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Hierarchic multigrid iteration strategy for the discontinuous
Galerkin solution of the steady Euler equations
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We study the e�cient use of the discontinuous Galerkin �nite element method for the computation
of steady solutions of the Euler equations. In particular, we look into a few methods to enhance
computational e�ciency. In this context we discuss the applicability of two algorithmical simpli�cations
that decrease the computation time associated to quadrature. A simpli�ed version of the quadrature free
implementation applicable to general equations of state, and a simpli�ed curved boundary treatment are
investigated. We as well investigate two e�cient iteration techniques, namely the classical Newton–
Krylov method used in computational �uid dynamics codes, and a variant of the multigrid method
which uses interpolation orders rather than coarser tesselations to de�ne the auxiliary coarser levels.

KEY WORDS: discontinuous Galerkin; Euler equations; quadrature free; multigrid; Newton–Krylov
method

1. INTRODUCTION

The discontinuous Galerkin �nite element method (DGFEM) has become a very popular
method for the computation of unsteady �ows, especially when accurate solutions are needed.
This is due to the combination of an arbitrary order of accuracy with data and algorithmic

locality. Since the interpolation functions are de�ned independently in each element the mass
matrix has a block-diagonal structure and may be inverted directly. The method can be easily

∗Correspondence to: K. Hillewaert, CENAERO, CFD-Multiphysics Group, Bâtiment Mermoz 1, Av. J. Mermoz 30,
B-6041 Gosselies, Belgium.

†E-mail: koen.hillewaert@cenaero.be

Contract=grant sponsor: CENAERO is funded by the Walloon Region and the structural funds ERDF and ESF;
contract=grant number: EP1A122030000102

1



parallelized because DGFEM stencils do not grow in size with increasing order. The interpo-
lation functions are not restrained by continuity requirements and can hence be chosen freely,
allowing easy implementation of, e.g. spectral interpolation bases. Another consequence is the
inherent capability of the method to handle h- and p-adaptation.
The method has not experienced a similar interest for the computation of steady �ows. On

one hand, the accuracy requirements are not as stringent for these computations. One does
not care about temporal dispersion and dissipation, so one can use mesh re�nement without
too severe consequences on computational e�ciency. On the other hand, DGFEM still has
some evident drawbacks in terms of computational e�ciency. First of all an e�cient iteration
method is still lacking. Furthermore, the method seems to be very expensive in terms of
memory (more unknowns for the same formal order) and work load due to quadrature. Both
are exacerbated by the apparent need for isoparametric elements near curved boundaries.
Fidkowski et al. have recently shown [1] that in terms of CPU time for a given precision

it is better to increase DGFEM solution order rather than mesh resolution, at least for smooth
solutions. Hence it is likely that the high-order DGFEM method will grow to be more e�cient
than a state-of-the-art �nite volume solver for steady computations as well, especially if it
is combined with h- and p-adaptation. Another advantage is that accurate results can be
obtained with—by today’s standards—very coarse meshes, thus relaxing the requirements for
the mesh generators (which often are not parallelized and are hence limited in mesh size)
and diminishing the overhead related to storage of mesh topology.
In this paper, we investigate methods for increasing computational e�ciency in terms of

computing time and memory requirements, both by algorithmical simpli�cations and e�cient
iteration strategies.
The paper is organized as follows. First DGFEM is reviewed brie�y. After that we discuss

the application of two algorithmical simpli�cations of DGFEM which decrease both comput-
ing time and memory requirements for the evaluation of the discretization residual. In the
following section we discuss and compare several e�cient iteration strategies for stationary
DGFEM.

2. THE DISCONTINUOUS GALERKIN METHOD

We focus on the application of DGFEM to approximate the steady solutions u to the Euler
equations of gas dynamics in a domain D. We note the Euler equations concisely as

@u
@t
+∇ · f̃(u)=0 (1)

DGFEM approximates the solution u in the broken or discontinuous interpolation space U
that is spanned by shape functions �i. Each of these functions �i is de�ned on one element
T only of a tesselation T of domain D. The approximate solution ũ is as such discontinuous
across element boundaries.

ũ=
∑
i
ui�i; �i ∈U (2)

The expansion coe�cients ui are found by requiring that the approximate solution ũ satis�es
the following weak formulation of (1):(

@ũ
@t
+∇ · f̃(ũ); v

)
=0; ∀v∈U (3)
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where the inner product in the broken space U has been de�ned as

(p; q)=
∫
D

pq dV ∀p; q∈U (4)

Considering that any v∈U is a linear combination of shape functions �i, and any shape
function �i is only supported on one element T we can rewrite (3) as∫

D

�j
@ũ
@t
dV +

∫
D

�j∇ · f̃(ũ) dV =0 ∀�j ∈U

=
∫
T
�j
@ũ
@t
dV +

∮
@T
�jf̃(ũ) · ñ dS −

∫
T

∇�j · f̃(ũ) dV

≈
∫
T
�j
@ũ
@t
dV +

∮
@T
�jH(ũ+; ũ−; ñ) dS −

∫
T

∇�j · f̃(ũ) dV

(5)

Since the solution is discontinuous across element boundaries, the boundary �ux f̃(ũ) · ñ
corresponds to the solution of a local Riemann problem. This �ux is thus replaced by a
numerical �ux function H, depending on the solutions ũ+ and ũ− approaching the boundary
from the inside and outside, respectively, and the boundary normal ñ. If this �ux function is
positive, it provides the correct amount of stabilization. The e�ect of the stabilization is the
damping of modes that are unresolved by the chosen discretization. For the Euler equations
we typically use the �ux di�erence splitting scheme of Roe [2].

3. ALGORITHMIC IMPROVEMENTS

The DGFEM is a relatively expensive method since more unknowns are required for the same
formal order than for instance high order continuous �nite elements. Moreover, exact quadra-
ture involved in the correct integration of the weak form is even more penalizing. The number
of term of each block of the system grows as p2 in two dimensions (p3 in 3). Each term is
computed as the integral of a polynomial of order 2p+1 and the number of quadrature points
for evaluating that term then grows like (2p + 1)2 ((2p + 1)3 for three dimensions). Fur-
thermore, for each quadrature point on element-interfaces, an expensive �ux function needs
to be computed. The apparent necessity for (near)isoparametric elements adjacent to solid
domain boundaries not only complicates the method but also increases the number of quadra-
ture points. Hence, the simpli�cation and acceleration of the quadrature method is an important
step towards an e�cient method.

3.1. Boundary representation

Bassi et al. [3] have shown that an accurate boundary representation is necessary to maintain
the formal order of the scheme and to avoid spurious production of entropy at the intersection
of boundary faces. They stated that an equal order interpolation of solution and coordinates
for elements adjacent to the boundaries is unavoidable. This requires the use of a higher
number of quadrature points to account for the variation of the metric.
In a novel approach, suggested by Baumann et al. [4], the elements adjacent to the domain

boundaries remain simplices but an accurate representation of the boundary normal is used in
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the quadrature points. Krivodonova et al. [5] subsequently implemented di�erent variants of
this approach and showed numerically that the formal order of the method is well conserved.
Using only simplices instead of boundary �tted elements represents a huge simpli�cation of
the code, and tremendous savings in memory and computing time.
In our implementation the normal to be applied at the Gauss points is found by projecting

the Gauss point on the true surface, which is described by an analytical expression. The
projection uses an iterative procedure such that it’s direction is aligned to the computed
normal.

3.2. Quadrature free implementation

In Reference [6] Lockard et al. further elaborate the quadrature free implementation of
DGFEM as put forward by Atkins et al. [7]. This method avoids explicit quadrature and
results in a signi�cant reduction of computational time. Since this method uses only expan-
sion weights, and does not explicitly reconstruct values at the quadrature points, the number
of �ux evaluations is drastically reduced. Furthermore, all other operations may be cast in
matrix–vector and matrix–matrix products for which highly optimized libraries exist.
The method starts from the expansion of the �ux in terms of the base functions:

f̃(ũ)=
∑
i
f̃i�i (6)

If we assume the elements to be simplices, the metric of the element is constant. With these
assumptions the volume term can then be rewritten as∫

T
∇�jf̃(ũ) dV ≈ f̃i

(∫
T

∇�j�i dV
)

= f̃i ·J−1
T ·

(∫
̂T

∇̂�j�i d� d�
)
JT

= f̃i ·J−1
T · C̃ijJT

(7)

where JT is the Jacobian of the mapping of the element T onto the reference element and
JT is its determinant; ∇̂ de�nes the gradient in parameter space:

JT =
@(x; y)
@(�; �)

(8)

∇̂a = @a
@�k

ẽ�k (9)

The vector of matrices C̃ is independent of the element, and may be precalculated for any
order. For each element T , we need to precalculate the metric terms J−1

T and JT . Once
the expansion coe�cients f̃i have been determined, the evaluation of the volume term is
reduced to matrix–matrix and matrix–vector products of relatively small dimensions. A similar
development may be done for the surface term of the boundary �ux. The weights f̃i are found
trivially if the �ux vector is a linear function of the approximate solution ũ. Atkins proposes
an elegant method to project the �uxes of the Euler equations for a perfect gas. Unfortunately,
a similar method is di�cult to �nd for generic �ux functions, generic equations of state, or
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Figure 1. Singular point instability: (a) quadrature free; and (b) full quadrature.

even for the expansion of the boundary �ux H of the perfect gas Euler equations. Given the
computational cost of the evaluation of the boundary function in case of the Euler equations,
the quadrature free method loses much of its interest if it does not apply to the boundary
terms as well.
If we use a nodal expansion basis we may however assume that a function which passes

through the nodal values of the �ux vector is a reasonable approximation of the �ux expansion
in the volume as well as on the boundary. The expansion is then trivial, since we compute
the nodal weights f̃i pointwise from ui:

f̃i= f̃(ui) (10)

Apart from the apparent deviation of the formal order of the scheme, a major problem of
this approach is that the interpolation weight vectors ui are only weakly coupled numerically.
This is because the projection of the �ux (10) uses �ux values that are computed using
only one expansion coe�cient vector ui. When the �ux becomes singular, which is the case
at stagnation and sonic points, the weights ui may vary randomly without modifying the
computed �ux. Using normal quadrature eliminates this problem since any degree of freedom
(DOF) is used for �ux evaluations at di�erent Gauss integration points. The instability is
illustrated in Figure 1, which shows a zoom of the leading edge region of the NACA0012
airfoil. The free-stream conditions are M =0:3 and angle of attack of 2◦ and the solution has
been approximated with second-order polynomials; a Newton–Krylov implicit iteration scheme
has been used for the solution of the discretized equations. The quadrature free solution is
obtained just before explosion of the computation.
A very simple �x consists in reverting to classical quadrature in elements where the equa-

tions are (nearly) singular, i.e. in which stagnation or sonic points occur. For simple subsonic
�ows, such as presented in this paper, stagnation points occur exclusively on solid boundaries.
A �rst obvious step is hence to use full quadrature consistently on all solid boundaries. This
�x does not penalize overall e�ciency, since the number of a�ected cells is small and we
can easily a priori group all elements using quadrature free or full quadrature integration,
respectively. Furthermore, boundary elements already need a special treatment to take bound-
ary curvature into account into the integration.
For more general �ows, and especially for transonic and subsonic �ows, an indicator based

on the annihilation of one of the characteristic speeds should su�ce. This strategy however
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introduces a switch-like behaviour, so one needs to look into a robust integration into the
(implicit) iteration strategy. Furthermore, some e�ciency loss will occur since the elements
in which we need to apply full quadrature are not known a priori. These aspects have not
yet been investigated since the goal here was to demonstrate the instability and identify its
source.

4. ITERATION STRATEGIES

One of the main obstacles towards using DGFEM for stationary computations is the lack of
an e�cient iteration strategy. DGFEM has up to now been used primarily for the explicit
and fully resolved computation of unsteady �ows. To compute steady �ows those explicit
time-integrators are prohibitively slow, even when using locally de�ned optimal timesteps.

4.1. Newton–Krylov

The Newton–Krylov method is fairly often used in �nite volume methods [8–10] and has
only recently been applied to DGFEM [11, 12]. In this method the discretized non-linear
set of equations is solved using Newton iterations. The linear system arising from Newton
linearizations is iteratively solved with a Krylov subspace iteration method. In this case we
use the classical combination of GMRES with ILU(0) as preconditioner. In this method we
add a pseudo-time derivative to the original residual to improve the conditioning of the linear
system: (

ũn − ũn−1
��n

+∇ · f̃(ũn); v
)
=0 (11)

The pseudo-timestep ��n is chosen locally to conform to a given CFL number, and thus
provide the ‘locally optimal’ diagonal dominance. Since this amounts to solving a pseudo-
unsteady problem the non-linear convergence is governed by the pseudo-timestep, and will
be obviously faster as ��n becomes larger. Therefore, the CFL is updated following each
Newton update, inversely proportional to a power � of the current reduction of the L2-norm
of the residual �:

CFLn= max
(
CFL0 ·

(‖�0‖2
‖�n‖2

)�
;CFLmax

)
(12)

A major drawback of the Newton–Krylov-ILU method for high-order DGFEM is the large
memory footprint. The elementary blocks composing the preconditioning matrix increase
quadratically in size with the number of unknowns per element=face. If p is the polyno-
mial order, then the number of unknowns per element grows like p2 in 2 and p3 in three
dimensions. Then, the number of elements in each block of the ILU grows like p4 resp. p6.
Hence a matrix preconditioner becomes quite impractical even for relatively low orders.
A second problem concerns the application of the slope limiter. Classical techniques of

�ux limiting are not applicable for high order DGFEM because of the presence of volume
terms in the formulation. Hence the slope limiter is not integrated in the computation of the
residual, but e�ectively acts as a post-processing �lter [13]. Such a �lter is easily integrated
in an explicit, but not into an implicit iteration strategy, such as the Newton–Krylov method.
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Finally, it is necessary to tune the evolution of the CFL number in order to maintain
su�cient diagonal dominance throughout the computation. This becomes particularly di�cult
for higher orders.

4.2. Multigrid

With most iterative methods more iterations are needed to converge as the number of degrees
of freedom increases. This is due to either a poorer conditioning of the global system for
implicit iterative solution methods, or smaller stable timesteps in the case of explicit time
integration.
The multigrid method overcomes this problem by using a sequence of ever coarser rep-

resentations of the discretized problem, in the hope of keeping the same convergence rate
per iteration as for the coarsest representation. If the work needed to solve the problem is
directly proportional to the number of degrees of freedom, one attains the textbook multigrid
e�ciency (TME). TME requires constant residual reduction per multigrid cycle, indepen-
dent of the �nest representation of the solution. Multigrid methods succeed in doing this
because

• High frequency errors tend—as a general trend—to be well noticed by a discretization
method. Hence iterative solution methods tend to reduce (dissipate) those errors more
e�ciently. Multigrid uses successive coarser representations of the problem to convert
low frequency errors to high frequency errors on those coarser levels, thus leading to a
similarly fast elimination of the low frequency errors.

• The relaxation parameters (e.g. a pseudo-timestep) have higher stable=convergent values
with respect to the physical dimensions on the coarser levels, permitting faster evolution
of the transient.

• The overhead in terms of work and storage on the coarser levels is negligible in com-
parison to the �nest level.

These features allow multigrid to achieve competitive convergence rates with relatively
simple iteration methods. Multigrid is as a consequence a very e�cient method, with respect
to both memory and computing time, especially when a large number of degrees of freedom
is considered.
Classical multigrid methods use di�erent, successively coarser tesselations of the domain.

This tends to lead to complicated methods for the transfer of solutions between di�erent
representations and ad hoc de�nitions of the defect correction equations. The complexity of
the implementation is even more critical in parallel. Classical multigrid has recently been
applied to DGFEM discretizations for the groundwater equations by Bastian et al. [14]. In
the context of hierarchic higher-order methods such as DGFEM, one may as well use lower
order interpolation spaces based on the same tesselation to de�ne the coarser representations
of the problem. The advantages are the ease of implementation and the possibility to de�ne a
�rm theoretical basis for the de�nition of transfer operators and the defect correction equations.
A similar technology has been developed independently by Fidkowski et al. [1]. The
rationale for �nding the interlevel transfer operators presented in the current work is
however more general and is applicable to both p-multigrid and classical multigrid for any
weak formulation using discontinuous interpolation, even when interpolation spaces are not
nested.

7



4.2.1. Full approximation storage. In the basic form of multigrid, the two-level method, we
transfer the current �ne level iterant to a coarser level. On the coarser level a defect correction
is computed, which is then transferred back to the �ner representation. The full approximation
storage (FAS) method is the variant of this scheme for non-linear equations. The description
of the basic FAS cycle may be found in the classic textbook [15].
We have rede�ned the FAS cycle for the case of hierarchic multiorder or p-multigrid

iterations as follows. Suppose we want to �nd the approximated solution ũp to (1) in the
space Up of order p, based on the tesselation T. First we de�ne the functional residual
operator L() as

L(ũ)=∇ · f̃(u) (13)

Consider then another interpolation space Uq which is based on the same tesselation T, and
where q¡p. The two-level FAS cycle then proceeds as follows:

1. Pre-smoothing: perform a number of iterations on level p, leading to solution ũp∗.
2. Restriction: approximate ũp∗ by ũq∗ in Uq.
3. Defect correction: solve exactly in Uq:

(L(ũq)− L(ũq∗) +L(ũp∗); vq)=0 ∀vq ∈Uq (14)

4. Prolongation: represent the correction ũq − ũq∗ in Up and add to ũp∗:

ũp= ũp∗ + Ppq (ũ
q − ũq∗) (15)

5. Post-smoothing: perform additional iterations on level p to smooth the corrected solution.

We can interpret the function of this implementation of the defect correction equation in the
following manner: we eliminate the part of the residual which is representable in the lower
order space. Suppose Uq ⊂Up, then we de�ne

Up−q :=Up\Uq (16)

We may then decompose ũp

ũp= ũq + ũp−q; ũq ∈Uq; ũp−q ∈Up−q (17)

If the Galerkin weighted residuals are linear in the expansion coe�cients, we may rewrite the
defect correction weighted residual (14) as

(L(u(p−q)∗ + (ũq − ũq∗)); vq)=0 ∀vq ∈Uq (18)

We see that the defect correction equation de�nes the lower order correction to the solution
that removes the corresponding order variations of the residual.
Since both interpolation spaces use the same elements, the de�nition of the defect residual

and the prolongation=restriction are trivial. The prolongation and restriction of the solutions
both use Galerkin or L2-projection. This proceeds as follows: let us consider a solution ũa ∈Ua

and its Galerkin projection Ib
aũ
a= ũb ∈Ub

ũa =
∑
i
uai �

a
i ; �ai ∈Ua

Ib
a ũ

a= ũb =
∑
j
ubj�

b
j ; �bj ∈Ua

(19)
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Orthogonalizing the di�erence ũa − ũb to the space Ub de�nes the following set of equations
for the expansion coe�cients ubi :∑

i
(�bk ; �

b
j )u

b
j =

∑
j
(�bk ; �

a
i )u

a
i ∀�bk ∈Ub (20)

The solution transfer operator Ib
a has a discrete or matrix equivalent I

b
a de�ning the transfer

between the expansion vectors ua=[ua1 : : : u
a
na]
T and ub=[ub1 : : : u

b
nb]
T

ub = I ba · ua

I ba = (M
b)−1 ·Mba

(21)

where

Mb
ij = (�

b
i ; �

b
j )

Mba
ij = (�

b
i ; �

a
j )

(22)

The ‘restriction’ of the residual vector follows directly from the weighted defect correc-
tion equation. Conventionally one goes the other way around: �rst a restriction operator
is de�ned for the residual vector, and then—in the best of cases—the coarse grid opera-
tor is found by applying the discrete operators to the �ne grid operator (Galerkin coarse
grid approximation) or—more frequently—one uses the same discretization technique on the
coarse representation (discrete coarse grid approximation). The de�nition of the forcing term
requires the computation of the ‘restricted’ residual

(L(ũp); vq) (23)

To compute this term explicitly we would need to rede�ne routines for weighting all terms
of the residual de�ned in Up with test functions in Uq. To avoid this complication, we �rst
expand L(ũp) in Up:

L(ũp)≈ ∑
i
rpi �

p
i

∑
i
rpi (�

p
i ; �

p
j )≈ (L(ũp); �pj )

(24)

This projection requires the mass matrix and the Galerkin weighted residual de�ned on space
Up, both of which are already available. The ‘restricted residual’ is then computed as

(L(ũp); vq)≈ (∑
rpi �

p
i ; v

q) (25)

We �nd the following matrix operator connecting the vector containing Galerkin weighted
residuals for space Up to the restricted residuals in space Uq:

Ĩ qp =M
qp · (Mp)−1 (26)

The discrete form of the prolongation and restriction operators as given by Equations (21)
and (26) are the same as proposed by Fidkowski et al. [1] in the framework of p-multigrid
DGFEM for nested interpolation spaces. The rationale of �nding the transfer operators in-
dicated here is however more general. In the framework of discontinuous interpolation it
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Figure 2. Multigrid strategies.

is equally applicable to non-embedded spaces and even to classical multigrid methods with
nested or non-nested grids. Hence this de�nition may be exploited for hp-adaptive and spectral
implementations. Theoretically one may apply it to continuous interpolation spaces as well.
However, the transfer operators require the inversion of the mass matrix on both levels, which
will probably be prohibitively costly.

4.2.2. Multigrid strategies. The two-grid algorithm requires an accurate solve of the defect
correction equation. This may still be untractable, and hence a number of strategies exploiting
the two-grid cycle are de�ned (see Figure 2):

• Explicit v- and w-cycles: A �rst strategy consists in replacing the coarse exact solve
by a recursive application of the two-grid cycle. Now we base the restricted residual on
the defect correction equation. Depending on the number of two-cycle solves per defect
correction we distinguish v-cycles and w-cycles. We de�ne our multigrid cycling strategy
by the following parameters:

◦ number of coarser levels;
◦ number of pre- and post-smoothing steps (or accuracy) for each level;
◦ number of subcycles;
◦ smoother type for each level.
Typically we use all available levels, and on each level—unless stated otherwise—we
use 10 Runge–Kutta pseudo-time iterations for both the pre- and the post-smoothing step.

• Partially implicit v- and w-cycles: Multigrid convergence hinges upon the convergence of
the lowest frequency (order) errors which are no longer converted to higher frequencies
by coarsening. Returning to the Newton–Krylov implicit solver we observe that, for
zeroth order interpolation, the storage implied in the ILU preconditioner is relatively
small. The discretization is positive and hence no limiter is required to stabilize the
scheme near solution discontinuities. So we have very convincing motivations to use the
implicit solver on the coarsest levels.
Starting the Newton–Krylov iterations from the same CFL each time we get to the coars-
est level is not a good idea. The non-linear convergence depends on it, and the required
stabilization diminishes as the solution is further converged. Therefore, we update CFL0
for the Newton–Krylov scheme following each multigrid cycle. We use the same ratio-
nale as in (12), but now using the ratios of �ne grid residual norms. Stable values for
CFL0, CFLmax and � may be determined from a zeroth order run.

• Full multigrid (FMG): Starting from the coarsest representation we successively re�ne
the representation. Using the hitherto available coarser levels one performs a number
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of v- or w-cycles. Depending on the strategy a prespeci�ed number of cycles is done,
or until a desired level of convergence has been reached. After that the solution is
prolongated to the next �ner level. This successive re�ning of the order is also called
nested iteration. When �nally reaching the target order, one continues v- or w-cycling
until full convergence. This combination is coined full multigrid.

5. APPLICATIONS

5.1. Grid convergence study: �ow around a circular cylinder

To check the grid convergence for both the full quadrature and the quadrature free implemen-
tation we consider the computation of the inviscid �ow around a circular cylinder at Mach
0.3. We use this testcase since it is easy to generate high quality nested meshes, and because
the surface curvature is constant, so there is no discussion about grid clustering. The meshes
are the same as those used by Krivodonova et al. [5]. The basic grid is fully regular and
symmetric, the coarser grids are sequentially nested into the �nest mesh. Details of the meshes
near the cylinder are displayed in Figure 3. The label of the meshes refers to the number of

Figure 3. Meshes for the cylinder testcase: (a) 16× 4; (b) 32× 8; (c) 64× 16; and (d) 128× 32.
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points on the cylinder times the number of parallel mesh layers between the cylinder and the
free-stream boundary.
Orders ranging from 0 to 3 have been investigated. The numerical error has been measured

by the L2-norm of the following quantity related to entropy (p∞ and �∞ correspond to the
free-stream values) [5]:

s′=
(
p
p∞

)
·
(
�∞
�

)�
− 1 (27)

The evolution of the error norm is shown in Figure 4. The grid convergence rate r has
been computed for each re�nement separately and globally, and summarized together with the
error norm 	=L2(s′) in Tables I and II. We see that the order of accuracy of the scheme
in case of full quadrature corresponds to the results obtained by Krivodonova. The order of

1 2 4 8
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' ||
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p=2
p=3

Figure 4. Grid convergence—cylinder testcase.

Table I. Grid convergence—full quadrature—cylinder testcase.

p=1 p=2 p=3

	 r 	 r 	 r

16× 4 6:315e− 02 — 8:228e− 03 — 1:244e− 03 —
32× 8 1:169e− 02 2.43 5:162e− 04 3.99 6:425e− 05 4.27
64× 16 1:812e− 03 2.69 4:272e− 05 3.59 4:552e− 06 3.82
128× 32 2:676e− 03 2.76 4:312e− 06 3.31 5:876e− 07 2.95
Global — 2.63 — 3.63 — 3.68
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Table II. Grid convergence—quadrature free—cylinder testcase.

p=1 p=2 p=3

	 r 	 r 	 r

16× 4 6:634e− 02 — 9:216e− 03 — 1:707e− 03 —
32× 8 1:251e− 02 2.41 1:204e− 03 2.94 1:695e− 04 3.33
64× 16 2:226e− 03 2.49 1:924e− 04 2.65 1:343e− 05 3.66
128× 32 5:710e− 04 1.96 2:978e− 05 2.69 1:132e− 06 3.57
Global — 2.29 — 2.76 — 3.52

accuracy and solution accuracy are deteriorated by the quadrature free integration, but not in
a very dramatic manner.
Figures 5 and 6 show comparisons of the computed Mach number isolines for both the full

quadrature and the patched quadrature free implementation. The Mach number distribution is
visualized using 21 isolines between 0 and 0.65.

5.2. Comparison of iterative strategies—subsonic �ow around the NACA0012 airfoil

To compare the iteration strategies presented in this paper we compute the �ow around the
NACA0012 airfoil. The angle of attack is 2◦ and the Mach number is 0.3. The geometry
of the airfoil may be found in Reference [16]. The chord has been rescaled to avoid the
truncation of the airfoil at the trailing edge. The free-stream boundary is located at 30 chords
from the leading edge. The mesh size on the airfoil varies quadratically, from 0.01 at the
leading edge, over 0.08 at midchord to 0.02 at the trailing edge. At the free-stream boundary
the grid size is 20. The coarse mesh is obtained by doubling those sizes. The details of the
meshes near the airfoil are shown in Figure 7. The coarse mesh contains in total 157 nodes,
the �ne mesh 622 nodes. Again the simpli�ed treatment for boundary curvature has been
used.
Computed Mach number isolines for interpolation orders 1 and 4 on the coarse and on

the �ne mesh are compared in Figure 8. In Figure 9 we compare performance of three full
multigrid strategies in terms of CPU time. All strategies use fully explicit w-cycles and are
compared to the standard w-cycle. Residuals are always computed using the solution projected
onto the highest order representation. The �rst strategy, labelled ‘w-fmg1’ only uses one cycle
per level during the nested iteration. The second one (‘w-fmg2’) converges four orders of
magnitude for each re�nement. The last one (‘w-fmg3’) converges each level to machine
accuracy. We see that w-fmg1 and w-fmg2 have more or less the same performance as the
w-cycle. W-fmg3 performs much worse. This is due to the fact that from a given resolution
onward the low order solution generates the same higher-order error. All the time spent in
improving the low order solution with respect to this critical resolution is then lost. At least
for this case, we have nothing to gain from FMG. The only advantage we may reasonably
expect from FMG is an increased stability. Full resolution for each successive re�nement is
however a waste of CPU time.
In Figures 10 and 11 we compare the convergence rates of the di�erent iteration strategies

in terms of number of multigrid cycles (if applicable) and CPU time for orders 2, 3 and 4
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Figure 5. Mach number distributions for the �ow around the circular cylinder, 16× 4
mesh: (a) order 1—full quadrature; (b) order 1—quadrature free; (c) order 3—full

quadrature; and (d) order 3—quadrature free.

on the coarse and the �ne mesh, respectively. The strategies included in this study
are:

• fully explicit v-cycle (labelled ‘v-cycle’);
• fully explicit w-cycle (labelled ‘w-cycle’);
• v-cycle with implicit coarsest level (labelled ‘v-cycle-i0’);
• w-cycle with implicit coarsest level (labelled ‘w-cycle-i0’);
• Runge–Kutta pseudo-timestepping (labelled ‘Runge–Kutta’);
• Newton–Krylov-ILU (labelled ‘Newton–Krylov’).
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Figure 6. Mach number distributions for the �ow around the circular cylinder, 32× 8
mesh: (a) order 1—full quadrature; (b) order 1—quadrature free; (c) order 3—full

quadrature; and (d) order 3—quadrature free.

All explicit levels use 10 Runge–Kutta pseudo-time iterations for both pre- and post-
smoothing sweeps. On the implicit level we specify CFL0 =5 and �=0:5, whilst 30 Krylov
vectors are used. The Runge–Kutta pseudo-time integration and the Newton–Krylov implicit
scheme both use the same parameters as their pendants on the multigrid levels.
We see that the v-cycles have the same rate of convergence per cycle irrespective of

the �nest-level interpolation order, i.e. we attain textbook multigrid e�ciency. We see this
behaviour only for v-cycles since the number of passes on each level of this strategy is
independent of the �nest-level interpolation order. The number of cycles however is very
dependent on the grid size. This is to be expected, since the maximum stable timestep is
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Figure 7. Meshes for the �ow around the NACA0012 airfoil: (a) coarse
resolution; and (b) �ne resolution.

proportional to the grid size. If we had used a classical multigrid method, using coarser grids
instead of decreasing order, we would have convergence rates per cycle independent of
mesh size, provided the coarsest mesh remains the same. A combination of
p- and classical multigrid could provide both order and grid size independent convergence
rates.
We note that in any con�guration (fully or partly explicit) w-cycles have a higher asymp-

totic convergence rate per cycle, almost in a constant ratio to the number of coarser level
sweeps (v-cycle orders 2 and 3: 1 pass, w-cycle order 2: 2 passes, w-cycle order 3: 4 passes).
Since the extra work is con�ned to the coarser levels we can sometimes see a better perfor-
mance in terms of CPU time.
The application of the Newton–Krylov strategy as the smoother on the coarsest level tends

to speed up v-cycles considerably, both in number of cycles and CPU time. For w-cycles the
e�ect is most marked in the early stages, where the convergence rate seems to be dominated
by low frequency errors. After an initial transient however we �nd asymptotic convergence
rates that are similar to the ones for the fully explicit cycles. A possible explanation is that
w-cycles, as they concentrate most of the workload on the coarser levels, smooth out the low-
frequency error more e�ectively. Consequently this strategy, especially in the partly implicit
case, would be dominated by the convergence of higher frequencies only in the last stage
of convergence. v-cycles would tend to keep a balanced ‘broad-band’ error, and maintain
e�ciency on all levels up to the end. This e�ect is probably only noticeable due to the high
accuracy of the transfer operators.
Finally we also note that in all cases the implicit Newton–Krylov scheme converges �rst.

However as order and number of DOFs increases, the multigrid scheme becomes a viable
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Figure 8. Mach number distribution: (a) p=1, coarse; (b) p=4 coarse;
(c) p=1, �ne; and (d) p=4, �ne.
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Figure 11. Comparison of iteration strategies, �ne mesh: (a) number of cycles,
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competitor, even when we use a poor smoother such as Runge–Kutta, and this for a fraction
of the memory.

6. CONCLUSIONS

In order to enhance the computational e�ciency of DGFEM two algorithmical simpli�cations
have been implemented. The �rst one is a simpli�ed representation of the boundary, thus
avoiding the necessity of isoparametric elements. The second one is a simple implementation
of the quadrature free integration method. Both simpli�cations, although leading apparently
to a decreased formal order of accuracy, retain su�cient absolute precision. The quadrature
free implementation has been shown to need stabilization, and a suitable strategy has been
implemented for subsonic �ows. A Newton–Krylov and di�erent p-multigrid iteration strategies
have been presented and compared. Even using very simple smoothers, the p-multigrid proves
to be a performant option in terms of CPU time whilst drastically reducing memory footprint
and code complexity.
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