simple
closed-mould technique and induced a minimum of deformations.



Fig. 8. Yarn damage in the raising/lowering device.

Table 1
Properties of Epolam 5015 epoxy resin.

Maximum stress at failure 105 MPa
Young’s modulus 3 GPa
Failure strain 6%
Viscosity at 25 �C 0.21 Pa.s

Table 2
Properties of HexTow� IM7 carbon fibers.

Tensile strength 5310 MPa
Young’s modulus 276 GPa
Failure strain 1.8%
Fiber density 1.78
Number of filaments 6000
Fiber diameter 5.2 lm
All the different plies are laid down on a flat mould, as shown in
Fig. 9, and the vacuum bag is sealed. The resin is an Epolam 5015
epoxy, mixed with the 5016 hardener (Axson Technology, Table 1).
Its viscosity at 25 �C is low (0.21 Pa.s) to ensure a good impregna-
tion of the fabric. Then, the composite is post-cured during 2 h at
50 �C to complete the polymerization.

3.4. Microscopic observations

The aim of this subsection is to study the quality of the compos-
ite, estimated by the quantity of porosities and to obtain the yarn
dimensions. Therefore, cross-sections of the 3D interlock compos-
ite are sampled in different locations and observed under an opti-
cal microscope. By definition, a porosity is a micro-cavity due to
the trapping of air, gas or solvent during the impregnation stage.
As the porosity scale of the fabric is double (filament and yarn
scales), two types of porosity exist: the micro-porosity (between
the fibers inside a tow) and the macro-porosity (between the
yarns). The generation of porosities is a complex phenomenon
which depends on the velocity and orientation of the flow front,
the capillary pressure and the wettability of the fibers, among
other things. The quantity of porosities defines the quality of the
manufacturing which influences the mechanical behavior of the
composite.

Cross-sections in the interlock composite plate are sampled in
different locations, polished and then observed under a microscope
equipped with a CCD camera. The porosity volume fraction is cal-
culated from the measured porosity surfaces (Fig. 10). The size of
every single porosity on each sample has been measured and its
nature (micro- or macro-porosity) is recorded. It should be noted
that Fig. 10 displays only a third of the actual sample size.

The global averaged porosity rate is low, around 0.6%, with
some samples showing maximal porosity levels of 2%. It proves
the good quality of the material. This very low rate also justifies
a numerical study of the elastic mechanical behavior of the com-
posite, without modeling the porosities and their inelastic behav-
ior. The samples also show that the porosities are mostly located
close to the interlace of the warp and weft yarns, as it is depicted
in Fig. 10 and schematized in Fig. 11. Even though the porosity lev-
els are low, the porosities may be strongly concentrated. Their
presence between the warp and weft yarns can be the location of
stress concentration and thus of damage initiation, such as a deco-
hesion phenomenon. The yarn/yarn and yarn/matrix decohesion
might be affected by these porosities.
Fig. 9. Experimental devi
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The other purpose of the microscopic observations is to mea-
sure the dimensions of the yarns in the composite. The shape of
the cross-sections is found to be lenticular for the warp yarns
and trapezoidal for the weft ones, as seen in Fig. 10. As mentioned
in Section 3.1, a lenticular shape is set to all the cross-sections, in
order to keep the general nature of the geometry. It can be noticed
that the numerical lenticular weft section is equivalent to the real
one in terms of surface area (Fig. 12). The spaces between yarns
and the dimensions of the cross-sections (width and thickness)
are measured accurately. The averaged dimensions are listed in
Table 3.

It should also be mentioned that the cross-sections of the weft
yarns are vertically misaligned due to the action of the reed during
the weaving and the residual stresses in the yarns (Fig. 10). In this
study, the porosities and the nesting are not considered at first to
simplify the geometrical modeling but they could be implemented
in a further simulation step.

Calcination tests are performed to measure the fiber fractions in
the composite. It also allows to distinguish the fractions in both
directions (Table 4). They can be then compared to fractions in
the numerical model, in order to assess the accuracy of the
modeling.

The fiber volume fractions inside the yarns are calculated from
microscopic observations of cross-sections of binarized black and
white pictures (Fig. 13). These fractions are used for the calculation
of the moduli of the yarns in the numerical modeling (Table 5). The
difference of fiber fractions in both directions is the consequence of
a large number of weft yarns which creates a dense binding web
and slightly compacts the warp yarns.

4. Experimental results

4.1. Tensile tests on single yarn composite

Some tests allow to assess the mechanical fiber properties, such
as tensile tests on dry yarns or on dry yarns with impregnated end
ce used for infusion.



Fig. 10. Microscopic observation of cross-sections of the interlock composite in the weft direction.

Fig. 11. Macro-porosities locations in the weft direction.

Fig. 12. Equivalent lenticular and real trapezoidal weft cross-sections.

Table 3
Geometric parameters of the 3D interlock composite.

Warp lens width 1.313 mm
Warp lens thickness 0.139 mm
Weft lens width 1.152 mm
Weft lens thickness 0.206 mm
Horizontal space between warp yarns 3.554 mm
Horizontal space between weft yarns 0.02 mm
Total thickness 2.6 mm

Table 4
Fiber volume fractions in the whole composite and split into the warp and weft
directions.

Composite Warp yarns Weft yarns

Vf 42% 7% 35%
tabs. The first type of specimen shows the difficulty of the tensile
simultaneity on all the fibers thanks to a capstan. The second spec-
imen implies stress concentrations at the interface between dry
yarn and impregnated yarn, where rupture occurs without any sol-
licitation of the dry fibers. Thus, the ASTM D4018-99 standard
method is followed to obtain the mechanical properties of the car-
bon fibers from tests on single composite yarns. Three types of
sample are manufactured: one with yarns from the bobbin and
two with woven yarns from the fabric in both directions. The tows
are dipped into the resin and kept under tension during curing.
Cardboard end tabs are then added onto the specimens to prevent
from slipping in the jaws. The alignment of the yarns with the ten-
sile direction and the jaw clamping effect (to avoid any slippage)
were controlled with great attention. A series of five tests for each
yarn type is performed on a 1474 Zwick machine with a 1 kN force
cell and the deformations are measured using an extensometer. As
the fiber fraction is low in the yarns (15%), the formulae from the
standard for the tensile modulus of the fibers is changed with
6

the addition of a term accounting for the matrix, issued from the
mixture law:

Ef
L ¼

DP � qf

D��MUL
�

1� Vf

� �
Vf

� Em ð1Þ

where DP is the load variation, D� the strain variation, qf the fiber
density, MUL the mass by unit length, Vf the fiber fraction of the sin-
gle composite yarn and Em the matrix modulus.

Table 6 displays the Young’s moduli for all the types of yarn. The
moduli of fibers from the bobbin and of warp yarns are very close to
each other (1% of difference). There is no damage of the warp yarns
during the weaving, despite of what was expected. It might be due
to the low number of warp yarns which are thus not in close contact
to each other and against the heedles thanks to the alignment de-
vice which allows the differentiation of the warp yarns. Conversely,
a loss of about 8% of the longitudinal modulus is noticed for the weft
tows, due to beating and waviness as mentioned in Section 3.2. The
low dispersion of the results proves their reliability.

Values in Table 6 will be used as input data in Section 5, instead
of the values simply deriving from the classical mixture law using
the fiber manufacturer moduli.

4.2. Tensile and flexural tests on 3D interlock composite samples

Experimental tests on composite samples cut out from the in-
fused composite plate have been conducted in order to validate
numerical results.

The monotonous static tensile tests are performed on an 8-layer
interlock composite according to the ISO 527-4 standard. Rectan-
gular specimens without end tabs (250 � 25 mm2) are tested on
a 1474 Zwick machine with a 100 kN force cell. Strains are mea-



Fig. 13. Microscopic transversal cross-section of a warp yarn.

Table 5
Fiber volume fractions in both types of yarn.

Warp yarn Weft yarn

Vyarn
f

65% 60%

Table 6
Mechanical properties of yarns before and after weaving.

Young’s modulus

Yarn from the bobbin 289 GPa (±6%)
Warp yarn from the fabric 287 GPa (±2%)
Weft yarn from the fabric 264 GPa (±6%)

Table 7
Elastic tensile and flexural moduli of the interlock composite.

Tensile moduli Flexural moduli

Warp (1) Em
1 ¼ 12:3 GPa ð�5%Þ Ef

1 ¼ 17:3 GPa ð�10%Þ
Binding weft (2) Em

2 ¼ 64:5 GPa ð�7%Þ Ef
2 ¼ 58:1 GPa ð�4%Þ
sured using an extensometer. The flexural tests are performed
according to the ISO 14125 standard. The rectangular specimens
(100 � 15 mm2) are loaded with a constant speed of 4 mm/min.
The equivalent tensile (m) and 3-point flexural (f) moduli of the
8-layer interlock composite in the warp (1) and weft (2) directions
are averaged each from a series of five tests (Table 7). These exper-
imental results will be compared to numerical ones in Section 6.

5. Numerical prediction of the equivalent mechanical behavior

Full 3D finite element simulations of 3D interlock composites is
a computationally intensive task due to the strong heterogeneity of
such structures. An alternative consists in replacing the 3D heter-
ogeneous material by an equivalent homogeneous plate suitable
for structural applications. As the interlock geometry is periodic
in the fabric plane (in both directions), the calculation of the
effective properties can be performed using an homogenization
procedure on a periodic unit cell. Numerical finite element compu-
tations on an elementary volume involving different simple load-
ings will enable to derive the macroscopic elastic in-plane
moduli (or stiffnesses). The periodic homogenization technique is
briefly presented below and then applied to a periodic unit cell
of the 3D interlock composite.
7

5.1. Periodic homogenization

The approach described in this work has already been applied
by Buannic et al., among others, in the framework of sandwich
structures [20]. Dealing with asymptotic homogenization, two
scale parameters are introduced in the formulation of the 3D prob-
lem of a thin periodic structure: e, the thinness of the plate and l,
the periodicity of the plate, which are supposed to be of the same
order of magnitude. Then an asymptotic expansion method can be
used with only one parameter. Two coordinate systems yi

(i = 1, 2, 3) and xa (a = 1, 2) are defined (with subscript 3 for the
thickness direction), corresponding to the microscopic and macro-
scopic scales, respectively. Next, the displacement field solution of
the 3D elasticity problem is searched under the following form
(with ya = xa/e (a = 1, 2)):

uðxÞ ¼ uð0Þðx1; x2Þ þ euð1Þðx1; x2; y1; y2; y3Þ
þ e2uð2Þðx1; x2; y1; y2; y3Þ þ � � � ð2Þ

The 3D problem is thus decomposed in a sequence of 3D micro-
scopic and 2D macroscopic sub-problems, derived at each order of
the infinitesimal parameter in the asymptotic expansion. Solving
the 0th-order microscopic problem leads to the homogenized con-
stitutive relations in the framework of the Love–Kirchhoff plate
theory, as explained in the sequel.

The local strain field in the unit cell is additively decomposed
into the macroscopic strain E + y3K (where E represents the
membrane macrodeformation and K the curvature one) and a
perturbation �⁄ which accounts for the effect of the heterogene-
ities. This fluctuation of the strain tensor derives from a peri-
odic displacement vector uper and displays a null average value
in the cell volume. The following elasticity problem can then be
solved, with any enforced macroscopic strain field, and the
displacement uper, the microscopic strains � and stresses r as
unknowns:

divðrÞ ¼ 0
r ¼ C : �

�ij ¼ Eij þ y3Kij þ ��ijðuperÞ with i; j ¼ 1;2
r � n ¼ 0 on @X3

upery1 � and y2 � periodic
r � n anti-periodic

8>>>>>>>><
>>>>>>>>:

ð3Þ

where C represents the local fourth-order elasticity tensor (which
depends on the material at the local scale) and @Xi stands for the
boundary surfaces of the unit cell with normal ± yi.



Fig. 14. Tensors, applied loads and strain fields in membrane.
The macroscopic constitutive relations of the plate equivalent
problem are classically written using the macroscopic in-plane
stress resultants {N} and moments {M}, which are simply derived
from the average stresses by integration over the thickness. The
homogenized constitutive equation can then be written as follows,
in matrix notation:

fNg
fMg

� �
¼
½A� ½B�
½B�T ½D�

" #
fEg
fKg

� �
ð4Þ

where [A], [B] and [D] represent the effective stiffness matrices of
the tensile, coupled and bending behaviors, respectively and {E}T =
{E11, E22, 2E12}, {K}T = {K11, K22, 2K12}, in the frame of the Love–
Kirchhoff plate theory.

5.2. Solution procedure

The constitutive matrix in Eq. (4) is naturally symmetric so that
only 21 components have to be determined. The 21 macroscopic
strain fields applied on the heterogeneous unit cell are defined
on an homogeneous cell, with the same mesh as the one used for
the heterogeneous cell. The homogeneous cell is isotropic and ru-
led by the Hooke’s law with the Lamé coefficients (k, l):

r ¼ ktrð�ÞI þ 2l� with k ¼ mE
1þ mð Þ 1� 2mð Þ and

l ¼ E
2 1þ mð Þ ð5Þ

where r and � are the stress and strain tensors, E and m the Young’s
modulus and Poisson coefficient of the isotropic homogeneous
material, and I the identity tensor. The volume f and surface N load-
ings are deduced from the local equilibrium equations, defined with
boundary conditions on the lateral faces of the cell:

divðrÞ þ f ¼ 0
r � n ¼ N

�
ð6Þ

where n is the outward normal unit vector from a given face. These
boundary conditions are applied on the unit cell to create the differ-
ent strain fields. Figs. 14 and 15 show the six elementary strain
fields in membrane and curvature, respectively.

As a consequence, the 21 successive macroscopic strains are ap-
plied as initial deformation states on the heterogeneous unit cell,
each representing one of the membrane or curvature macrodefor-
mations or a linear combination of them, and the equilibrium state
is reached under periodic boundary conditions. In each loading
case, the strain energy W is deduced and employed for the
determination of the constitutive moduli, through the following
relation:

W ¼ 1
2

Z
X
r : � dX

¼ S
2
fEgT � ½A� � fEg þ fKgT � ½D� � fKg þ 2fEgT � ½B� � fKg
� �

ð7Þ

where S is the cell surface area in the reference plane.

5.3. Finite element simulation

5.3.1. Geometrical modeling and material properties
The finite element computations are performed on Abaqus soft-

ware, using a home-made script Python program so as to automate
the modeling procedure and the post-processing, namely the cal-
culation of the effective constitutive matrix. The reinforcement
considered features seven weft layers and eight warp layers
(Fig. 3). The vertical space between yarns is null.
8

The use of the described homogenization method makes neces-
sary the periodic modeling of the interlock composite. However,
this periodicity cannot be respected because of some previously
noticed factors such as nesting, inhomogeneous yarns, yarn crimp
and porosity. Thus, the geometry is idealized until then, assuming
the absence of these factors. The modeling might not be represen-
tative of the real material due to these imperfections, which can be
analyzed statistically and implemented. It is a subtle balance
between the needs of a method and the representation of the
material.

The unit cell is chosen as the smallest volume representing the
whole structure by periodicity. The geometrical modeling of the
unit cell is straightforward thanks to modifiable input parameters
such as the dimensions of the yarns, horizontal spaces between
yarns, and the mesh size.

As mentioned above, the longitudinal Young’s moduli of
impregnated yarns are simply derived from the mixture law, using
the experimental values of fiber moduli found in Section 4.1 (Ta-
ble 6) and fiber volume fractions in each yarn type (Table 5). The
effective modulus of an undamaged tow (187 GPa) is assigned to
the warp tows whereas the binding weft tows are considered as
damaged with a longitudinal modulus of 173 GPa. The other mod-
uli are calculated from the HTA carbon fiber properties used by Cox
et al. [3], which are supposed equivalent to these of IM7 carbon fi-
bers (Table 8 where L represents the fiber direction and T, T0 the
transverse directions of a yarn).

5.3.2. Numerical results
The above-mentioned general procedure leads to the complete

stiffness matrix:



Fig. 15. Tensors, applied loads and strain fields in curvature.
½C� ¼

51;386 3113 3:9 �11;700 �3362 3:4
3113 151;925 56 �8638 �34;406 �14
3:9 56 6493 �3:7 �12 �1118

�11;700 �8638 �3:7 35;751 4858 �18:4
�3362 �34;406 �12 4858 87;346 �27:6

3:4 �14 �1118 �18:4 �27:6 4333

2
666666664

3
777777775
ð8Þ
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It can be noticed that the components of sub-matrix [B] as well
as the terms A13, A23, D13 and D23 are very low in comparison with
the others, excepted for B11 and B22 (Eq. (4)). The assumption of the
null Bij terms leads to the decoupling between the membrane and
flexural behaviors. The case of non null B11 and B22 might be due to
the volume unbalance introduced by the new architecture. In the
case of the former interlock (binding warp and straight weft), the
Bij terms were null, what might be due to its balanced architecture



Fig. 16. Comparison between 3D numerical and 2D equivalent analytical responses
in tension of 1/2/4 cells in the weft direction.

Fig. 17. Comparison between 3D numerical and 2D equivalent analytical responses
in tension of one cell in the warp direction.
(equivalent fiber volume fractions in both directions). Further-
more, the effective moduli calculated with null Bij terms are the
same values as those calculated with the above sub-matrix [B].
Then, from the remaining terms, one can deduce the following
in-plane elastic moduli, corresponding to the membrane (m) and
flexural (f) behaviors, respectively:

Em
1 ¼ 17;303 MPa Ef

1 ¼ 16;318 MPa

Em
2 ¼ 51;116 MPa Ef

2 ¼ 39;867 MPa

Gm
12 ¼ 2189 MPa Gf

12 ¼ 1993 MPa

mm
12 ¼ 0:0205 mf

12 ¼ 0:0556

mm
21 ¼ 0:0606 mf

21 ¼ 0:135

where 1 stands for the warp direction and 2 for the weft one.

6. Validation and analysis

In this section, a comparison between the deduced 2D equiva-
lent behavior and the 3D heterogeneous plate is performed in
membrane and flexural modes, in both directions. Then, a second
comparison is performed with experimental tensile and bending
tests.

The 3D heterogeneous plate is created by assembling unit cells
together, only in the loading direction. The numerical simulation of
the plate is restricted by the number of elements and so the num-
ber of merged unit cells. Simulations are achieved with one, two
and four unit cells and the corresponding deformed shapes are
compared with the analytical solutions based on the 2D equivalent
properties.

In the weft direction, for a same tensile load, Fig. 16 shows that
an improvement of the accordance between the 3D and 2D equiv-
alent plates is achieved with an increasing number of cells (the
maximal error at the plate end is 43%, 35% and 21%, respectively
for a 1-, 2- and 4-cell structure). In the warp direction, adding
one cell decreases significantly the error from 73% (Fig. 17) to
13% (Fig. 18) at the end of the structure. These results show the
importance to use structures with large dimensions, to keep the
scale separation effective (e.g. l� 1, as defined in Section 5.1).
The local increase of 3D deformed shapes at the structure end is
due to the side effects in the matrix.

In pure bending, the plates are composed of two cells in both
directions and a moment is applied at the end of the structure.
There is a good agreement in the weft and warp directions be-
tween the two models, with only 11% (Fig. 19) and 22% of error
(Fig. 20), respectively. In the warp direction, the error might be fur-
ther decreased with the add of cells in order to reach a longer
structure as in the weft direction.

In the simple bending case with two cells, a difference of 22% is
obtained in the weft direction (Fig. 21) whereas 60% of error is ob-
tained in the warp direction (Fig. 22). The transverse shear effects
are not considered in the Love–Kirchhoff theory, which may ex-
plain the discrepancies, but this feature can be introduced using
higher-order terms in the asymptotic expansion to get better
predictions.
Table 8
Mechanical properties of constituents and impregnated yarns.

IM7 carbon fiber HTA carbon fiber [3]

EL ET, E0T GLT, G0LT G0TT mLT, m0LT m0TT

Fiber 287/264 GPa 17 GPa 55 GPa 6.7 GPa 0.25 0.27
Resin 3 GPa – 1.1 GPa – 0.35 –
Yarn 187/173 GPa 8.4 GPa 4.8 GPa 2.9 GPa 0.28 0.44
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The equivalent elastic properties are already in good agreement
with the 3D simulations in both tensile and pure bending cases, for
a limited number of cells. A higher number of assembled cells
would be required to really conclude about the accuracy of the re-
sults. However, this work was not achieved due to the limitation in
computation resources.

2D equivalent results are then compared with experimental
tensile and 3-point bending tests in the warp and weft directions,
in the form of stress–strain and force–displacement curves (Figs. 23
and 24).

In the tensile case, the weft and warp averaged experimental
curves show a non-linear behavior likely due to the damage initi-
ation: yarn/matrix decohesion and friction. In the bending test,
the composite material has a pure elastic behavior until rupture.
The experimental and equivalent elastic moduli are compared in
Table 9. Correlation is good in bending in the warp direction but
could be improved in tension with a more precise modeling of
the yarns (compaction and cross-section variation). In the weft
direction, in both types of loading, the numerical moduli underes-



Fig. 18. Comparison between 3D numerical and 2D equivalent analytical responses
in tension of two cells in the warp direction.

Fig. 19. Comparison between 3D numerical and 2D equivalent analytical responses
in pure bending of two cells in the weft direction.

Fig. 20. Comparison between 3D numerical and 2D equivalent analytical responses
in pure bending of two cells in the warp direction.

Fig. 21. Comparison between 3D numerical and 2D equivalent analytical responses
in simple bending of two cells in the weft direction.
timate the experimental ones. These differences are mainly due to
the numerical representation of the fiber volume fractions. Indeed,
the numerical fiber volume fractions are lower of 4.4% in warp and
19% in weft direction than the measured ones in the composite
(Table 4). In order to increase these values in the model, without
changing the yarn dimensions, it is necessary to consider the nest-
ing and thus a more densely packed architecture.

Furthermore, for comparison purposes, the predictions with all
yarns considered as undamaged (namely a longitudinal modulus of
187 GPa) are plotted in the tensile and bending cases of the weft
direction (Weft num 2D (undamaged yarns) curves). The average
moduli would then be 55 GPa (tensile) and 42.7 GPa (bending):
the difference of 7% with the first damaged equivalent moduli
shows the importance of taking into account the real material
properties of the yarns. The latter moduli with undamaged yarns
seem to improve the agreement with the experimental results.
However, as mentioned above, the improvement of geometrical
modeling thanks to nesting will increase the equivalent moduli
11
(with damaged/undamaged yarns or totally undamaged yarns)
which will then overestimate the experimental values.

7. Conclusion

3D interlock composites make them candidates for specific
applications thanks to their delamination and impact resistance.
Their mechanical study needs new approaches different from the
ones based on the laminate theory. In this work a numerical tool
has been developed for the mechanical study of a carbon/epoxy
layer-to-layer angle-interlock composite. The realistic modeling
of the material in terms of geometry and constituents properties
is essential for an accurate prediction of the mechanical behavior.

An analysis of the whole manufacturing of the composite high-
lights how the weaving and infusion process parameters can influ-
ence the final architecture. Some of these parameters such as
dimensions, fiber fractions, yarn damage during weaving, are
implemented into the automatic and parameterized modeling of



Fig. 23. Comparison of experimental and 2D equivalent curves under tensile load in
the warp and weft directions.

Fig. 24. Comparison of experimental and 2D equivalent curves under flexural load
in the warp and weft directions.

Table 9
Tensile and bending experimental and equivalent moduli.

Tension Bending

Experimental Numerical Experimental Numerical

Warp 12.3 GPa 17.3 GPa (+30%) 17.3 GPa 16.3 GPa (�8%)
Weft 64.5 GPa 51 GPa (�20%) 58 GPa 39.8 GPa (�32%)

Fig. 22. Comparison between 3D numerical and 2D equivalent analytical responses
in simple bending of two cells in the warp direction.

12
the architecture of a unit cell. The results are the effective elastic
in-plane constants predicted from a periodic homogenization
method. There is a good agreement of the in-plane behaviors be-
tween 3D and 2D equivalent models, except for the simple bending
behavior where the transverse loadings were not included. The
interlaminar shear behavior requires more advanced develop-
ments in the homogenization method, combined with short-beam
experimental tests. The determination of the through-the-thick-
ness properties is an important point for impact resistance. These
elastic constants can be then used in shell-type simulations. The
effective moduli are also compared to experimental results and
show good agreement for the warp flexural modulus but could
be improved in tension mode thanks to a better geometry repre-
sentation. For the weft tensile and flexural moduli, the nesting will
be one of the parameters which will increase the fiber fraction and
improve the experimental comparison. Hypotheses have been
introduced to ease the numerical implementation at this first stage
of a more general development.
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