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Paul-Emile Bernard . Nicolas Chevaugeon .
Vincent Legat . Eric Deleersnijder .
Jean-François Remacle

High-order h-adaptive discontinuous Galerkin methods for ocean
modelling

Abstract In this paper, we present an h-adaptive dis-
continuous Galerkin formulation of the shallow water
equations. For a discontinuous Galerkin scheme using
polynomials up to order p, the spatial error of discretization
of the method can be shown to be of the order of hpþ1,
where h is the mesh spacing. It can be shown by rigorous
error analysis that the discontinuous Galerkin method
discretization error can be related to the amplitude of the
inter-element jumps. Therefore, we use the information
contained in jumps to build error metrics and size field.
Results are presented for ocean modelling problems. A first
experiment shows that the theoretical convergence rate is
reached with the discontinuous Galerkin high-order
h-adaptive method applied to the Stommel wind-driven
gyre. A second experiment shows the propagation of an
anticyclonic eddy in the Gulf of Mexico.

Keywords Shallow water equations . H-adaptivity .
Discontinuous Galerkin . A posteriori error estimation

1 Introduction

The discontinuous Galerkin (DG) method has become a
very attractive method especially for advection-dominated
problems (e.g. Cockburn et al. 2000; Adjerid et al. 2002;
Bassi and Rebay 1997). The main advantage is its
flexibility in terms of mesh and shape functions. Moreover,
the compactness of the stencil is maintained for high order
efficient parallel implementation. Recent advances coming
from the integration-free version of the formulation (e.g.
Lockard and Atkins 1999; Atkins and Shu 1998) allow for
an enhancement of the computational efficiency of the DG
method. The quadrature free implementation is especially
useful at high polynomials orders.

In our work, we aim to develop a global ocean
circulation model where the geometry is complex enough
to justify the shift from traditional structured grids models
to unstructured meshes (e.g. Hanert et al. 2004; Pietrzak et
al. 2005). In ocean modelling, important dynamics features
like meso-scale eddies have to be followed in time and
solved accurately. The ocean exhibits many different length
scales in time and space, with very unsteady behaviour and
almost discontinuous fields. The meso-scale processes
contain a huge part of the ocean energy and have to be
captured. Dynamic mesh adaptation strategies following
those structures represent a great potential in the field of
ocean modelling (e.g. Behrens 1998; Heinze and Hense
2002; Nair et al. 2005; Giraldo et al. 2002). In this frame-
work of a new unstructured ocean model, we believe that
the DG method is a good candidate because it provides a
simple and efficient error estimator for any order p, which
means a simple and efficient way to deal with mesh adap-
tivity. Moreover, the DG method ensures local conserva-
tion, which may be a critical issue in ocean modelling, and
is particularly efficient for advection-dominated problems.

Recent applications (e.g. Baker 1997; Speares and Berzins
1997; George et al. 2002; Chevaugeon et al. 2005c) show
that transient mesh adaptation technologies are mature
enough to tackle difficult problems. The computational
overhead of modifying the mesh is negligible compared to
the overall gain in computation time and accuracy.
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Starting from a fast implementation of the DG method,
originally developed to solve wave propagation problems
(e.g. Chevaugeon et al. 2005b), we first discuss the
implementation of the shallow water equations, in
particular the choice of an appropriate Riemann solver.
After a brief description of the mesh-adaptation package,
MeshAdapt developed at SCOREC1 (e.g. Remacle et al.
2005; Li 2003), we detail the mesh adaptation strategy
based on the error estimation for the DG method. We then
provide some preliminary validations of the method by
solving the classical Stommel model, before turning to an
idealized simulation of an anticyclonic baroclinic eddy in
the Gulf of Mexico.

2 DG method for shallow water equations

It is only recently that the DG method has been applied to
the shallow water equations (e.g. Schwanenberg and
Kongeter 2000; Dawson and Proft 2002, 2004; Nair et al.
2005; Giraldo et al. 2002). These equations have been used
for many years for solving a variety of problems, such as
atmospheric, oceanic, dam breaking (e.g. Soares Frazão
and Zech 2002b; Remacle et al. 2006) or river flow
problems (e.g. Vreugdenhill 1994).

2.1 Shallow water equations

The shallow water equations describe the flow of a thin
layer of incompressible fluid, with no stratification, under
the influence of a gravitational force. This model is based
on the assumption that the vertical dimension is very small
compared to the horizontal one. A vertical integration over
the depth of the fluid layer Hðx; tÞ ¼ hðxÞ þ ηðx; tÞ (where
h is the unperturbed height of the water column and η the
surface elevation measured from a reference height; Fig. 1)
is then performed on the 3D Navier-Stokes equations. The
bottom and the surface of the ocean are impermeable,
which yields the two boundary conditions required for
integration.

The two-dimensional, conservative form of the shallow
water equations is then obtained, not in terms of pressure
and velocity, but in terms of water depth and mean velocity:

∂H
∂t

þr � Hvð Þ ¼ 0; (1)

∂Hv

∂t
þr � Hvvð Þ þ gHrηþ f ez � Hv ¼ τ s � τb

ρ
; (2)

where t is time, f is the Coriolis parameter, v is the depth-
averaged horizontal velocity, g is the gravitational accel-
eration, τ s and τb denote the surface and bottom stresses,
respectively.

The main parameters are

1. The Rossby number: Ro ¼ U
Lf , with U a characteristic

velocity and L a characteristic length. The Rossby
number is the ratio between the Earth period and the
flow period. It represents the relative importance of the
Coriolis effect.

2. The Froude number: Fr ¼ U
c , with c the speed of the

gravity waves. The Froude number represents the ratio
between the flow velocity and the gravity waves
velocity. It is similar to the Mach number in compres-
sible fluid dynamics problems. The flow is said to be
critical when the Froude number reaches Fr ¼ 1.

The free surface allows propagation of gravity waves at
speed c ¼ ffiffiffiffiffiffiffi

gH
p

(those are equivalent to sound waves in
Euler equations). In the case of an ocean modelling
problem, the speed of gravity waves is typically 100 to
1,000 times faster than the speed of the fluid itself.

2.2 DG method applied to shallow water equations

We consider a closed two dimensional domain Ω. Its
boundary @Ω has a normal n defined everywhere. We seek
to determine the vector of unknowns UðΩ; tÞ as the
solution of a system of conservation laws:

∂U
∂t

þr � FðUÞ ¼ S; (3)

where F is the flux matrix and S is the vector containing
the source terms.

We multiply Eq. 3 by a test function w and integrate on
the domain Ω to obtain this classical weak formulation:

∂tU;wh iΩþ r � FðUÞ;wh iΩ¼ S;wh iΩ; (4)

with the scalar product: a; bh iv¼
R
v abdv.

H

η

h

e
z

0

Fig. 1 Shallow water notations for water depth H with a time-
independent bathymetry h. Notice that the relative elevation � is
usually several orders of magnitude smaller than the unperturbed
depth

1 SCOREC, Scientific Computation Research Center, Rensselaer
Polytechnic Institute, Troy, NY, USA.
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The computational domain is divided into a set of
elements Ωe called a mesh. In the case of a DG method,
we approximate the unknown fields using piecewise
discontinuous polynomial approximations: in element Ωe ,
the fieldsU are approximated using p -order polynomials
in each element with no inter element continuity
requirements. The total number of degrees of freedom
for a fully triangular mesh of N elements is therefore
equal to N � ½ðpþ 1Þðpþ 2Þ=2� � m , with m the number
of unknown fields, i.e. three in the shallow water case.
Because all approximations are disconnected, the weak
form Eq. 4 can be written in each element. After having
integrated the divergence of fluxes by parts in Eq. 4, we
obtain

∂tU;wh iΩe � F Uð Þ;rwh iΩe þ F Uð Þ � n;wh i∂Ωe

¼ S;wh iΩe:
(5)

A numerical flux function has to be supplied to the
formulation because unknowns U are multiply valued at
element interfaces @Ωe.

Two neighbouring elements in continuous finite element
method share common nodes that ensure the continuity of
the finite element approximation. With the DG method,
fields are discontinuous through element edges. Jumps at
element interfaces have to be controlled by a numerical
flux function. In this paper, we consider triangular meshes
exclusively. The boundary @Ωe of a triangle Ωe is com-
posed of three edges @Ωek , k ¼ 1; :::; 3. The flux function is
computed on those three edges using a combination of the
fields on both sides of the edge, i.e. using the unknown
fields U inside element Ωe and using the unknown fields
Uk in the neighbouring triangle across edge @Ωek. We have:

FðUÞ � n;wh i@Ωe
¼
X3
k¼1

FnðU;UkÞ;w� �
@Ωek

:

The centered DG scheme uses the average of fluxes as
the flux function:

FnðU;UkÞ ¼ 1

2
FðUÞ þ FðUkÞ� � � n:

Though producing no spatial dissipation, the use of a
centered scheme may cause advective unstabilities when
the discretization is unable to resolve a certain range of
wave numbers (e.g. Chevaugeon et al. 2005b). Riemann
solvers are the extension of upwind schemes to non-linear
systems of conservation laws.

The idea of the Riemann solver consists in upwinding
the characteristics variables. The projection of Eq. 3

without source terms on the normal direction n is written
as:

∂U
∂t

þ ∂FnðUÞ
∂n

¼ ∂U
∂t

þAn
∂U
∂n

¼ 0; (6)

whereAn ¼ @Fn

@U is the jacobian matrix of the flux vector in
the normal direction Fn: This jacobian matrix can be
written asAn ¼ RΛR�1 with matrices of eigenvectorsR
and eigenvalues Λ . We can then derive the following one-
dimensional transport equation:

@U�

@t
þ Λ

@U�

@x
¼ 0: (7)

The characteristics variables U� ¼ R�1U, the Riemann
invariants, are convected along the normal direction to the
edge of the element. The transport velocities are the
eigenvalues of the problem, which are used to choose
the appropriate values on the edge. More precisely,
upwinding can be applied on the characteristics variables
convected across the edge. Note that the source terms S are
not taken into account in Eq. 6 because they have no
influence on the Riemann invariants or on the sign of the
eigenvalues neither. Note also that no diffusion term was
considered because the Riemann solver only deals with
advection. This diffusion term can be solved in the usual
way with an integration by part and a centered scheme to
define the interface values. It has been shown that this
Riemann solver introduces the minimum numerical
dissipation required to stabilize the numerical scheme in
the presence of transport terms.

The shallow water equations lead to the following
expressions for Uand F:

U ¼
H
Hu
Hv

2
4

3
5; FðUÞ ¼

Hu Hv
Huu þ g H2

2 Huv

Hvu Hvv þ g H2

2

2
4

3
5:

The eigenvalues matrix read:

Λ ¼
v � nþ c 0 0

0 v � n� c 0
0 0 v � n

2
4

3
5;

where c ¼ ffiffiffiffiffi
gh

p
is the gravity waves velocity.

To keep the same general formulation in Eq. 3, the
transport terms require the use of the conservative formu-
lation. Advection terms are thus expressed as a divergence
r � ðHvvÞ. This conservative form is non-linear, even
without transport terms, because of the presence of the

elevation term r H2

2

� �
. But the transport terms lead to a

complex and computationally prohibitive exact Riemann
solver. Approximate Riemann solvers are proved to
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produce more numerical dissipation than the exact solver,
but numerical experience suggests that this choice does not
have a significant impact on the accuracy of the solution,
especially when polynomial degree increases. The conser-
vative formulation can thus be solved with, for example, a
Roe solver, which consists of the exact solution to a
linearized Riemann problem, and is consistent with the
discrete entropy condition (e.g. Roe 1981). The basic idea
consists in considering that over a small time step, the
characteristics curves propagating information can be
replaced by straight lines. This approximation leads to
consider as constant the eigenvalues and eigenvectors
matrices Λ and R.

The Roe numerical flux for shallow water equations (e.g.
Remacle et al. 2006; Soares Frazão and Zech 2002a) can be
written as:

Fn U;Uk
� � ¼ 1

2
F Uð Þ þ F Uk

� �	 
 � nþ
1

2
Fr F Uð Þ � F Uk

� �	 
 � nþ
1

2
cA 1� Fr2
� �

U�Uk
	 


:

(8)

The first term corresponds to the centered flux, the others
are dissipation terms. The average Froude number Fr is
defined as:

Fr ¼ vA � n
cA

; (9)

with vA a Roe-averaged velocity and cA a Roe-averaged
wave speed that are computed as

uA¼ u
ffiffiffi
h

p þ uk
ffiffiffiffiffi
hk

p
ffiffiffi
h

p þ
ffiffiffiffiffi
hk

p ;

vA¼ v
ffiffiffi
h

p þ vk
ffiffiffiffiffi
hk

p
ffiffiffi
h

p þ
ffiffiffiffiffi
hk

p ;

cA¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
hþ hk

2

r
:

3 Mesh-adaptation

Efforts on the development of mesh adaptation techniques
have been underway for more than 20 years and have
provided a number of important theoretical and practical
results (e.g. Remacle et al. 2005; Baker 1997; Speares and
Berzins 1997; George et al. 2002).

It is only recently that mesh adaptation has been applied
to transient flow problems and in particular to ocean
applications (e.g. Pain et al. 2005). It has been shown that
DG techniques allow to control the quality of a solution
transfer between two consecutive adaptive meshes (e.g.

Remacle et al. 2005). It is indeed possible to adapt the mesh
very often and project solutions without alteration.

We have recently developed mesh adaptation algorithms
that allow to locally modify a given 2D or 3D mesh to
make it conform to a given size field (e.g. Remacle et al.
2005; Li 2003; Li et al. 2004). The MeshAdapt software
package performs local mesh modifications, essentially
edge swaps, edge collapses and edge splits. Note that we
use here only a small set of the package capabilities;
MeshAdapt is able to perform 3D anisotropic mesh
adaptation in parallel. It is obvious that an anisotropic mesh
is the optimal choice, especially where the flow is itself
anisotropic (e.g. Remacle et al. 2005). But in this
framework of a first experiment in coupling ocean
modelling and mesh adaptation, only isotropic meshes
were considered to simplify the mesh metric definition.

3.1 Description of the MeshAdapt package

A mesh metric field is a smooth positive functionMðx; yÞ
defined over the domain Ω . The length of a mesh edge e
is computed as le ¼

R
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiMðx; yÞp
dl . The aim of the mesh

adaptation procedure is to modify an existing mesh to
make it a unit mesh, i.e. a mesh for which every edge is of
size le ¼ 1. At one given time step, a metric field is
computed at every node of the mesh using the results of an
a posteriori error estimation procedure. The mesh adap-
tation algorithm then modifies locally the present mesh
by: (1) splitting all the long edges and (2) collapsing all
the short edges.

Edge swaps are also performed to optimize the quality of
the resulting mesh. The mesh adaptation procedure is
applied iteratively until a convergence criterion is satisfied.
The different local mesh modifications used here are
depicted in Fig. 2.

Typically, the algorithm stops when every edge of the
domain has a dimensionless size in the interval le e
½0:5; 1:4�. A long edge is an edge such that le > 1:4 and a
short edge is an edge of size le < 0:5. Using this interval
for short and long edges ensures that the two new edges
created by a bisection will not be short edges. Oscillations
between refinements and coarsenings are therefore
prevented. More details about this mesh adaptation
procedure can be found in previous papers (e.g. Remacle
et al. 2005; Li 2003; Li et al. 2004).

As an example, we see on Fig. 3 two mesh size fields
together with the respective adaptive meshes. Those results
come out of a simulation that will be described below in
more details. Both plots on top of Fig. 3 were computed at
an early stage of the simulation while the bottom plots are
the result of about 100 adaptations.

3.2 Error estimation

Here, we only consider the spatial error of discretization.
Note that it has been shown (e.g. Chevaugeon et al. 2005a)

4



that, using an explicit Runge–Kutta time stepping of order
pþ 1 in time together with a DG method of order p in
space, the spatial error is at least one order of magnitude
higher than the error in time.

The approximated fields in a DG method are discontin-
uous at inter-element boundaries. It has been shown (e.g.
Marchandise et al. 2005) that the inter-element jumps of the
solution are converging at the same rate as the discretiza-

Fig. 3 Mesh size fields and
adaptive meshes obtained at
different time steps, for the
propagation of a typical anti-
cyclonic eddy in the Gulf of
Mexico (cf. section 4.2). The
mesh on top includes 14,545
triangles while the one on bot-
tom includes 9,618 triangles

Fig. 2 Local mesh modifica-
tions. Edge split (top), edge
collapse (middle) and edge swap
(bottom). The zone depicted in
bold represents the cavity that is
modified by the local mesh
modification
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tion error. If we consider the situation depicted at Fig. 4, the
jump at one point pk of edge @Ωek converges at the same
rate as the DG error:

½U�Uk �ðpkÞ ¼ O h pþ1
� �

;

where h is the local mesh size. Notice that h always
denotes the local mesh size in the following section.

It has been shown that the DG solution was super-
convergent at downwind faces (e.g. Marchandise et al.
2005). This means that, on ∂Ωek , eitherU orUk is a good
approximation (at order h2pþ1 ) of the exact solution. Here,
we choose the average value to be the approximation of the
exact solution Uex:

UexðpkÞ ’
1

2
UþUk
	 
ðpkÞ:

We have then:

EðpkÞ ¼ ½U�Uex �ðpkÞ ’
1

2
U�Uk
	 
ðpkÞ:

The jumps are therefore a good image of the discretization
error and can be used as an error indicator. Here, we show
that, using an appropriate measure of the jumps, we are able
to use the jumps as an error estimator. We will compute local
and global effectivity indices and show that they are optimal.
We consider an average error along each edge.

e2∂Ωek
¼ 1

j∂Ωek j
Z
∂Ωek

E2ds ’ 1

4

1

j∂Ωek j
Z
∂Ωek

½U�Uk �2ds;

e∂Ωek
¼ O h pþ1

� �
:

For each element Ωe, we compute an a posteriori error
estimator by the following rule:

e2Ωe
¼ 1

3
jΩej

X3
k¼1

e2@Ωek
; (10)

where jΩej is the area of Ωe . Note that the three mid-edge
points of the triangle form a Gauss quadrature rule. Clearly,
using this simple approach, the error is constant in one
element and the resulting size field is still constant in each
high order triangle. More complex rules can be computed
for higher order polynomial approximations. The total error
is calculated as the sum of all elementary errors

e2 ¼
Z
Ω
E2dv ¼

X
e

e2Ωe
: (11)

The relative error is defined as:

e2 ¼
R
Ω E2dv

2
R
Ω U2dv

¼ e 2

2 Uk k2L2
¼ O h pþ1

� �
(12)

implying that it is smaller than 1. We define the local
relative error as:

e2Ωe
¼ e2Ωe

2 Uk k2L2
;with

X
e

e2Ωe
¼ e2:

Our aim could be either to control the discretization error
with a minimum number of elements or to control the
number of elements in the optimal mesh while minimizing
the discretization error.

Let us consider Ωe an element of the initial mesh for
which we have computed an error of eΩe. We know that, if
he is the size of Ωe (its circumscribed radius for example)
and if h�e is the size of the elements of the optimal mesh on
the region covered by Ωe , we have:

eΩe

e�Ωe

¼ he
h�e

� �pþ1

: (13)

where e�Ωe
is the relative error defined in the region

enclosed by Ωe in the optimal mesh. The total error in the
optimal mesh is then:

e�2 ¼
X
e

e�2Ωe
¼
X
e

e2Ωe

h�e
he

� �2ðpþ1Þ
¼
X
e

e2Ωe
r�2ðpþ1Þ
e ;

(14)

where re is a factor that represents the reduction of element
sizes in element Ωe . The number of elements N � in the
optimal mesh can be computed using the re’s. Clearly,

N� ¼
X
e

rde ;

where d is the dimension of the problem. Here d ¼ 2 . The
problem is either to minimize N� while controlling e� ¼ e
or to minimize e� while controlling N� ¼ �N. The first

Fig. 4 An element with its three
surrounding neighbors
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problem leads to the following saddle point optimization
problem:

min
re

max
λ

X
e

r2e þ λ
X
e

e2Ωe
r�2ðpþ1Þ
e � �e2

!
;

where λ is a Lagrange multiplier. We find easily that:

r2e ¼ λðpþ 1Þe2Ωe

� �1=ðpþ2Þ
: (15)

The solution of the problem can be computed in a closed
form if p is constant:

re ¼ �e1=ðpþ1Þe�1=ðpþ2Þ
Ωe

X
e

e
2=ðpþ2Þ
Ωe

" #�1=ð2pþ2Þ
: (16)

The second problem leads to:

min
re

max
λ

X
e

e2Ωe
r�2ðpþ1Þ
e þ λ

X
e

r2e � �N
�
!
;

where λ is another Lagrange multiplier. The solution is, for
p constant:

re ¼
ffiffiffiffiffiffi
N�p

e
1=ðpþ2Þ
Ωe

X
e

e
2=ðpþ2Þ
Ωe

" #�1=2

:

The re’s define the size field used to build the adapted
mesh by means of local mesh modifications.

3.3 Projection of the solution

Once the mesh has been adapted, the solution on the
previous mesh is projected on the adapted one. This is done
by means of an L2 projection. The DG method allows this
projection to be done element by element. Another
advantage of the DG method is that, during the edge split
operation, the projection is exact and no error is introduced.
The edge collapse operator is only used in regions of the
domain where the error is low, so no significative error is
introduced with this coarsening operation. Finally, the

Fig. 5 Isolines of the stream function obtained for the Stommel
model with the following parameters: f0 ¼ 10�4 s�1, �0 ¼
2 10�11 m�1s�1, �0 ¼ 10�1 Nm�2, � ¼ 10�6 s�1, g ¼ 10 ms�2,
h ¼ 103 m, � ¼ 103 kgm�3 and Lx ¼ Ly ¼ 106 m the length of the
domain along the x and y dimensions

Fig. 6 Convergence of the L2 norm of the error e vs the local mesh size h using a uniformly refined meshes and using b adaptively refined
meshes
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introduction of numerical diffusion is only expected when
the swapping operation is applied. It is recommended to
use an accurate integration scheme in the L2 projection: the
solution may be discontinuous across the edge that is
swapped. Here, we do not consider node repositioning,
typically Laplacian smoothing, because this mesh modifi-
cation pattern introduces an excessive amount of numerical
dissipation.

4 Application to ocean modelling

In this section, we first perform a validation step on a
benchmark problem: the Stommel model. An adaptive
convergence experiment is performed to test both the

convergent behaviour of the DG scheme and the efficiency
of the adaptive strategy. In a second experiment, we
simulate the propagation of a typical anticyclonic baro-
clinic eddy in the realistic domain of the Gulf of Mexico.

4.1 Adaptive convergence applied to the Stommel
gyre

Interesting simplifications can be done to the shallow water
equations to obtain the Stommel model, used to perform
the following convergence study.

First, the non linear transport terms r � ðHvvÞ are
neglected. Then we assume a constant bathymetry and the
β -plane approximation, according to which the Coriolis

Fig. 7 The evolution of the
maximum error, located in the
western boundary layer for this
Stommel model, showing the
advantages of coupling both
adaptivity and high order ele-
ments, which can be done in a
simple and efficient way with
the DG method
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parameter is a linear function of one space coordinate, i.e.
f ¼ f0 þ β0y, where f0 � 10�4 s�1 and β0 � 10�11 m�1

s�1 are constants. The dissipation term is parametrized as
τb ¼ γHv where γ is a constant friction coefficient. The
typical surface stress is given by τ s ¼ τ0 sinðπy0Þ with
y0 ¼ y

Ly
∈½�0:5; 0:5� the non-dimensional coordinate with

Ly the typical size of the domain along the y-dimension.
Finally, the relative elevation is neglected compared to the
bathymetry, leading to the following classical linearization:
H ¼ hþ η ffi h . With those approximations, the linearized
form of the shallow water equations becomes:

@η
@t

þr � ðhvÞ ¼ 0; (17)

@v

@t
þ grηþ ðf0 þ β0yÞez � v ¼ �γvþ τ s

hρ
: (18)

Equations 17 and 18 are sometimes called the Stommel
model which leads to the typical “Stommel gyre” (Fig. 5;
e.g. Stommel 1948).

The Stommel equations are solved on a square of
1,000 km of side, and compared to the analytical solution.
The Coriolis effect leads to a geostrophic balance, creating
a recirculation cell. The linear part βy of the Coriolis factor
f tends to move the eddy westward (for the northern
hemisphere parameters), leading to a boundary layer at the
western boundary of the domain. The size of this boundary
layer is determined by the ratio γ

βLx
. The adaptive method is

therefore very useful to capture the large gradients on this
western boundary, while the eastern part of the domain
does not require such a fine discretization. The analytical
solution can be found in Appendix A. On Fig. 5, the typical
Stommel stream function is shown with its western
boundary layer.

Fig. 8 The global and local effectivity index computed with first
order elements both tend to one, indicating that the jumps can be
considered as efficient error estimators

H
h

ξ

e
z

0 sea surface

pycnocline

upper layer

lower layer
(infinitely deep)

Fig. 10 Notations for the shallow water reduced gravity model,
with the time-independent height h and � the downward displace-
ment of the interface between the two layers

Fig. 9 The local effectivity
fields present the same “bound-
ary layer structure”
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Two different polynomial orders (P1 and P4 elements)
have been used, giving two different theorical convergence
rates, according to hpþ1

e .
Figure 6a presents the evolution of the L2 error normwith

the characteristic element size on uniformly refined meshes.
The numerical results show that the theoretical asymptotic
behaviour is only attained using dense uniform meshes.

The Fig. 6b presents the evolution of the L2 norm of the
error versus the characteristic size of the elements
corresponding to a given target error. The numerical results
are compared to the theorical convergence rates lines.

Numerical results fit the theorical rates, both with fixed
regular mesh and adapted mesh. A kind of oscillatory
behaviour is still present on the adaptive mesh which can
be explained with the use of the interval ½0:5; 1:4� to
transform the error estimation into a new edge size field, as
discussed in the previous paragraph. To reach the same
error norm of approximately 5� 10�3 with linear shape
functions, the non-adaptive structured regular mesh re-
quired 648 elements while the adaptive method needs only
79 elements. On the same mesh, the error is more than a
hundred times smaller with P4 element than with P1.

For the same convergence experiment, we plot the
maximum error compared to the degrees of freedom. As we
see on Fig. 7a, for the same maximum error of 10�2, the
adaptive strategy with first order elements leads to use five
times less degrees of freedom. And with the use of fourth
order elements, we obtain about 100 less degrees of
freedom for this same maximum error. The meshes on
Figs. 7b and c are, respectively, those obtained with the first
and fourth order adaptive meshes.

Finally, a classical way to quantify the quality of an error
estimator is the effectivity index (e.g. Ainsworth 2004),
defined as the ratio between the norm of the error estimator
e and the norm of the exact error e. The global index is:

θ ¼ kekL2

kekL2

; (19)

while the local one is defined in the same way on each
element. With the first order elements, mean jumps have
been defined on each node as the mean of the jumps on
adjacent elements to compute the norm ek L2k . Figure 8
shows the evolution of this index with the number of
elements. The local index on this figure is defined as the
simple mean of locals indexes on the whole domain. The
global index tends to a value of 1:03 . A value so close to
one indicates that the jumps seem to be relevant as error
estimator. The local effectivity field is depicted on Fig. 9.

Our choice of mesh size field based on the only interface
element jump leads to the right convergence rate, regardless
of polynomial order. Adaptivity and the use of high order
elements both seem useful, but combining the two seems
particularly efficient and simple with the DG method.

4.2 Propagation of a baroclinic anticyclonic eddy
at midlatitudes

The following results concern the propagation of a typical
baroclinic anticyclonic eddy at midlatitudes (e.g. Hanert et
al. 2005) in the Gulf of Mexico. The basin is assumed
closed, the Yucatan Channel and the Florida Straits with
their inflow and outflow are ignored. Although this
experiment is highly idealized, it is expected to represent
some of the features of the life cycle of anticyclonic eddies
with the adaptive capture of eddies propagation.

To model the flow in the Gulf of Mexico, it is essential to
take into account its baroclinic aspects. In this respect, the
simplest approach consists in assuming that the domain is
divided into two constant density layers separated by a free,
impermeable interface: the pycnocline. As the lower layer
is much deeper than the top layer, it is possible to further
simplify the model to a reduced-gravity one. Such a model
is widely used in oceanography and limnology (e.g.
Naithani et al. 2003; Luthar and O’Brien 1985; Woodberry
et al. 1989; Busalacchi and O’Brian 1980). To establish
reduced-gravity equations, a closure hypothesis on the
pressure force is needed, that eventually leads to a closed
set of equations governing the motion in the surface layer.
Accordingly, the downward displacement of the pycno-
cline, ξ, and the depth-averaged velocity in the surface
layer, v, obey equations that are similar to the classical
shallow-water equations introduced in section 2:

∂ξ
∂t

þr � ðHvÞ ¼ 0; (20)

∂Hv

∂t
þr � ðHvvÞ þ f ez � v ¼ �g0Hrξ ; (21)

where H ¼ h þ ξ is the actual depth of the upper layer
(Fig. 10), given that h is the unperturbed equilibrium
height of the surface layer; g0 is the so-called reduced
gravity. The latter is defined as g0 ¼ gδ, with g the gravity
and δ ¼ Δρ

ρ the relative density difference between the
bottom and the surface layers.

A Gaussian distribution of water elevation η is assumed
at initial time:

ηðx; y; t ¼ 0Þ ¼ C exp½�Dðx2 þ y2Þ� ; (22)

with C ¼ 68:2 m and D ¼ 5:92� 10�11 m�2. The β-plane
assumption is made (i.e. f ¼ f0 þ βy ) with the Coriolis

3Fig. 11 Isolines of elevation field and velocity norm, and the
corresponding adaptive mesh, respectively, at different times of the
eddy propagation. On each plot, the 40 iso-� lines extend from
�35 m (blue lines) to 65 m (red lines), while the 20 isovelocity lines
extend from 0 m=s to 1:5 m=s

11



parameters taken at 25N: f0 ffi 6:1635 10�5 s�1 and β0 ffi
2:0746 10�11m�1s�1. An initial velocity field is taken to be
in geostrophic balance, which means:

u ðx; t ¼ 0Þ ¼ � g

f

@η

@y
¼ 2

g 0

f 0 þ β0y
C Dy exp½�Dðx2 þ y2Þ�;

v ðx; t ¼ 0Þ ¼ g

f

@η

@x
¼ �2

g 0

f 0 þ β0y
C Dx exp ½�Dðx2 þ y2Þ�;

leading to a maximum initial flow speed of 1ms�1 with
g0 ¼ 0:137 ms�2 and h ¼ 100 m. The maximum Froude
number reached during the simulation is maxðFrÞ ¼ 0:5,
which is very high compared to the simple Stommel model,
and the Rossby number is Ro ffi 9� 10�3.

No wind forcing and no bottom friction is applied. The
Coriolis effect is thus the only source term responsible for
moving the eddy westward. This propagation of slow
Rossby waves, represented with the shallow water equa-
tions, is due to the β -effect. Such waves have a major effect
on the large scale circulation, and thus on weather and
climate. For instance, Rossby waves can intensify western
boundary currents, which transport huge quantities of heat.
Even a minor shift in the position of the current can thus
affect weather over large areas of the globe.

Figure 11 represents the evolution of the eddy with the
Coriolis forcing. Its westward propagation is captured by
the mesh evolution (right column): a minimum size field of
10 km has been applied to keep a low number of elements.

After 1 week of physical time simulation, the mesh has
been adapted three times to capture the regions with larger
variations: the eddy region, and the coast lines, where
gravity waves come and bounce back. At this time, the
mesh presents approximately 3; 000 elements. The eddy
keeps moving westward until approximately week 11,
when it reaches the coast. Then, its shape is modified when
a second eddy appears, spinning in the opposite direction.
The number of elements grows up to 7; 000 to fit this large
variation region. On week 14, one can see the slow creation
of a western boundary current, flowing southward. As the
eddy keeps moving southward, the mesh seems to perfectly
capture the evolution of this current and the eddy generated
at the southern extremity of the golf on week 23. The initial
eddy then collapses to generate smaller eddies which keep
spinning and mixing on the western boundary. The number
of elements decreases then to the initial value of
approximately 3; 000 .

The mesh has been well adapted to eddies and currents,
but large field variations and mesh refinement must also be
noticed on sharp and non regular coasts, as on the north and
east-north of the Gulf. A restriction of 10 km has been
applied on the size of elements on adaptive mesh. To reach
the same size with a non-adaptive mesh, about 34; 000
elements would be required with the first order polynomial
shape functions.

5 Conclusion

In this paper, we show that both high-order elements and
mesh adaptivity, coupled with discontinuous Galerkin
method, can be a very attractive approach to simulate
ocean flows. The DGmethod provides a simple and efficient
way to deal with those two techniques, by providing an
efficient error estimator. This DG method has been
successfully applied to the shallow water equations, and
seems to be particularly promising in this framework of a
new ocean model. Of course, in terms of the physic that need
to be modelled, lots of work need to be done in code
implementation to compare with established ocean model.
Our next step towards this goal will be the ability to deal with
realistic bathymetry. On the mesh adaptation side of the
work, we plan to take full advantage of the anisotropic mesh
adaptation features of the MeshAdapt package.
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1 Appendix

1.1 Analytical solution of the Stommel problem

The analytical steady solution is given by:

Ψ x; yð Þ¼ D3τ0Ly
π2γρ

f1 xð Þ cos πyð Þ

U x; yð Þ¼ Dτ0
πγρ

f1 xð Þ sin πyð Þ

V x; yð Þ¼ Dτ0
πγρδ

f2 xð Þ cos πyð Þ

η x; yð Þ¼ Dτ0f0Lx
πγρδgh

�Cdrag

δπ
f2 xð Þ sin πyð Þ



þ 1

π
f1 xð Þ cos πyð Þ 1þ βyð Þ � β

π
sin πyð Þ

� ��
with the following functions:

2 SLIM, Second-Generation Louvain-la-Neuve Ice-ocean Model,
www.climate.be/SLIM
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f1ðxÞ ¼ π
D

1þ ðez� � 1Þezþx þ ð1� ezþÞez�x

ez þ�ez�

� �

f2ðxÞ ¼ 1

D

ðez� � 1Þz þ ezþx þ ð1� ezþÞz � ez�x

ezþ � ez�

D ¼ ðez� � 1Þzþ þ ð1� ezþÞz�
ezþ � ez�

zþ� ¼
�1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2πδeÞ2

q
2e

The dimensionless parameters used are: the aspect ratio
of the domain δ ¼ Lx

Ly
, the ration between bottom friction

and Coriolis effect Cdrag ¼ γ
f0

and e ¼ γ
Lxβ0

the parameter
defining the boundary layer width.
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This erratum concerns the appendix of the paper High-
order h-adaptive discontinuous Galerkin methods for
ocean modeling, Ocean Dynamics, 57, 109-121.

Although presented only for completeness and not
being used in our computations the analytical stream
function Ψ of the Stommel gyre test case given in the
appendix on page 120 is wrong. The non dimensional
function D3 should read D while the velocity and water
elevation remain unchanged. The analytical Stommel
gyre solution then reads :

Ψ (x, y) = Dτ0Ly

π2γρ
f1(x) cos(πy)

U(x, y) = Dτ0

πγρ
f1(x) sin(πy)

V(x, y) = Dτ0

πγρδ
f2(x) cos(πy)

η(x, y) = Dτ0 f0Lx

πγρδgh

[
− γ

f0δπ
f2(x) sin(πy)

+ 1

π
f1(x)

(
cos(πy)(1 + βy)

−β

π
sin(πy)

)]

with the following functions:

f1(x) = π

D

(
1 + (ez2 − 1)exz1 + (1 − ez1)exz2

ez1 − ez2

)

f2(x) = 1

D
(ez2 − 1)z1exz1 + (1 − ez1)z2exz2

ez1 − ez2

D = (ez2 − 1)z1 + (1 − ez1)z2

ez1 − ez2

z1
2 = −1 ± √

1 + (2πδε)2

2ε

and with x and y the non dimensional axis x ∈ [0 1] and
y ∈ [−0.5 0.5]. The dimensionless parameters used are

Fig. 1 Isolines of the stream function Ψ (x, y) obtained for the
Stommel model. Notice that Ψ is the stream function of the trans-
port so the units read m3s−1. The following standard parameters
are used: f0 = 10−4 s−1, β = 2 10−11 m−1s−1, τ0 = 10−1 Nm−2,
γ = 10−6 s−1, g = 10 ms−2, h = 103 m, ρ = 103 kgm−3 and
Lx = Ly = 106 m the length of the domain along the x and y
dimensions

the aspect ratio of the domain δ = Lx and = γ

β
theLy

ε Lx

parameter defining the boundary layer width.
This correction on the stream function expression

requires a modification of figure 5 on page 115. The
corrected function is depicted in Fig. 1.

We would like to thank the students of J.-O. Wolff
and K. Lettmann at the University of Oldenburg who
found this error during an exercise in their class on
theoretical oceanography.
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