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An original approach is proposed in order to compute the homogenized response of com-
posite materials with elasto-(visco) plastic constituents. The formulation is based on an
incremental variational principle according to which the local stress–strain relation derives
from a single incremental potential constructed from a free energy and a dissipation func-
tion. Both rate-dependent and rate-independent plasticity are handled within the same
framework through the choice of the dissipation function. The key feature of the model
is the explicit use of the elastic trial strain in order to define a Linear Comparison Compos-
ite whose mechanical response coincides with the response of the actual composite at a
given time step. The hereditary character of the behavior is accounted for through internal
variables. The method was successfully applied to several two-phase elasto-plastic and
elasto-viscoplastic composites made of a continuous matrix reinforced by ellipsoidal inclu-
sions. General loading conditions, including cyclic ones, were considered. The proposed
method provides accurate predictions of the macroscopic response in many cases, and
competes with previously proposed schemes in elasto-(visco) plasticity.

1. Introduction

Mean-Field (MF) homogenization methods are efficient micromechanical approaches enabling two-scale simulations of
composite parts and structures at reasonable computational cost. Contrarily to full-field simulations on a Representative Vol-
ume Element (RVE) of the microstructure, they do not provide a complete description of the local fields, but focus on field
statistics in the phases, typically on first and second moments of strain and stress fields (that is, their mean and variance).
Although reliable MF models for linear elastic composites have been available for a long time, developing MF approaches for
nonlinear composites remains highly challenging. In this case, intra-phase field fluctuations have a major impact on the
effective behavior. In addition, the problem complexity increases when the phase behavior is hereditary, as proper account
of the loading history must then be supplied. This paper focuses on the MF homogenization of composites having elasto-
plastic and/or elasto-(visco) plastic constituents.

The proposed approach relies on the definition of linear comparison properties for each phase of the composite at a given
stage of deformation. The comparison properties in turn define a so-called ‘‘Linear Comparison Composite’’ (LCC) whose
mechanical response is (hopefully) close to the actual response of the nonlinear composite at the given load step. The effec-
tive behavior of the LCC can then be computed based on any linear MF model suited for the considered microstructure, such
as the self-consistent estimate (Kröner, 1958; Hill, 1965b) or the Mori–Tanaka scheme (Mori and Tanaka, 1973).
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The most popular approaches of this kind rely on a direct linearization of the local stress–strain relation using tangent
(Hill, 1965a; Molinari et al., 1987; Lebensohn and Tomé, 1993) or secant (Berveiller and Zaoui, 1979; Tandon and Weng,
1988; Suquet, 1995) operators. However, few of them can handle elasto-(visco) plasticity under general loading conditions.
Hill’s incremental formulation (Hill, 1965a) is well suited for rate-independent elasto-plasticity, as the constitutive equation
can be written in rate form using the instantaneous (anisotropic) tangent operator. However, it is well-known that Hill’s
method yields overly stiff predictions (Gilormini, 1995; Suquet, 1996, 1997), unless some isotropic projection of the tangent
operator is considered, instead of the exact, anisotropic expression (González and LLorca, 2000; Doghri and Ouaar, 2003;
Pierard and Doghri, 2006b). Using this heuristic prescription, satisfying predictions have been obtained in numerous exam-
ples of two-phase composites (Doghri and Friebel, 2005; Pierard et al., 2007a). The formulation was recently enriched with
second-order moments, which improves the predictions in case of highly contrasted phase properties (Doghri et al., 2011).
Yet, the approach is not fully satisfying from a theoretical viewpoint, even if some justification for the isotropization has been
proposed (Chaboche and Kanouté, 2003; Chaboche et al., 2005). The affine formulation of Masson et al. (2000) is an inter-
esting alternative to Hill’s formulation (see also (Zaoui, 2002)). It uses the (anisotropic) tangent operators but introduces
polarization stresses. The method was modified to incorporate second-order moments by Brenner et al. (2001). However,
when applied to elasto-plasticity, isotropized operators are still needed to avoid overly stiff predictions, as discussed in
(Chaboche et al., 2005 and Rekik et al., 2007).

Hill’s incremental method cannot directly be applied to rate-dependent elasto-plasticity, as no instantaneous tangent
operator is available. Alternatively, secant (Li and Weng, 1997, 1998) and affine (Masson and Zaoui, 1999; Pierard and
Doghri, 2006a; Pierard et al., 2007b) linearizations have been proposed to obtain a thermo-viscoelastic comparison material
which can be homogenized resorting to the correspondence principle and the Laplace transform (Hashin, 1970). The main
drawback of this approach is that it requires numerical inversion of the Laplace transform, which can be very costly.
Recently, Doghri et al. (2010) proposed an ‘‘incrementally affine’’ procedure which involves the homogenization of a
thermoelastic composite directly in the time-domain, thus avoiding the recourse to the Laplace transform. The method relies
on an affine linearization of the constitutive equations directly in a time-discretized setting, exploiting the algorithmic
structure of the constitutive equations. However, the method still requires the isotropization of the algorithmic tangent
operator to obtain satisfying predictions.

Both rate-dependent and rate-independent elasto-plasticity can be handled within the framework of the Transformation
Field Analysis (TFA) (Dvorak and Benveniste, 1992; Dvorak, 1992). In this framework, the plastic strain is considered as a
uniform eigenstrain in each phase, so that the constitutive equations become thermoelastic. However, the TFA yields too stiff
predictions (Suquet, 1997; Chaboche et al., 2001), which can be attributed to the assumption of uniform plastic strain in each
phase. Recently, non-uniform TFA frameworks were developed for composites and polycrystals, enabling a better description
of the plastic strain fields and giving reasonable predictions (Michel and Suquet, 2004; Franciosi and Berbenni, 2008; Fritzen
and Böhlke, 2010). However, the method requires a preliminary full-field analysis in order to determine plastic modes.

A promising direction towards the development of advanced and rigorous MF models for hereditary behavior is provided
by incremental variational principles. Such variational principles aim at recasting the constitutive equations into equivalent
minimization problems (Comi et al., 1991; Ortiz and Stainier, 1999; Carstensen et al., 2002; Miehe, 2002). Therefore, they
enable the generalization of the variational framework for the homogenization of nonlinear elastic composites (see e.g.
the review of Ponte Castañeda and Suquet (1998)) to the inelastic case. Regarding the formulation of MF models, the vari-
ational framework is very attractive for several reasons. It is mathematically elegant, and enables the derivation of rigorous
bounds on the effective behavior. It can also lead to the derivation of more sophisticated estimates which are not available
from a direct linearization of the constitutive behavior. In particular, variational techniques for the MF homogenization of
nonlinear elastic composites have been successfully developed (Ponte Castañeda, 1991, 1996, 2002). In principle, they can
be extended to the inelastic case adopting the time-discretized setting, provided that a suitable treatment of the internal
variable is supplied. For instance, incremental variational estimates were recently proposed by Lahellec and Suquet
(2007a,b) in the context of nonlinear viscoelasticity.

The general objective of the present work is to propose new MF models for elasto-viscoplastic composites relying on an
incremental variational principle. Here, we generalize our previous formulation for rate-independent elasto-plasticity
(Brassart et al., 2011) in order to account for both rate-independent and rate-dependent elasto-plasticity within a common
framework. The proposed method exploits the algorithmic elegance of the time-integration of J2 elasto-plasticity in order to
define the linear comparison properties. The latter are characterized by the secant operators for the trial strain–stress rela-
tion evaluated at the second moments of the trial strain in the phase. The method also yields homogenized radial return
equations for each phase, as well as a homogenized plastic flow rule. The method is verified by comparing its predictions
to reference results obtained from FE simulations on multiparticle cells. Accurate predictions are obtained in most cases
tested so far. In particular, the new method competes with incremental tangent approaches.

The paper is organized as follows. The incremental variational principle is described in Section 2 in the context of
elasto-viscoplasticity at small strain. We show that this principle leads to radial return equations for the internal variables.
The linearization method sustaining the homogenization model of Brassart et al. (2011) is briefly recalled in Section 3. The
homogenization scheme is developed in Section 4, and its numerical implementation is discussed in Section 5. The accuracy
of the method is evaluated in Section 6 in several examples of particle-reinforced composites.

Throughout the paper, Einstein’s convention is used, with indices ranging from 1 to 3, unless otherwise indicated. The
products of tensors are expressed as (A: r)ij = Aijklrlk, (r:r) = rijrji, and (r ! r)ijkl = rijrkl. The symbols 1 and I stand for
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the second and symmetric fourth order identity tensors, respectively. The spherical and deviatoric operators Ivol and Idev are 

given by

Ivol " 1
3
1! 1; Idev " I # Ivol: ð1Þ

The von Mises measures of stress and strain are respectively given by

req ¼
3
2
s : s

! "1=2

and eeq ¼
2
3
e : e

! "1=2

; ð2Þ

where s and e denote the deviatoric parts of r and e:

s ¼ Idev : r; e ¼ Idev : e: ð3Þ

2. Variational formulation of the constitutive equations

We begin by summarizing the variational formulation of the elasto-(visco) plastic equations. The formulation relies on
the classical thermodynamic framework of Generalized Standard Media (Halphen and Nguyen, 1975; Germain et al.,
1983), according to which the behavior is described by two potentials: a free energy and a dissipation function (see also
the textbooks by Lemaître and Chaboche (1990) and Maugin (1992)). Within this framework, the incremental variational
principle of Ortiz and Stainier (1999) yields constitutive updates for the stress and the internal variables. It suggests an
algorithmic approach very similar in nature to the radial return scheme of Wilkins et al. (1964). These features are essential
for the formulation of the homogenization method presented in the sequel.

2.1. Continuum variational principle

Under the small displacements hypothesis, the total strain tensor is first decomposed into elastic and (visco) plastic
(inelastic) parts: e = ee + ep. We assume the local state to be fully described by the total strain, the plastic strain, and a scalar
variable p measuring the accumulation of plastic deformation. The free energy function is split into elastic and plastic parts:

wðe; ep; pÞ ¼
1
2
e# epð Þ : C : e# epð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
weðeeÞ

þ
Z p

0
RðqÞdq

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
wpðpÞ

: ð4Þ

The latter expression accounts for isotropic hardening only. Kinematic hardening can be considered within the present
framework by introducing a dependance of wp in ep (for linear kinematic hardening of the Prager type) or in an additional
strain-like internal variable (for nonlinear kinematic hardening)1 (see for instance Lemaître and Chaboche (1990)). However,
kinematic hardening will not be considered in the present work. The von Mises plasticity model can be characterized by a flow
rule of the form:

_ep ¼ _pN with trN ¼ 0 and N : N ¼ 3
2
; ð5Þ

where N is a kinematic variable. The first constraint on N ensures incompressibility of plastic flow and the second one en-
sures the uniqueness of the parametrization (5). It follows that: _p ¼ ðð2=3Þ _ep : _epÞ1=2, so that the scalar variable p is the clas-
sical accumulated plastic strain. Thus, in the present framework, the internal variables to be determined through the
variational principle are the direction of plastic flow N and the rate of accumulated plastic strain _p, the rate of plastic strain
tensor being given by the flow rule (5). State laws and evolution laws must ensure that the mechanical dissipation is always
positive:

D ¼ r : _ep # R _p ¼ YðNÞ _p P 0; ð6Þ

where Y(N) " r:N # R.
Following Ortiz and Stainier (1999), a stress power density function is introduced:

J _e; _p;Nð Þ ¼ _w _e; _epð _p;NÞ; _p
$ %

þ /(ð _pÞ ¼ r : _e# YðNÞ _pþ /(ð _pÞ; ð7Þ

where /(ð _pÞ is a dissipation function. Note that in general, the dissipation function may also depend on the state variables as
parameters. The dissipation function will be specified hereafter. For a given strain rate _e, evolution laws are found from the
following variational principle:

inf
_p;N

J _e; _p;Nð Þ " Wð _eÞ; ð8Þ

1 Incremental variational principles accounting for nonlinear kinematic hardening have been proposed only recently (Mosler, 2010; Canadija and Mosler,
2011).
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where the minimization is performed under constraints (5). The optimality condition with respect to (w.r.t.) _p yields the fol-
lowing kinetic relations:

Y ¼ o/(

o _p
ð _pÞ; or; equivalently; _p ¼ o/

oY
ðYÞ; ð9Þ

where / is the dual of /⁄ by the Legendre transform. By choosing /(ð _pÞ to be non-negative, convex and such that /⁄(0) = 0,
the mechanical dissipation (6) is necessarily non-negative. The minimization of J w.r.t. N under constraints (5) is performed
using Lagrange multipliers and it yields (for computation details, see Brassart (2011), Appendix C):

N ¼ 3
2

s
req

: ð10Þ

The minimization of Jw.r.t. N can be interpreted as a maximum dissipation principle at fixed _p. Finally, by taking stationarity
w.r.t. _p and N into account, it immediately appears from (7) that W acts as a potential for the stress:

r ¼ dW
d _e

ð _eÞ: ð11Þ

2.2. Dissipation function in rate-dependent and rate-independent elasto-plasticity

Retrieving the classical equations of elasto-viscoplasticity requires us to specify the form of the dissipation function. A
sufficiently general form for the present work includes a parametric dependance on p:

/(ð _p;pÞ ¼
hvð _p;pÞ _p P 0;
þ1 otherwise:

&
ð12Þ

Here, the viscous potential hvð _p; pÞ is non-negative, convex w.r.t. _p and chosen such that:

ohv
o _p

''''
_p¼0þ

¼ rY ; ð13Þ

where rY is the initial yield stress. The dissipation function and its dual are represented in Fig. 1(a) and (b). Since /⁄ is not
differentiable at _p ¼ 0, the partial derivative in (9) must be understood in the sense of sub-differential. The following prop-
erties follow from the specific form of /⁄:

Fig. 1. Dual dissipation functions for rate-dependent ((a) and (b)) and rate-independent ((c) and (d)) elasto-plasticity.
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Y ¼ req # R < rY () _p ¼ 0;
Y ¼ req # R P rY () _p > 0:

ð14Þ

In other words, deformation is purely elastic when the force is inside the elasticity domain [0,rY]. Plastic flow occurs as soon
as the force reaches the yield stress rY. Negative values of _p are prohibited, as they would imply infinite dissipation. Rate-
independent plasticity is obtained as a particular case of viscoplasticity by choosing /⁄ homogeneous of degree one w.r.t. _p:

/(ð _pÞ ¼
rY _p _p P 0;
þ1 otherwise:

&
ð15Þ

In this case, the force Y may not leave the yield surface during plastic flow. The dissipation functions for rate-independent
plasticity are depicted in Fig. 1(c) and (d). Note that in the case of rate-independent elasto-plasticity, the functional J (7) is
not convex w.r.t. _p, so that the minimization w.r.t. _p cannot be enforced in general (to the contrary of the minimization w.r.t.
N). Therefore, only stationarity in this variable is imposed in the variational principle (8).

2.3. Discretized setting

The continuous variational principle (8) serves as the basis for the derivation of constitutive updates in a time-discretized
setting. The state at time tn is supposed to be given: en; e

p
n; pn

( )
, as well as the total strain at tn+1: en+1. In order to compute the

stress rn+1 and internal variables epnþ1 and pn+1, we assume that _p is constant over the time step and given by the ratio Dp/Dt,
with D() = ()n+1 # ()n. Similarly, the plastic flow rule (5) is discretized as:

Dep ¼ DpN; ð16Þ

where N now denotes an (a priori unknown) constant direction of plastic flow for the time increment subjected to the same
constraints as in the continuous case. The incremental variational principle of Ortiz and Stainier (1999) reads:

WDðenþ1Þ ¼ inf
Dp;N

JD enþ1;Dp;Nð Þ; ð17Þ

where the functional JD is obtained by integrating expression (7) over the time step:

JD enþ1;Dp;Nð Þ ¼ w enþ1; e
p
nþ1ðDp;NÞ; pnþ1

$ %
# wn þ Dt/( Dp

Dt
; pnþh

! "
: ð18Þ

Here wn is the free energy computed for the state variables at tn. The possible dependence of /⁄ in p is handled by evaluating
the dissipation function at an intermediary value during the time interval (generalized midpoint rule):

pnþh ¼ ð1# hÞpn þ hpnþ1: ð19Þ

Stationarity of JD w.r.t. Dp leads to:

Ynþ1 ¼ o/(

o _p
Dp
Dt

; pnþh

! "
þ hDt

o/(

op
Dp
Dt

; pnþh

! "
; ð20Þ

where Yn+1 is defined similarly as in the continuous case: Yn+1 = rn+1: N # R(pn+1). The minimization w.r.t. N under constraints
(5) is performed using Lagrange multipliers, and it yields (for computation details, see Brassart et al. (2011), Appendix C):

N ¼
3
2

strnþ1

rtr
eq;nþ1

¼
etrnþ1

etreq;nþ1
; ð21Þ

where rtr and etr are the trial (or predictor) stress and strain, respectively:

rtr
nþ1 ¼ C : etrnþ1; etrnþ1 ¼ enþ1 # epn: ð22Þ

Note that (21) holds under the assumption of isotropic elasticity, in which case the elastic stiffness tensor expresses as:
C = 3jIvol + 2lIdev, where j and l are the bulk and shear moduli, respectively. Substituting expression (21) for N into the
kinetic relation (20), the stationarity condition for Dp becomes:

#rtr
eq;nþ1 þ 3lDpþ Rðpnþ1Þ þ

o/(

o _p
Dp
Dt

;pnþh

! "
þ hDt

o/(

op
Dp
Dt

;pnþh

! "

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
OðDtÞ

¼ 0; ð23Þ

where Dp is necessarily non-negative by virtue of (12). The problem of the non-smoothness of the dissipation function for
Dp = 0 can be circumvented by evaluating the slope of the functional JD for D p = 0+. If it is negative, i.e. if

#rtr
eq;nþ1 þ RðpnÞ þ

o/(

o _p
ð0þ;pnÞ < 0; ð24Þ
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then the optimalDp is positive and satisfies condition (23). Otherwise, the optimalDp is zero and the increment is fully elas-
tic. Finally, taking the stationarity ofWD w.r.t.Dp and N into account, it is readily seen that the functionWD acts as an (incre-
mental) potential for the stress:

rnþ1 ¼ dWD

denþ1
ðenþ1Þ ¼

oJD
oenþ1

ðenþ1;Dp;NÞ ¼ C : enþ1 # epnþ1

$ %
; ð25Þ

where Dp and N are the solutions of the minimization problem (17).
The numerical scheme for the update of Dp can be compared to the classical radial return equations (Wilkins et al., 1964,

see also Simo and Hughes, 1998; Doghri, 2000). In the rate-independent case, the dissipation function (15) has no parametric
dependence in p, and Eq. (23) simply reduces to:

#rtr
eq;nþ1 þ 3lDpþ Rðpnþ1Þ þ

o/(

o _p
Dp
Dt

! "

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼rY if Dp>0

¼ 0; ð26Þ

which coincides exactly with the classical radial return condition. In the case of rate-dependent plasticity, the dissipation
function may include a parametric dependence in p, according to expression (12). The update of accumulated plastic strain
then obeys the discretized kinetic Eq. (20). Clearly, this discretized flow rule does not coincide with its continuous expression
computed for the time tn+1:

Ynþ1 ¼ o/(

o _p
Dp
Dt

; pnþ1

! "
; ð27Þ

which is fully implicit, contrarily to expression (20) (at least, for arbitrary h). In the case of the Perzyna-type viscoplastic
function with a drag stress considered in Section 6.1, Brassart and Stainier (2012) suggested an optimal value of the integra-
tion parameter in terms of the viscoplastic exponent M 2 [0,1]:

h( ¼ M þ 1
M þ 2

2 ½1=2;2=3*: ð28Þ

This value of the integration parameter cancels the integration error in the case of linear hardening. In the sequel, integration
of the incremental variational principle makes use of this value. The integration error is in OðDtÞ, so that is becomes negli-
gible for reasonably small time steps, and the method remains consistent for any value of h. The impact of the integration
parameter on the convergence of the variational updates is discussed in Brassart and Stainier (2012).

3. Secant linearization based on the trial strain

3.1. Variational procedure

The incremental homogenization procedure relies on the notion of linear comparison material, the properties of which
need to be defined at each position and time. In the present section, the incremental variational principle (17) is reformu-
lated in terms of the potential of the linear comparison material. To this end, we focus on the elastic part of the free energywe

which dictates the stress–strain relation for a fixed plastic strain epnþ1. Unless otherwise indicated, all quantities are evaluated
at tn+1 and the subscript is omitted for conciseness.

As detailed in Brassart et al. (2011), using expression (21) for N, the elastic energy may be reexpressed in terms of the trial
strain etr and Dp as:

~weðetr;DpÞ ¼ 9
2
j etrm
$ %2 þ f etreq

* +2
;Dp

! "
; ð29Þ

where the mean strain is defined as: em " tr (e)/3 and the function f is given by

f etreq
* +2

;Dp
! "

¼ 3
2
l 1# Dpffiffiffiffiffiffiffiffiffiffiffiffiffiffi

etreq
* +2r

0

BB@

1

CCA

2

etreq
* +2

¼ 3
2
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
etreq
* +2

r
# Dp

 !2

: ð30Þ

The function f is non-negative and convex w.r.t. etreq
* +2

. Considering the trial strain, instead of the total strain, as primary
variable, expression (29) is similar in form to the elastic energy of a nonlinear, isotropic elastic material. The response is lin-
ear for purely hydrostatic loading and it is nonlinear in shear.

The technique used in order to define a linear comparison material inspires from the variational technique of Ponte
Castañeda (1991) and is based on the following equality:

f etreq
* +2

;Dp
! "

¼ f (( etreq
* +2

;Dp
! "

¼ sup
l0

3
2
l0 etreq
* +2

# f (
3
2
l0;Dp

! "& -
: ð31Þ
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Here f⁄ is the convex dual of f by Legendre transform (where Dp acts as a parameter):

f (
3
2
l0;Dp

! "
¼ sup

etreqð Þ2
3
2
l0 etreq
* +2

# f etreq
* +2

;Dp
! "& -

¼ 3
2
ll0ðDpÞ

2

ðl# l0Þ
: ð32Þ

Then, the elastic energy (29) may be reexpressed as:

~we etr;Dp
$ %

¼ sup
l0

W0ðetr ;l0Þ # f (
3
2
l0;Dp

! "& -
; ð33Þ

where W0 is the energy of a fictitious, isotropic linear elastic material:

W0ðetr;l0Þ ¼
1
2
etr : C0 : etr with C0 " 3jIvol þ 2l0I

dev; ð34Þ

so that the new variable l0 introduced by the Legendre transform is an effective shear modulus.

3.2. Interpretation as a trial secant linearization

The tensor C0 can be interpreted as a secant stiffness tensor relating the trial strain and the stress. Indeed:

r ¼ owe

oee
¼ o~we

oetr
:
oetr

oe
¼ C0 : etr : ð35Þ

Contrarily to other secant schemes for nonlinear elasticity (Berveiller and Zaoui, 1979; Tandon and Weng, 1988; Suquet,
1995), the present secant method remains incremental in nature, as the trial strain depends on the plastic strain of the pre-
vious time step. The linearization method is illustrated in Fig. 2.

An analytical expression of the shear modulus can be derived from (33):

l0 ¼ l 1# Dp
etreq

!
: ð36Þ

This modulus does not coincide with the secant elasto-plastic shear modulus obtained in a deformation theory of plasticity,
which writes:

lsec ¼ l req

req þ 3lp

! "
: ð37Þ

It differs also from the shear modulus ltgt of the algorithmic tangent operator of elasto-plasticity, when isotropized accord-
ing to the spectral method (see Appendix C, Eq. (97)):

ltgt ¼ l 1# 3l
3lþ R0ðpÞ

! "
: ð38Þ

It turns out that the effective shear modulus (36) is identical to coefficient k2 in decomposition (94) of the algorithmic tan-
gent operator according to the spectral method.

4. Homogenization

4.1. Incremental variational formulation of the homogenization problem

We now consider a RVE of a composite microstructure with volume V. The spatial arrangement of the phases is described
by characteristic functions v(r)(x) such that v(r)(x) = 1 if x is in phase r, and zero otherwise. The volume fraction of phase r is

Fig. 2. The proposed variational formulation can be interpreted as a secant method based on the elastic trial strain: etrnþ1 ¼ enþ1 # epn .
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cr = V(r)/V, where V(r) is the volume occupied by phase r. We make no particular assumption about the type of microstructure
at this point. Volume averages over the RVE and phase r of the composite are respectively denoted by h + i and h + ir. The free
energy w and dissipation function /⁄ at some position x are written in the condensed form:

wðx; e; ep;pÞ ¼
PN

r¼1
vðrÞðxÞwðrÞðe; ep;pÞ; /(ðx; _p; pÞ ¼

PN

r¼1
vðrÞðxÞ/(ðrÞð _p;pÞ; ð39Þ

where w(r) and /⁄(r) characterize the behavior of phase r.
The RVE is subjected to a given history of imposed macroscopic deformation !eðtÞ. Boundary conditions (B.C.) are applied

to the RVE in such a way that: heðtÞi " !eðtÞ. For instance, linear displacement B.C. can be considered, with: uðtÞ ¼
!eðtÞ + x on oV , the boundary of the RVE. We aim to compute the corresponding macroscopic stress history !rðtÞ " hrðtÞi.
Adopting a time-discretized setting, the problem can be restated into that of determining the macroscopic stress !rnþ1 at
tn+1, for given macroscopic strain !enþ1 and state variables at tn. The local fields en+1(x) and rn+1(x) must satisfy the following
set of equations:

$ + rnþ1 ¼ 0 in V ;

enþ1 ¼ 1
2 ð$uÞnþ1 þ ð$uÞTnþ1

* +
in V ;

rnþ1 ¼ oWD
oenþ1

ðx; enþ1Þ in V ;

henþ1i ¼ !enþ1 þB:C: on oV

8
>>>>><

>>>>>:

; ð40Þ

where WD(x,en+1) is the local incremental potential:

WDðx; enþ1Þ ¼ inf
Dp;N

JDðx; enþ1;Dp;NÞ ð41Þ

with

JDðx; enþ1;Dp;NÞ ¼ wðx; e; ep; pÞ # wnðxÞ þ Dt/(ðx; _p;pÞ: ð42Þ

The local problem (40) can be restated into the following equivalent variational representation (Miehe, 2002; Lahellec and
Suquet, 2007a):

WD !enþ1ð Þ ¼ inf
enþ12Kð!enþ1Þ

WD x; enþ1ð Þh i ¼ inf
enþ12K !enþ1ð Þ

inf
Dp;N

JD x; enþ1;Dp;Nð Þ
. /

; ð43Þ

where the set of kinematically admissible strain fields Kð!enþ1Þ in (43) is given by

Kð!enþ1Þ ¼ enþ1jenþ1 ¼ 1
2

ð$uÞnþ1 þ ð$uÞTnþ1

* +
; henþ1i ¼ !enþ1

& -
: ð44Þ

The new quantity WD is the effective incremental potential of the composite, from which the macroscopic stress can be
derived:

!rnþ1 ¼ oWD

o!enþ1
ð!enþ1Þ: ð45Þ

This expression is consistent with a classical thermodynamic formulation according to which the (macro) stress is the force
conjugated to the (macro) strain. Moreover, the macroscopic stress defined by (45) coincides with the average of the stress
fields over the RVE, as required (Lahellec and Suquet, 2007a). Hence, the problem of computing the overall response of the
composite amounts to solving the variational problem (43) at each time step, which itself involves a local optimization prob-
lem (41) w.r.t. the internal variables at every position. Instead of a computationally-costly numerical full-field solution, an
approximate mean-field approach is developed in the sequel while taking advantage of the linear comparison material intro-
duced in Section 3.

4.2. Definition of the linear comparison composite

In this section we propose a variational procedure aiming at introducing the effective potential of a Linear Comparison
Composite (LCC) into formulation (43) of the homogenization problem. All quantities are computed at tn+1, unless otherwise
indicated.

Using (33), the functional JD(x,e,Dp,N) (42) is first rewritten as:

JDðx; e;Dp;NÞ ¼ sup
l0

W0 x; e# epn;l0

$ %
# f ( x;

3
2
l0;Dp

! "
þ wpðx;pn þ DpÞ # wnðxÞ þ Dt/( x;

Dp
Dt

; pnþh

! "& -
; ð46Þ

where N is the solution of the local minimum problem in (43). Then, the effective incremental potential of the composite can
be expressed in terms of the potential of a LCC by introducing (46) into (43) and by permuting the order of optimization over
e(x), D p(x) and l0(x). It yields:
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WDð!eÞ ¼ inf
Dp

sup
l0

inf
e2Kð!eÞ

W0 x; e# epn;l0

$ %0 1
þ #f ( x;

3
2
l0;Dp

! "
þ wpðx;pn þ DpÞ # wnðxÞ þ Dt/( x;

Dp
Dt

;pnþh

! ". /& -
:

ð47Þ

Next, we restrict the field of solutions l0(x) to piecewise uniform fields. It follows thatDp and p too are necessarily piecewise
uniform. Indeed the optimization problem overDp in (47) is local, and all terms containingD p are piecewise uniform during
the first time step. The corresponding estimate of the effective potential may be written into a condensed form as:

WDð!eÞ , fWDð!eÞ ¼ inf
DpðsÞ

sup
lðsÞ
0

W0 !e;lðsÞ
0

* +
þ
PN

r¼1
crV ðrÞ DpðrÞ;lðrÞ

0

* +& -
ð48Þ

where W0 is the effective potential of a LCC characterized by shear moduli lðrÞ
0 and subjected to an eigenstrain field epnðxÞ:

W0 !e;lðsÞ
0

* +
¼ inf

e2Kð!eÞ

PN

r¼1
vðrÞðxÞ1

2
e# epn
$ %

: CðrÞ
0 : e# epn
$ %. /

; ð49Þ

with

CðrÞ
0 ¼ 3jðrÞIvol þ 2lðrÞ

0 Idev; ð50Þ

and

V ðrÞ DpðrÞ;lðrÞ
0

* +
¼ #f (ðrÞ

3
2
lðrÞ

0 ;DpðrÞ
! "

þ wpðrÞðpðrÞÞ # hwnir þ Dt/(ðrÞ DpðrÞ

Dt
;pðrÞ

nþh

! "
: ð51Þ

The optimization condition for lðrÞ
0 in (48) amounts to:

oW0

olðrÞ
0

# cr
of (ðrÞ

olðrÞ
0

¼ 0: ð52Þ

The first term on the left-hand side member can be rewritten in terms of the second moment of the trial strain as:

oW0

olðrÞ
0

¼ 3
2
cr etreq
* +2. /

r
: ð53Þ

The proof is given in Appendix A. The second term is readily computed analytically from expression (32) of f⁄. Combining
results (52) and (53), the optimal comparison shear modulus writes:

lðrÞ
0 ¼ lðrÞ 1# DpðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

etreq
* +2. /

r

s

0

BBBB@

1

CCCCA
: ð54Þ

Taking into account the stationarity condition w.r.t. lðrÞ
0 , the optimization over Dp(r) yields the homogenized radial return

condition:

#3lðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

etreq
* +2. /

r

s

þ 3lðrÞDpðrÞ þ RðrÞðpðrÞÞ þ o/(ðrÞ

o _p
DpðrÞ

Dt
;pðrÞ

nþh

! "
þ hDt

o/(ðrÞ

op
DpðrÞ

Dt
;pðrÞ

nþh

! "

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
OðDtÞ

¼ 0: ð55Þ

A solution Dp(r) > 0 is found if the homogenized yield criterion is satisfied:

#3lðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

etreq
* +2. /

r

s

þ RðrÞ pðrÞ
n

$ %
þ rðrÞ

Y < 0: ð56Þ

Otherwise, the optimal Dp(r) is zero, as negative values are precluded by virtue of the specific form of the dissipation func-

tion. In Eq. (56), the second moment

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

etreq
* +2. /

r

s

is computed on the LCC characterized by the elastic shear moduli l(r).

Indeed, lðrÞ
0 ! lðrÞ as Dp(r) ? 0.

The estimate fWD (48) of the effective incremental potential requires the computation of the effective potential of a LCC
with fluctuating eigenstrain field epnðxÞ. However, semi-analytical homogenization schemes for thermoelastic composites are
available (to our knowledge) only for piecewise uniform eigenstrain. Therefore, a strategy must be proposed to approximate
the potential W0.
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4.3. Approximation of compatible trial strain field

In order to simplify the LCC problem (49), we propose to use the trial strain as control variable (instead of the total strain),
and to approximate it by a compatible strain field, assuming that there exists some displacement field utr such that:

etr , 1
2

ð$utrÞ þ ð$utrÞT
* +

: ð57Þ

Also, we approximate the effective potential of the LCC by

W0 !e;lðsÞ$ %
, fW 0 !etr;lðsÞ$ %

¼ inf
etr2Kð!etrÞ

PN

r¼1
vðrÞðxÞ1

2
etr : CðrÞ

0 : etr
. /

; ð58Þ

where etr belongs to the set of strain fields which are compatible with some macroscopic strain !etr which remains to be de-
fined. According to definition (44) of this set, the macroscopic strain field is such that !etr ¼ hetri ¼ hei # epn

0 1
. In order to en-

force the expected equality hei ¼ !e, which does no longer follow from the formulation (58) of the LCC problem, we define the
macroscopic trial strain as:

!etr " !e# epn
0 1

: ð59Þ

The estimate for the effective energy of the nonlinear composite then becomes:

fW Dð!eÞ ¼ inf
DpðsÞ

sup
lðsÞ
0

fW 0 !etr;lðsÞ
0

* +
þ
PN

r¼1
crV

ðrÞ lðrÞ
0 ;DpðrÞ

* +& -
: ð60Þ

Assumption (57) amounts to neglect both inter- and intra-phase plastic incompatibilities. Despite the crudeness of this
working hypothesis, it will be shown in the sequel that the overall behavior of the composite is properly predicted in many
cases.

4.4. Summary of the mean-field model

In Sections 4.2 and 4.3 we derived the estimate (60) of the effective incremental potential of the composite. The MF model
suggested by this expression goes as follows.

According to Eq. (45), the macroscopic stress of the composite is computed from the estimate of the effective incremental
potential (60) as:

!r ¼ ofW D

o!e
¼ ofW 0

o!etr
¼ C0 : !etr; ð61Þ

where the second equality follows from the stationarity of fWD w.r.t. lðrÞ
0 and D p(r). From the approximation of compatible

trial strain presented in the previous section, the effective potential of the LCC simply reads as:

fW 0 !etr;lðsÞ
0

* +
¼

1
2
!etr : C0 : !etr ; ð62Þ

where C0 is the effective stiffness of the LCC. The latter can be obtained from any homogenization scheme for linear elastic
composite suited for the microstructure under consideration. If the strain concentration tensors A(r) are available, then:

C0 ¼
PN

r¼1
crC

ðrÞ
0 : AðrÞ: ð63Þ

As the macroscopic stress of the nonlinear composite (subjected to !eÞ and the macroscopic stress of the LCC (subjected to !etr)
coincide, it seems natural to compute the phase averages of the stress in the nonlinear composite by corresponding averages
in the LCC. In addition, we assume that per-phase averages of the trial strain field are computed on the LCC. Then, we may
write:

hetrir ¼ AðrÞ : !etr ð64Þ

and

hrir ¼ CðrÞ
0 : hetrir: ð65Þ

The second moment of the trial strain involved in relations (54)–(56) can be derived from the expression of the effective stiff-
ness C0 as (Bobeth and Diener, 1986; Kreher, 1990; Ponte Castañeda and Suquet, 1998):

etreq
* +2. /

r
¼ 1

3cr
!etr :

oC0

olðrÞ
0

: !etr: ð66Þ
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The proposed estimate requires the computation of the average plastic strain at each time step, see Eq. (59). Following
Brassart et al. (2011), the average plastic strain increment in phase r is given by

hDepir ¼ Dp
etr

etreq

* +

r

¼ DpðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

etreq
* +2. /

r

s hetrir: ð67Þ

5. Numerical implementation

The MF model proposed in the previous section involves the resolution of nonlinear equations at each time step. The
following algorithm is proposed.

Given a macroscopic deformation !enþ1 and the phase averages of the internal variables at tn: p
ðrÞ
n and epn

0 1
r , we aim to

update the macroscopic stress !rnþ1 and the internal variables epnþ1

0 1
r and pðrÞ

nþ1. The homogenization procedure involves
the following steps.

- Compute the average plastic strain at tn : epn
0 1

¼
PN

r¼1cr e
p
n

0 1
r and the macroscopic trial strain (59): !etrnþ1 ¼ !enþ1 # epn

0 1
.

- Elastic predictor step: Set lðrÞ
0 ¼ lðrÞ.

1. Compute the effective stiffness C0 from the tensor CðrÞ
0 built on l(r).

2. Compute second moments of the trial strain according to (66).
3. Decide whether plasticity develops in phase r according to the homogenized yield criterion (56). If the increment is

elastic in phase r, then lðrÞ
0 ¼ lðrÞ is the solution and Dp(r) = 0. Otherwise, lðrÞ

0 and Dp(r) must be determined
iteratively.

- Plastic corrector step: Initialization: lðrÞ
0 ¼ lðrÞ. Iteration (i) (upper index (i) omitted for simplicity).

– Compute the effective stiffness C0 from the tensor CðrÞ
0 built on lðrÞ

0 .
– For each phase r which deforms plastically:
1. Compute second moments of the trial strain according to (66).
2. Compute Dp(r) from etreq

D E

r
and lðrÞ

0 according to Eq. (54).
3. Compute the scalar residual:

FðrÞ ¼ #3lðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

etreq
* +2. /

r

s

þ 3lðrÞDpðrÞ þ RðrÞðpðrÞÞ þ o/(ðrÞ

o _p
DpðrÞ

Dt
; pðrÞ

nþh

! "
þ hDt

o/(ðrÞ

op
DpðrÞ

Dt
; pðrÞ

nþh

! "

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
OðDtÞ

: ð68Þ

– if jF(r)j < TOL " r, then exit the loop.
– else: new iteration with new lðrÞ

0 .
- After convergence

1. Compute the increment of average plastic strain (67).
2. Update the internal variables:

hepir ¼ epn
0 1

r þ hDepir ;
pðrÞ ¼ pðrÞ

n þ DpðrÞ:

3. Compute the macroscopic stress:

!r ¼ C0 : !etr

The numerical procedure can be combined with any linear MF model suited for the microstructure under consideration and
for which an expression for the effective stiffness C0 is provided. When this expression is available in closed-form (this is the
case of the Mori–Tanaka model considered below), the procedure is efficiently implemented using Newton’s method. It
necessitates the differentiation of the residual function (68) w.r.t. the shear moduli. Some details about the numerical res-
olution with Newton’s method are given in Appendix B together with the macroscopic consistent tangent operator.

6. Application to two-phase composites

In this section, the proposed homogenization procedure is used to predict the overall behavior of several elasto-(visco)
plastic composites. We focus on two-phase composites presenting a particulate microstructure, with a low to moderate vol-
ume fraction of inclusions. For such microstructures, the Mori–Tanaka method is known to give reliable predictions of the
overall response of linear composites. The Mori–Tanaka method is thus a natural choice for the homogenization of the LCC.
An advantage of the Mori–Tanaka model is that analytical expressions for the effective properties of the LCC are available in
closed-form.
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The Mori–Tanaka model (Mori and Tanaka, 1973; Benveniste, 1987) relies on the solution of the equivalent inclusion
problem, due to Eshelby (1957). For this model, the strain concentration tensor for the inclusion phase is given by (inclusions
and matrix are phases 1 and 2, respectively):

Að1Þ ¼ I þ c2P : Cð1Þ
0 # Cð2Þ

0

* +n o#1
; ð69Þ

where P is Hill’s polarization tensor, which depends solely on the matrix properties and the geometry of the inclusions.
According to the well-known result of Eshelby, the strain field within the inclusion predicted by the Mori–Tanaka model
is uniform.

The procedure of Section 5 was implemented using Newton’s method, as described in Appendix B. In the following exam-
ples, usually less than 10 iterations are needed to reach convergence. This number falls to 3 or 4 in the case of elasto-plastic
phases. All MF simulations took less than 1s of CPU time on an ordinary PC when subdividing one cycle of uniaxial tension/
compression into 200 time increments. The predictions of the proposed approach are compared to reference results provided
by full-field, FE computation on representative cells of the microstructure. The FE results are either original, or gathered from
the literature.

6.1. Dissipation functions

Before giving numerical examples, we first specify the dissipation functions which will be considered in the sequel.
Norton’s power law The kinetic relation for Norton’s power law is given by

_p ¼
_p0

rv
rY

* +m
if req P rY þ R;

0 otherwise;

8
<

: ð70Þ

where rv " req # R # rY is commonly called the viscous stress. Recalling that Y = req # R, Norton’s power law is obtained
choosing the following dissipation potential:

/ðYÞ ¼
_p0rY
mþ1

Y#rY
rY

* +mþ1
Y P rY ;

0 Y < rY ;

8
<

: ð71Þ

or, equivalently:

/(ð _pÞ ¼
_prY þ _prY

Mþ1
_p
_p0

* +Mþ1
_p P 0;

þ1 _p < 0;

8
<

: ð72Þ

with M = 1/m. One can readily check that the kinetic relation (9) yields relation (70).
Perzyna’s power law As compared to Norton’s law, this viscosity function leads to additional isotropic hardening due to the

presence of a drag stress D(p):

_p ¼
_p0

rv
DðpÞ

* +m
if req P rY þ R;

0 otherwise:

8
<

: ð73Þ

The corresponding dissipation function is:

/ðY; pÞ ¼
_p0DðpÞ
mþ1

Y#rY
DðpÞ

* +mþ1
Y P rY ;

0 Y < rY ;

8
<

: ð74Þ

or, equivalently:

/(ð _p;pÞ ¼
_pY0 þ

_pDðpÞ
Mþ1

_p
_p0

* +Mþ1
_p P 0;

þ1 _p < 0:

8
<

: ð75Þ

The drag stress D(p) can be given a general expression of the form D(p) = K + fR(p) which corresponds to a drag stress pro-
portional to the hardening stress (Chaboche, 2008). Here, Perzyna’s approach is adopted (Perzyna, 1964): K = rY and f = 1.
Note that this power law is implemented in the commercial software ABAQUS 6.9 (2009).

6.2. Metal Matrix composite

We start with a Metal Matrix Composite (MMC) consisting of an elasto-plastic matrix reinforced by spherical inclusions.
The spatial distribution of the inclusions is random, and two volume fractions of inclusions are considered: c1 = 0.15 and
c1 = 0.25. The material properties of the inclusions and matrix are the following:

12



- Inclusions (phase 1): E = 400 GPa, m = 0.2.
- Matrix (phase 2): E = 75 GPa, m = 0.3, rY = 75 MPa, R(p) = hpn, h = 400 MPa, n = 0.4 or n = 0.05.

The behavior of the matrix is assumed to be rate-independent at this point. Such properties are representative of an
Aluminum matrix reinforced by SiC inclusions. MMC’s with similar material properties were previously considered by
several authors aiming to assess homogenization models (Segurado et al., 2002; Michel and Suquet, 2003; Doghri and Ouaar,
2003; González et al., 2004; Chaboche et al., 2005; Pierard et al., 2007a) so that the predictive capabilities of the present
approach can easily be evaluated w.r.t. those schemes. The predictions of the proposed variational estimate (labeled VAR
in the figures) are compared to original FE results obtained on periodic cells containing 35 randomly dispersed inclusions.
Details about microstructure generation and FE computation can be found in Brassart et al. (2010). For comparison, we also
show results obtained with an incremental tangent method (Doghri and Ouaar, 2003; Pierard and Doghri, 2006b), labeled
‘‘Inc.Tgt’’ in the figures and briefly described in Appendix C.

6.2.1. Uniaxial tension/compression cycles
The composites are subjected to uniaxial tension/compression along direction 1. For c1 = 0.15 (Fig. 3(a)), the variational

method correctly predicts the effective response, while the incremental tangent approach yields a slight overestimation. For
c1 = 0.25 (Fig. 3(b)), the incremental tangent scheme is slightly more accurate than the variational method, which underes-
timates the macroscopic stress, except after load reversal. At low hardening exponent, FE results exhibit a significant
Bauschinger effect during macroscopic plastic yielding in compression. This effect is not captured by the MF models. The
variational method always predicts a symmetric loading/unloading response, as an outcome of the assumption of compatible
trial strain. Indeed, the homogenized yield criterion (66) uses the second moment of the trial strain field in the phase
computed on the LCC with the actual (constant) elastic properties (cf. the elastic predictor step in Section 5). Given expres-
sion (66) for the second moment, it is concluded that reverse plastic yielding occurs when the macroscopic trial strain
reaches the same value (in norm) as that of the previous plastic time increment. After the elastic–plastic transition, the

Fig. 3. Effective response of a metal matrix composite with (a) 15% and (b) 25% inclusions volume fraction. Uniaxial tension is applied along direction 1.
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MF model accounts only for the isotropic hardening of the matrix (and the reinforcing effect of the particles). In contrast,
transition from elasticity to plasticity is smoother when predicted by the full-field model. These observations enlighten
the limited validity of the assumption of compatibility of the trial strain field. The latter overlooks the plastic strain incom-
patibilities developing mostly around the particle/matrix interfaces during the abrupt loading path change and which are
responsible for the early and progressive plastic yielding observed in the full-field simulation.

Similar observations hold regarding the predictions of the inclusion response (Fig. 4). The largest discrepancy between
mean-field and reference results appears during the elastic–plastic transition in compression for the lowest hardening expo-
nent. This, again, may be related to the assumption of compatible trial strain field. Surprisingly, the MF models predict very
close inclusion responses for both volume fractions. This is not supported by FE results, which demonstrate a (moderate)
increase in the inclusions stress when their volume fraction increases. The inclusion stress level predicted by the variational
method is even lower for c1 = 0.25 than for c1 = 0.15. This can be attributed to the decrease of the shear modulus lð2Þ

0 at higher
volume fraction (due to an increase in Dp(2), see expression (54)). Indeed, reduced load is then transferred to the inclusions.
This unwanted effect does not affect the effective response significantly thanks to the relative volume fractions of phases in
the average

P
crhrir ¼ !r.

6.2.2. Effect of the triaxiality
The proposed variational method can sustain general loading conditions, including multiaxial ones. In order to investigate

the effect of triaxiality on the accuracy of the predictions, we successively applied a shear (Fig. 5(a)) and a biaxial loading
(Fig. 5(b)) to the composite with c1 = 0.15. For shear loading, the only non-vanishing component of the stress tensor is

Fig. 5. Effective response of a metal matrix composite with 15% of spherical inclusions: (a) composite subjected to shear loading, (b) composite subjected to
biaxial tension.

Fig. 4. Average response of the inclusion phase of a metal matrix composite with (a) 15% and (b) 25% inclusions volume fraction.
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!r12 ¼ !r21 ¼ r. Biaxial loading is obtained setting !r11 ¼ !r22 ¼ r and !r33 ¼ 0. In the principal stress space, the macroscopic
triaxiality ratio is given by T ¼ trð!rÞ=3!req. Shear, uniaxial and biaxial tension correspond respectively to triaxiality ratios
of 0, 1/3 and 2/3. An excellent agreement with full-field predictions is found in every case.

Then, we consider a plane strain tension/compression test such that the only non-vanishing components of !e are !e11 and
!e22, and !e22 is computed such that !r22 ¼ 0. The stress response of the composite along direction 1 and 3 is shown in Fig. 6 for
c1 = 0.15. It corresponds to a triaxiality ratio of approximately 1 in the plastic regime. The variational method provides excel-
lent predictions for the highest hardening exponents, and gives very satisfying predictions for the lowest one. Again, the ma-
jor discrepancy is observed during yielding in compression. In all these examples, the new method performs better than the
incremental tangent approach.

Finally, we consider a non-monotonic, non-proportional loading path. The stress state is such that the only non-vanishing
stress components are !r11 ¼ r and !r12 ¼ s. This plane stress state combining tension and shear can represent the stress in a
thin walled cylindrical tube under axial tension and torsion, far from the ends. The non-proportional loading path was pro-
posed by Nyssen (1981) as a benchmark for testing nonlinear computing codes and is depicted in Fig. 7. Here, we adopted the
following values of (r,s) at O, A, B and C (in MPa):

Oð0;0Þ; Að150;75Þ; Bð206:3;37:5Þ; Cð210; 0Þ:

The stress state at B was chosen such that the segment A–B is approximately tangent to the yield surface at A of the com-
posite with c1 = 0.15 and n = 0.4. The unknown yield surface was identified from the reference solution for the composite
under uniaxial tension (Fig. 3(a)), assuming an isotropic response. The comparison between reference and MF results ob-
tained with the proposed method is reported in Fig. 8 for the composite with c1 = 0.15 and n = 0.4. The MF predictions are
very satisfying, except during the early stages of the first path change. This example also illustrates the robustness of the
proposed formulation and algorithm.

6.2.3. Ellipsoidal inclusions
We now consider a MMC reinforced by ellipsoidal inclusions. The inclusions are aligned and have an aspect ratio a = 3.

Other material properties are the same as those used for spherical inclusions, and the volume fraction is set to c1 = 0.15.
The composites are subjected to a uniaxial tension/compression test. The loading is applied either along the direction of
the fibers (Fig. 9(a)) or in the transverse direction (Fig. 9(b)). The new method gives significantly better predictions than
the incremental tangent approach when loading is applied in the longitudinal direction. The overestimation of the

Fig. 6. Effective response of a metal matrix composite with 15% of spherical inclusions under a plane strain tension/compression test applied along
direction 1, with !e33 ¼ 0 and !r22 ¼ 0.

Fig. 7. Non-radial plane stress tension–shear loading, after Nyssen (1981), with s the shear stress and r the tensile stress. The loading path is (O–A–B–C–O).
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Fig. 8. Effective response of a metal matrix composite with 15% of inclusions subjected to non-radial plane stress tension-shear loading. The matrix
hardening exponent is n = 0.4.

Fig. 9. Effective response of a metal matrix composite with 15% of aligned, ellipsoidal inclusions under uniaxial tension/compression. Tension is applied
either along the direction of the fibers (a) or in the transverse direction (b).
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incremental tangent approach was previously reported by Pierard et al. (2007a). These authors attributed the discrepancy
between the incremental tangent and the full-field results to the large strain heterogeneities taking place between the ends
of the elongated ellipsoids and which are particularly important when the strain hardening exponent is low. The strain het-
erogeneities are overlooked by the incremental approach, while they are somehow included in the variational method
through the second moments of the trial strain, which might explain the better performance of the latter in this case. Strain
heterogeneities are less important when loading is applied in the transverse direction, and both the incremental tangent
method and the proposed model yield then satisfying predictions.

6.2.4. Rate-dependent case
We now consider the case of a rate-dependent behavior of the matrix. Norton’s power law (70) is considered, taking

_p0 ¼ 0:01 s#1 and m = 5. The volume fraction of inclusions is c1 = 0.15, and the hardening exponent for the matrix is
n = 0.4. All other material parameters are the same as those used for rate-independent simulations. Predictions of the pro-
posed model are compared to FE results and to predictions of the incrementally affine model of Doghri et al. (2010). The lat-
ter was implemented in the DIGIMAT-MF software (DIGIMAT, 2011) and is briefly described in Appendix D. Corresponding
results are labeled ‘‘Inc.Aff.’’ in the figures.

Fig. 10 shows the effective response of the composite under uniaxial tension at several macroscopic strain rates. An excel-
lent agreement between FE and mean-field results is found at all strain rates. Surprisingly, the variational and incrementally
affine methods give almost identical predictions. A relaxation test is presented in Fig. 11. Uniaxial tension is first performed

Fig. 10. Effective response of a metal matrix composite with a rate-dependent matrix behavior described by Norton’s power law, with rate-sensitivity
exponent m = 5. Uniaxial tension is performed at three different macroscopic strain rates.

Fig. 11. Uniaxial tension test up to !e11 ¼ 5%ð _!e11 ¼ 0:01 s#1Þ followed by a relaxation test maintaining the overall strain constant. The matrix rate-sensitivity
exponent is m = 5. Short-term (a) and longer-term (b) response of the composite.
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at a strain rate _!e11 ¼ 0:01 s#1 up to 5% elongation. The final elongation is then maintained, while the stress relaxes. While the
variational and incrementally affine models give almost identical responses for the initial uniaxial tension test, their
responses significantly deviate during stress relaxation (Fig. 11(a)). The newmodel is then more accurate than the incremen-
tally affine model. After a sufficiently long relaxation time, the macroscopic stress predicted by the variational method tends
to its rate-independent limit, as expected (Fig. 11(b)).

Finally, the response of the composite under creep is presented in Fig. 12. Creep is achieved by applying a instantaneous
macroscopic stress !r11 ¼ 4rY , while the !r22 and !r33 components are zero. Three rate-sensitivity exponents are considered:
m = 1, m = 2 and m = 5. The loading time is about an hour. The response of the composite in the early stages of creep are
shown in Fig. 12(a). The proposed model correctly predicts the main trends of the response, but slightly overestimates
the creep strain rate, so that the predicted macroscopic strain deviates from the reference strain. The long-term trends of
the response as predicted by the proposed model are shown in Fig. 12(b). After 3000 s, the creep responses for m = 1 and
m = 2 have reached stationary values, while the creep strain is still increasing in the case m = 5.

6.3. Elasto-viscoplastic matrix reinforced by elasto-viscoplastic inclusions

We now consider a composite with two elasto-viscoplastic phases previously studied by Pierard et al. (2007b). Again,
inclusions are spherical and randomly distributed within the continuous matrix. Both phases present isotropic hardening
described by the power law R(p) = hpn, and viscosity function of the Perzyna-type (73), with drag stress D(p) = rY + R(p).
The material properties are the following:

- Inclusions: E = 400 GPa, m = 0.286, rY = 400 MPa, h = 8 GPa, n = 0.4, _p0 ¼ 2 10#4 s#1 and m = 1.5.
- Matrix: E = 70 GPa, m = 0.33, rY = 70 MPa, h = 4 GPa, n = 0.4, _p0 ¼ 3 10#4 s#1 and m = 1.5.

Two inclusions volume fractions are considered: c1 = 0.15 and c1 = 0.30. Reference FE predictions were obtained by
Pierard et al. (2007b), and details about the microstructure generation and FE meshes can be found in their paper. Next
to the predictions of the variational approach, results obtained with the incrementally affine method (see Appendix D)
are also presented.

The effective response of the composite undergoing uniaxial tension at several macroscopic strain rates is presented in
Fig. 13. In every case, predictions of the variational method and reference results agree. The model captures both the effect
of the strain rate, and the effect of the volume fraction of inclusions. In this example, the variational method performs better
than the incrementally affine method.

Phase responses for c1 = 0.3 are presented in Fig. 14, for _!e11 ¼ 10#3 s#1 and _!e11 ¼ 10#6 s#1. The reference result is the aver-
age of the von Mises stress computed from the FE results according to:

hreqir ¼
P
k

req;kV
ðrÞ
k

* +! "2 P
k
V ðrÞ

k

! "
; ð76Þ

where req,k is the von Mises stress at the kth integration point in phase r, and V ðrÞ
k the associated volume. As the average von

Mises stress is not directly available from the MF models, first- and second-order measures are considered instead. The first-
order measure is obtained by simply taking the von Mises norm of the average stress in each phase:

Fig. 12. Creep test under instantaneous, constant uniaxial load, with !r11 ¼ 4rY . Three matrix rate-sensitivity exponents are considered: m = 5, m = 2 and
m = 1. Short-term (a) and longer-term (b) response of the composites.
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and the second-order measure is given by
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The incrementally affine method yields only a first-order measure. Predictions of the proposed scheme are satisfying at the
highest strain rate, but underestimate the stress level at low strain rate sensitivity. Predictions of the incrementally affine
method are then closer to reference curves.

The effect of the triaxiality is investigated in Fig. 15 which shows the prediction of the models for the composite subjected
to shear and biaxial tension. Although the accuracy of the variational method under shear is very good at the lowest strain
rate, it significantly decreases when the strain rate increases, the variational method underestimating then the reference re-
sponse (Fig. 15(a)). On the other hand, the proposed method remains accurate for all considered loading rates under biaxial
tension (Fig. 15(b)).

Finally, results for one cycle of tension/compression are presented in Fig. 16 for _!e11 ¼ 10#3 s#1 and _!e11 ¼ 10#6 s#1, with
c1 = 0.30. As in the monotonic case, the predictions of the variational approach and reference results agree.

Fig. 13. Effective response of a composite with elasto-viscoplastic inclusions and matrix, for (a) 15% and (b) 30% of inclusions volume fraction.

Fig. 14. Phase response of a composite with elasto-viscoplastic inclusions and matrix, for 30% of inclusions volume fraction. The applied macroscopic strain
rate is (a) _!e11 ¼ 10#3 s#1 and (b) _!e11 ¼ 10#6 s#1.
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6.4. Short glass fiber-reinforced polyamide

Finally, we consider a composite made of a polyamide matrix reinforced by short glass fibers, with the following material
properties:

- Inclusions: E = 72 GPa, m = 0.22.
- Matrix: E = 2.1 GPa, m = 0.3, rY = 29 MPa.

The hardening of the matrix material is represented by a linear-exponential law:

R ¼ h1pþ h2 1# expð#npÞð Þ; ð79Þ

with h1 = 139 MPa, h2 = 32.7 MPa and n = 319. The inclusions are ellipsoidal with aspect ratio a = 15, and their volume frac-
tion is c1 = 0.157. This composite was proposed as benchmark by Doghri et al. (2011), as the first moment-based incremental
tangent method yields poor predictions. In that paper, an incremental tangent method enriched with second-order moments
is proposed, which dramatically improves the predictions on this example. Reference results were obtained on prismatic
cells containing a large number of aligned sphero-cylinders.2 FE simulations were performed using ABAQUS and the DIGI-
MAT-FE software (DIGIMAT, 2011) and are described in (Doghri et al., 2011). The predictions of the variational approach are
compared to those of the first- and second-moment incremental tangent schemes.

Fig. 15. Effective response of the composite with c1 = 0.3 under shear loading (a) and biaxial tension (b).

Fig. 16. Effective response of the composite with 30% of inclusions under one cycle of tension/compression, for (a) _!e11 ¼ 10#3 s#1 and (b) _!e11 ¼ 10#6 s#1.

2 In the mean-field models, fibers are approximated by ellipsoids. Thus, FE and mean-field predictions do not correspond exactly to the same microstructure.
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We consider first a matrix with rate-independent behavior. The composite is subjected to uniaxial tension either in the
longitudinal or the transverse direction w.r.t. the fibers revolution axis. The predictions of the effective behavior provided by
the MFmodels and the FE results for the two loading cases are presented in Fig. 17. The behavior of the matrix material with-
out reinforcement is also shown for comparison. When the loading is applied in the longitudinal direction, both incremental
tangent methods overestimate the macroscopic stress, but the second-moment procedure significantly improves the predic-
tions (Fig. 17(a)). However, results of the variational method are even closer to the reference curve. In the case of uniaxial
tension applied transversely to the direction of the fibers, all MF models give similar and satisfying predictions. Note how-
ever that the overall stress level is much lower than in the longitudinal case.

This example is investigated further adding a rate-dependence of the matrix behavior. The Perzyna-type viscous law (73)
is considered, with drag stress D(p) = rY + R(p). The viscous parameters are _p0 ¼ 2:5 s#1 andm = 5. The MF models considered
here are the incrementally affine method and the variational method. Fig. 18 shows the effective response under uniaxial
tension applied in the longitudinal direction w.r.t. the fibers axes. As expected, the incrementally affine method overesti-
mates the effective response, as it uses first-order measure of fields only. It can be checked that the curve at the lowest strain
rate is very close to the result obtained with the first-order incremental tangent method in the rate-independent case. On the
other hand, the variational method is closer to the actual macroscopic stress level, but fails in predicting the slope of the
reference curves in the plastic regime, especially at high strain rate.

Finally, the creep response of the short glass fibers-reinforced Polyamide is presented in Fig. 19. The creep test is simu-
lated by applying an instantaneous and constant macroscopic stress !r11, cancelling the other components of the stress ten-
sor. Three stress levels are successively considered: !r11 ¼ 4rY , 6rY and 8rY. For the lowest applied stress, the macroscopic
strain rapidly reaches its steady state value. The latter remains close to the instantaneous elastic response of the composite

Fig. 17. Effective response of a short glass fibers-reinforced polyamide under uniaxial tension. The volume fraction of fibers is 15.7% and their aspect ratio
a = 15. Tension is performed either in the direction of the fibers axes (a) or transversely to the fibers axes (b). The matrix is elasto-plastic, and the fibers are
linear elastic.

Fig. 18. Effective response of a short glass fibers-reinforced polyamide under uniaxial tension applied in the longitudinal direction w.r.t. the fibers axes. The
matrix has an elasto-viscoplastic behavior of the Perzyna-type with rate-sensitivity exponent m = 5.
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(for t = 0). The MF model then yields a satisfying prediction, consistently with the trends at low strain observed in Fig. 18.
However, the MF model significantly underestimates the macroscopic strain for higher level of macroscopic stress. This is
to be related to the discrepancy between MF and FE predictions after the elastic–plastic transition in Fig. 18. The reasons
for the inaccuracy of the proposed MF model in the present example (as compared for instance to the example of the
MMC of Section 6.2) are probably related to the much higher constrast between the properties of the constituents, and
the high aspect ratio of the fibers. These factors contribute to the development of high field heterogeneities within the com-
posite. In our experience, composites similar to the present short-glass fibers-reinforced thermoplastic constitute some of
the most challenging problems for assessing the predictive capabilities of MF theories.

7. Conclusions

We presented an original variational formulation for the homogenization of composites having elasto-(visco) plastic con-
stituents. The model is developed within a time-discretized framework, and the past history of deformation is accounted for
through internal variables. Both rate-dependent and rate-independent plasticity are handled within a common thermody-
namic framework, the only change arising from the specific choice of the dissipation function. The formulation relies on
the concept of Linear Comparison Composite (LCC) to be defined at each time step. The effective response of the LCC coin-
cides with the sought-after effective response of the nonlinear composite. An advantage of such formulation is that any
homogenization scheme can be used to solve the LCC problem, depending on the microstructure under consideration.

The LCC is characterized by secant operators relating the stress to the elastic predictor strain. These operators are natu-
rally isotropic and softer than corresponding elastic operators. Therefore, isotropy needs not to be prescribed as an heuristic
correction, like in incremental tangent methods (Doghri and Ouaar, 2003; Pierard and Doghri, 2006b) and in the incremen-
tally affine model (Doghri et al., 2010). To our knowledge, linearization strategies based on such operators have first been
proposed in Brassart et al. (2011). In addition, these operators are computed for the second-order moments of the trial strain
field. This, again, results from the variational formulation. Updates of the internal variables obey a homogenized yield crite-
rion and radial return condition. Thus, the algorithmic structure of the incremental equations of elasto-(visco) plasticity is
preserved in the homogenization procedure.

The model relies on the following two fundamental assumptions:

- Piecewise uniformity of the comparison moduli CðrÞ
0 . This assumption also involves piecewise uniformity of the internal

variable p.
- Compatibility of the trial strain field. Local plastic incompatibilities are ignored, but a macroscopic pre-deformation is
applied to the LCC to account for plastic deformation on average at the level of the composite.

The first approximation seems natural, and is commonly adopted in variational formulations for nonlinear composites
(like the variational procedure of Ponte Castañeda (1991)). It actually delivers a lower bound on the effective incremental
potential, see Eq. (48). Unfortunately, the second approximation has no variational character and its theoretical justification
is unclear. Only the valid predictions obtained so far for a variety of composites indicate that the proposed approximation
seems reasonable to a certain extent. In addition, this assumption greatly simplifies the homogenization problem of the
LCC, as standard schemes for linear composites can readily be applied. It is worth emphasizing that the numerical cost asso-
ciated with the model is low, so that it is suited for real-scale simulations of composite structures.

The proposed model has been successfully validated in several examples of two-phase composites made of inclusions
dispersed in an elasto-(visco) plastic matrix. In all cases, the Mori–Tanaka scheme was used to homogenize the LCC.

Fig. 19. Creep response of a short glass fibers-reinforced polyamide under a constant load !r11 ¼ 4rY , 6rY or 8rY (uniaxial tension) applied in the
longitudinal direction w.r.t. the fibers axes. The matrix has an elasto-viscoplastic behavior of the Perzyna-type with rate-sensitivity exponent m = 5.
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Predictions were systematically compared to reference results obtained from FE computation on multiparticle cells rep-
resentative of the microstructure. These examples demonstrated that the new variational method competes with other
incremental schemes, namely the first- (Doghri and Ouaar, 2003) and second-moment (Doghri et al., 2011) incremental
tangent schemes in elasto-plasticity and the incrementally affine method (Doghri et al., 2010) in elasto-viscoplasticity. In
all examples considered so far, the variational method yields softer predictions than the incremental tangent method.
Consequently, the variational method is likely to perform better than the incremental tangent method in cases where
the latter is too stiff. We also emphasize that the new method does not require the heuristic correction of isotropized
tangent operators. Moreover, it applies equally well to rate-independent and rate-dependent elasto-viscoplasticity, con-
trarily to most existing mean-field formulations. The proposed model still needs to be verified for other types of micro-
structures. For instance, it could be combined with the self-consistent scheme for the modeling of the effective behavior
of multiphase aggregates. This study is left for future work.

Comparison of mean-field predictions with FE results on multiparticle cells enlightened (at least) two important trends in
the effective response that mean-field models fail to reproduce:

- The inclusions response. MF models performed poorly at the inclusion level in numerous examples. FE results show a pro-
gressive stress build-up in the inclusions during plastic yielding of the matrix, while mean-field models predict an abrupt
slope change, similar to the slope change in the matrix response during elastic–plastic transition;

- Bauschinger’s effect after load reversal. In MF models, elasto-(visco) plastic phases are either fully elastic, or fully plastic.
Therefore, they cannot capture progressive plastic yielding related to stress heterogeneities.

The proposed model allows the use of a large variety of (nonlinear) isotropic hardening and viscosity functions. Recently,
incremental variational principles have been proposed which also account for nonlinear kinematic hardening (Mosler, 2010;
Canadija andMosler, 2011). They rely on the introduction of additional strain-like internal variables and different expressions
for the dissipation function. However, it is not clear whether the proposed homogenization procedure could be generalized to
account for kinematic hardening. Indeed, the linearization procedure described in Section 3 cannot directly be applied in the
presence of back stresses. This certainly constitutes a drawback of the present formulation compared to, for instance, Hill’s
incremental approach, where the plasticity model can be used as a black box and local equations are decoupled from the lin-
earization. On the other hand, the proposed linearization technique could probably be generalized to account for compressible
plastic flow, provided that the latter can still be expressed in terms of the trial strain within the discretized setting, see for
instance Weinberg et al. (2006). In that paper, the authors introduced kinematic constraints of the form (5) for both the devi-
atoric and hydrostatic part of the plastic strain rate. In this case, the linearization procedure would aim to introduce compar-
ison bulk and shear moduli, which can be performed following a similar variational procedure as in Section 3, see for instance
Ponte Castañeda and Suquet (1998). Such generalization of the homogenization model is left for a future work.

Among possible improvements of the presently proposed variational method, one should focus on proposing an alterna-
tive technique to solve the LCC problem without violating kinematic restrictions. Indeed, as the assumption of compatibility
of the trial strain field is against theoretical and physical evidence, the predictive capabilities of the method cannot be en-
sured in general. Brassart et al. (2011) presented the pathological example of perfectly plastic composites with perfectly
plastic inclusions, but other critical examples could perhaps be found. Tentative research along this way can be found in
Brassart (2011), considering piecewise uniform, reference plastic strain.

To conclude, potential-based approaches offer a very rich framework for the development of advanced mean models. In
this work, we have proposed a variational technique leading to an estimate (still involving a heuristic prescription). Lahellec
and Suquet (2007a,b) proposed a different approach starting from a similar representation of the homogenization problem.
Most certainly, there is plenty of room for alternative formulations. In this context, recent progresses in nonlinear elasticity
(e.g. Ponte Castañeda, 2002) constitute a valuable source of inspiration.
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Appendix A. Derivation of the second moment of the trial strain from the effective energy of the Linear Comparison
Composite

The proof of (53) is based on the following lemma. Consider a (possibly thermoelastic) composite governed by a local con-
vex potentialWt depending on a parameter t. Then, the corresponding effective potentialWt also depends on t, and its deriv-
ative w.r.t. this parameter is given by (the derivative is taken with e held fixed):

oWt

ot
ð!eÞ ¼ oWt

ot
ðx; etÞ

. /
; ð80Þ
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where the local field e is the solution to the minimization problem:

Wðt; !eÞ ¼ inf
e2Kð!eÞ

hWtðt; eÞi: ð81Þ

The proof of (80) is given by Ponte Castañeda and Suquet (1998) (see also Idiart and Ponte Castañeda, 2007). It is a conse-
quence of the chain rule, plus the fact that the effective potential Wt is stationary with respect to et. Result (80) can be ap-
plied to the potential of the thermoelastic LCC (49), taking t ¼ lðrÞ

0 and Wt ¼ W0. We first obtain:
oW0
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Then, result (80) leads to (53).

Appendix B. Numerical resolution using Newton’s method

At each time step, the homogenization procedure described in Section 5 requires the resolution of a system of Np equa-
tions, where Np is the number of phases for which the yield criterion (56) is satisfied. The residual vector is denoted by F and
contains the scalar residuals F(r) (68) of every plastifying phase. The unknown vector is denoted by X and contains the shear
moduli lðrÞ

0 . Accounting for Eq. (54) which relates Dp(r) to lðrÞ
0 , each residual F(s) can be viewed as a function of the macro-

scopic strain and of the unknown lðrÞ
0 . According to a Newton–Raphson scheme, the correction c applied to the current esti-

mate of X is computed as:

c ¼ #J#1 - F; ð84Þ
where J is the sensitivity matrix, whose {rs} component is the derivative of the rth component of F w.r.t. the sth component of
X, and (-) denotes the appropriate matrix–vector product.The components of J are given by (the notation (+)0 indicates a dif-
ferentiation w.r.t. Dp):
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where the function Z denotes the right-hand side member of Eq. (20). Relations (85) and (86) were obtained accounting for
relation (54), which implies:

oDpðrÞ

olðsÞ
0

¼
lðrÞ # lðrÞ

0

lðrÞ

! o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

etreq
* +2. /

r

s

olðsÞ
0

; r – s; ð87Þ

oDpðrÞ

olðrÞ
0

¼ #1
lðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

etreq
* +2. /

r

s

þ
lðrÞ # lðrÞ

0

lðrÞ

! o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

etreq
* +2. /

r

s

olðrÞ
0

: ð88Þ

The macroscopic consistent tangent operator is expressed by

Calg ¼ d!r
d!e

¼ C0 þ
o!r
oX

- dX
d!e

; ð89Þ

where d!r and dX are variations of !r and X induced by a variation d!e. The following results hold:

o!r
oX

¼ oC0

oX
: !etr; ð90Þ

and
dX
d!e

¼ #J#1 - oF
o!e

: ð91Þ

Appendix C. Incremental (Hill-type) method for elasto-plastic composites

Following Hill (1965a), incremental mean-field models are based on a rate formulation of the constitutive equations of
the constituents:

_rðxÞ ¼ CtgtðrÞðxÞ : _eðxÞ; 8x in phase r; ð92Þ
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where Ctgt(r)(x) is the local, tangent operator. It is assumed that homogenization models for elastic composites apply to non-
linear ones considering strain rates instead of strains:

h _eir ¼ AðrÞ : _!e; ð93Þ

and making use of uniform, reference tangent moduli bC tgtðrÞ for the computation of A(r), instead of elastic ones. For plastic
behavior, it is well known that too stiff predictions are obtained if one uses the anisotropic tangent moduli computed for
the average of the strain in each phase (Gilormini, 1995; Suquet, 1996, 1997; Chaboche et al., 2005; Pierard and Doghri,
2006b). A work-around is to consider some isotropic part of the tangent operator according to a spectral decomposition
(Ponte Castañeda, 1996; Doghri and Ouaar, 2003). For J2 elasto-plasticity, the algorithmic tangent operator admits the fol-
lowing decomposition:

Calgo ¼ 3k1C1 þ 2k2C2 þ 2k3C3; ð94Þ

where

C1 ¼ Ivol; C3 ¼ 2
3
N ! N; C2 ¼ Idev # Cð3Þ; ð95Þ

and

k1 ¼ j; k2 ¼ l 1#
Dp
etreq

!

; k3 ¼ l 1#
3l

3lþ R0ðpÞ

! "
: ð96Þ

The isotropic part of the algorithmic tangent operator according to the spectral method reads (Doghri and Ouaar, 2003):

Ctgt;iso ¼ 3jIvol þ 2ltgtIdev; with ltgt ¼ k3: ð97Þ

The isotropization can be interpreted as a softening of Calgo in a direction orthogonal to N (Chaboche et al., 2005).
Expressions (94)–(97) are valid for incompressible plastic flow and a von Mises yield criterion. The incremental tangent

approach can easily be generalized to compressible plastic flow and pressure-sensitive yield criteria, see for instance (Abou-
Chakra Guéry et al., 2008).

Appendix D. Incrementally affine method for elasto-viscoplastic composites

As no continuum tangent operator can be derived in elasto-viscoplasticity, the rate formulation (92) of the local consti-
tutive equations does not hold. Consequently, the incremental method described in Appendix C cannot rigorously be applied.
Recently, Doghri et al. (2010) proposed an ‘‘incrementally affine’’ procedure which extends the incremental procedure to
elasto-viscoplasticity. The formulation exploits the numerical algorithm of elasto-viscoplasticity to obtain the following dis-
cretized relation, which is given here without proof:

Dr ¼ Calg : ðDe# Deaff Þ; ð98Þ

where Deaff is called ‘‘affine’’ strain increment, whose expression in J2 elasto-viscoplasticity reads:

Deaff ¼ _pðtnÞDt NðtnÞ þ Nðtnþ1Þ
gv ;pðtnþ1Þ
1# gv ;pDt

!

; ð99Þ

where gv is the viscoplastic function, such that:

_p ¼ gvðr;pÞ; ð100Þ

and gv,p its derivative w.r.t. p. Relation (98) defines a linear thermoelastic comparison material with stiffness Calg and polar-
ization stress # Calg: Deaff. Uniform, reference moduli and polarization stresses for each phase are computed evaluating Calg

and Deaff at the phase average of the strain. The partitioning of the strain increments among the phases is obtained using a
homogenization scheme for thermoelastic composites.

Note that like for the incremental tangent scheme for rate-independent elasto-plasticity, the reference algorithmic tan-
gent operator must be isotropized in order to obtain valid predictions. Again, the spectral methodmay be used (see Appendix
C), leading to the following expression for ltgt:

ltgt ¼ l 1# 3l
3lþ 1#gv ;pDt

gv ;rDt

0

@

1

A; ð101Þ

where gv,r is the derivative of gv w.r.t. req.
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