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General formulation for local integration in standard 
elastoplasticity with an arbitrary hardening model 

Anh Le van a, Géry de Saxcé b, Philippe Le Grognec a
a Laboratoire de G�eenie Civil, Facult�ee des Sciences et des Techniques, 2 rue de la Houssini�eere, 44322 Nantes Cedex 3, France

b Laboratoire de M�eecanique de Lille, URA CNRS 1441, Universit�ee de Lille I, 59655 Villeneuve d’Ascq Cedex, France
This paper describes a general method for deriving the plastic corrections and the consistent tangent modulus for a

wide range of arbitrary non-linear hardening models within the framework of standard small strains elastoplasticity.

The features of the proposed formulation are: (i) the local solution is obtained through an iterative procedure. The

plastic corrections are given in closed forms exhibiting one scalar function denoted by Galg and three fourth-order

tensors Dalg, Galg, Lalg, which are shown to be the algorithmic discrete counterparts of usual theoretical continuum

quantities, (ii) the consistent tangent modulus has a symmetrical expression involving the same quantities. Finite ele-

ment computations are performed using a particular non-linear kinematic hardening model and allow to exhibit the

ratcheting phenomenon usually observed on mechanical components subjected to cyclic loadings.
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1. Introduction

The numerical response of an elastoplastic structure

is usually determined by an incremental method where

the solution is computed at every time step by using the

finite element method combined with a Newton-type

iterative scheme. Within each iteration it is necessary to

perform the two following important tasks characteristic

of any elastoplastic algorithm: first, the local integration

of the non-linear constitutive equations in order to

compute the stress for a given strain increment and to

build up the internal force vector, second, the compu-

tation of the consistent tangent modulus in order to

form the structural tangent matrix. Since these tasks

represent the main part of the elastoplastic calculation,

a lot of work were devoted to their analysis.
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In some cases an analytical local integration is pos-

sible. Thus, Krieg and Krieg [16] gave the exact local

solution in perfect plasticity with von Mises yield func-

tion, by assuming a given constant and deviatoric in-

crement of strain rate. Later, dealing with the plane

stress situation, Simo and Govindjee [29] showed that

the linear kinematic hardening leads to an algebraic

equation of degree four which can be solved analytically.

Recently, Alfano et al. [1] successfully generalized the

treatment in [29] to include the significant case of iso-

tropic hardening as well as elastoviscoplasticity of the

Perzyna type, and also reduced the solution procedure

to that of a quartic equation in the plastic multiplier.

In view of numerical purposes when analytical solu-

tions are not available, the first local integration algo-

rithm using Euler implicit scheme––referred to as radial

return algorithm––was proposed by Wilkins [38] for

perfect plasticity with von Mises yield criterion. Later, it

was extended to linear isotropic and kinematic harden-

ings by Krieg and Key [15]. The further case of non-

linear isotropic hardening combined with a special form



of non-linear kinematic hardening was investigated by

Simo and Taylor [34]. In the slightly different frame of

non-smooth mechanics, the catching up algorithm was

proposed by Moreau [19,20] and used later on by

Nguyen [22].

In order to handle other criteria than von Mises one,

Ortiz et al. [24] proposed the closest point algorithm as a

generalization of the radial return algorithm to arbitrary

convex yield functions. The difficult case of plane stress

was solved by Simo and Taylor [35]. Besides, other

formulations using either the generalized trapezoidal or

the generalized midpoint rule were presented by Ortiz

and Popov [25], Ortiz and Martin [23], and Simo and

Govindjee [30], with a view to encompassing the previ-

ous algorithms and combining numerical stability and

accuracy. The cutting-plane algorithm successively pro-

posed by Simo and Ortiz [33] in large deformations and

Ortiz and Simo [26] in small strains is another stress

update procedure lying on a different conception and

may entail less computational efforts. After Hughes and

Pister [12] introduced the notion of consistent lineari-

zation, the role of consistent tangent modulus was em-

phasized by Hughes and Taylor [13]. Later, a general

local integration algorithm and the corresponding con-

sistent tangent modulus for rate-independent plasticity

were presented by Simo and Hughes [31,32], Ortiz and

Martin [23], and Simo and Govindjee [30]. More re-

cently, Hartmann and Haupt [11] considered a non-lin-

ear kinematic hardening model due to Armstrong and

Frederick [3] and used the implicit Euler time integration

procedure to solve the non-linear equation system for

the stress computation. By the same backward scheme,

Matzenmiller and Taylor [18] gave the stress update for

general isotropic yield criteria containing all the invari-

ants of the stress tensor. Completely explicit expressions

for the plastic corrections and the consistent tangent

modulus were given by Doghri [6–8] for J2-plasticity
possibly combined with damage. A first general ap-

proach to the derivation of the explicit expression for the

consistent tangent modulus was provided by Alfano

and Rosati [2] in rate-independent elastoplasticity with

mixed hardening. More recently, Palazzo et al. [27] suc-

ceeded in obtaining explicit representations for the stress

update and the consistent tangent operator for general

isotropic elastoplastic models, by means of a novel linear

combination of dyadic and square tensor products.

Finally, it should be mentioned that one of the first

solution for general inelastic analysis is the effective-

stress-function algorithm proposed by Bathe and co-

workers [4,14]. The complete stress state is obtained by

solving a governing scalar equation called the effective

stress function equation and the consistent tangent

matrix is derived thereof. This method is actually ap-

plicable for more complex inelastic situations, like

Drucker–Prager soil model, thermoelastoplasticity and

creep solutions, as well as large strain elastoplasticity [9].
2

The above review makes no claim to completeness, the

reader can find more details on the historical back-

ground to the local integration subject as well as more

references in the quoted papers.

In this paper, we attempt to go further by proposing

a more general, synthetic method to derive the plastic

corrections and the consistent tangent modulus for a

wide class of non-linear hardening models. The for-

mulation is built for small strain elastoplasticity within

the framework of the generalized standard materials

theory described in [10,28]. The assumptions made are

general enough for the proposed formulation to be

valid with somewhat arbitrary yield functions and

hardening energies. The local solution of the elasto-

plastic equations involves the one-step fully implicit

integration scheme combined with a local Newton it-

erative procedure, as usually done in the literature.

However, compared with Ref. [31] for instance, here the

expressions for the plastic corrections and the consis-

tent tangent modulus are obtained in closed (tensorial

or matrical) forms ready for computer use, rather than

in operator forms. The presented formulation high-

lights the role of one scalar function and three fourth-

order tensors, which are shown to be the algorithmic

discrete counterparts of usual theoretical continuum

quantities. Also, consideration of general expressions

for the hardening energies gives rise to some additional

terms in the plastic corrections, which are not reported

in the previous works.

The finite element computations carried out on the

example of a particular non-linear kinematic hardening

model allow to assess the validity of the proposed al-

gorithm and to exhibit different types of ratcheting

usually observed on mechanical components subjected

to cyclic loadings.
2. Local integration

Let us consider a three-dimensional continuum body

undergoing a quasi-static infinitesimal elastic–plastic

transformation. The linearized strain tensor is decom-

posed into an elastic and plastic part, denoted by ��ee�eee and
��ee�eep respectively, according to the relationship

��ee�ee ¼ ��ee�eee þ��ee�eep ð1Þ

The state and evolution equations for the elastoplastic

problem are obtained according to the generalized

standard materials theory which is based on thermody-

namical foundations [10,28]. The following assump-

tions––not so restrictive––are made on the internal state

of the body.

Assumption 1. The internal state at any point in the

body and at any time is characterized by the plastic



strain ��ee�eep and two other internal variables to account for

the deformation history, one second-order tensor hard-

ening variable denoted by ��aa�aa and one scalar hardening

variable denoted by a.

Assumption 2. The hardening energy whard splits up into

two independent functions of the hardening variables

whardð��aa�aa; aÞ ¼ w��aa�aað��aa�aaÞ þ waðaÞ ð2Þ
where w��aa�aa and wa are strictly convex functions.

The state laws give us the stress ��rr�rr and the thermo-

dynamic conjugates ��aa�aa and a, duals of the hardening

variables ��aa�aa and a respectively

��rr�rr ¼ D : ��ee�eee ¼ D : ð��ee�ee���ee�eepÞ

��aa�aa ¼ ow��aa�aa

o��aa�aa
ð��aa�aaÞ

a ¼ owa

oa
ðaÞ

ð3Þ

where D denotes the elasticity fourth-order tensor de-

fined as the second derivative of the elastic energy
1
2
�������e : D : �������e. The yield criterion expressed in terms of the

stress ��rr�rr and the hardening variables ð��aa�aa; aÞ is satisfied at

any point in plastic loading

f ð��rr�rr; ��aa�aa; aÞ ¼ 0 ð4Þ
The evolution laws result from generalization of the

maximum plastic dissipation rule and provide the rates

of plastic strain and hardening variables by differenti-

ating the yield function f

_��ee�ee��ee�eep ¼ _kk
of
o��rr�rr

� _��aa�aa��aa�aa ¼ _kk
of
o��aa�aa

� _aa ¼ _kk
of
oa

ð5Þ

where _kk is the plastic multiplier.

Given a strain increment D��ee�ee ¼ ��ee�ee���ee�een�1 at a point in

the body and at present time tn, let us assume that there

is plastic loading and determine the elastoplastic solu-

tion in terms of D��ee�ee and the other known quantities at

previous time tn�1.

By differentiating the state laws (3) with respect to

time and eliminating the conjugate hardening variables

by means of the evolution laws (5), we get 14 equations

with 14 unknowns, viz. the stress ��rr�rr, the hardening

variables ð��aa�aa; aÞ and the plastic multiplier _kk
3

_��rr�rr��rr�rr ¼ D : _��ee�ee��ee�ee� _kkD :
of
o��rr�rr

ð��rr�rr; ��aa�aa; aÞ

_��aa�aa��aa�aa ¼ o2w��aa�aa

o��aa�aa2
: _��aa�aa��aa�aa ¼ � _kkGð��aa�aaÞ : of

o��aa�aa
ð��rr�rr; ��aa�aa; aÞ

_aa ¼ o2wa

oa2
_aa ¼ � _kkGðaÞ of

oa
ð��rr�rr; ��aa�aa; aÞ

f ð��rr�rr; ��aa�aa; aÞ ¼ 0

ð6Þ

where G ��aa�aað Þ is a symmetric tensor of order four and GðaÞ
a scalar function defined by

Definition

G ��aa�aað Þ � o2w��aa�aa

o��aa�aa2
��aa�aa ��aa�aað Þð Þ; GðaÞ � o2w a

oa2
ðaðaÞÞ ð7Þ

In the sequel, G is referred to as the plastic (hard-

ening) tensor––as opposed to the elastic tensor D––and

G as the plastic (hardening) scalar function. In writing

(7), use has been made of the strict convexity of the

hardening energies w��aa�aa and wa according to which the

state laws (3b) and (3c) can be inverted giving ��aa�aa; að Þ in

terms of ��aa�aa; að Þ.
Relations (6) are now discretized by means of the

implicit Euler scheme, giving rise to 14 scalar equations

with 14 unknowns ��rr�rr; ��aa�aa; a;Dkð Þ

��rr�rr� ��rr�rrn�1 þ DkD :
of
o��rr�rr

��rr�rr; ��aa�aa; að Þ �D : D��ee�ee ¼ ��00�00

��aa�aa� ��aa�aan�1 þ DkG ��aa�aað Þ : of
o��aa�aa

��rr�rr; ��aa�aa; að Þ ¼ ��00�00

a� an�1 þ DkGðaÞ of
oa

��rr�rr; ��aa�aa; að Þ ¼ 0

f ��rr�rr; ��aa�aa; að Þ ¼ 0

ð8Þ

In the above equations, the subscripts for quantities at

present time tn have been omitted for brevity, thus ��rr�rr for

instance designates ��rr�rrn. The quantity Dk can be consid-

ered as an incremental plastic multiplier. The backward

implicit Euler scheme ensures the numerical stability and

the symmetry of the consistent tangent modulus, as has

been shown in number of works. To solve the non-linear

system (8) by means of Newton iterative method, we

make the following hypothesis which is satisfied in

practice.

Assumption 3. The yield function f ��rr�rr; ��aa�aa; að Þ is decom-

posed as the sum of one term depending on ��rr�rr; ��aa�aað Þ and

another one depending on the scalar variable a

f ��rr�rr; ��aa�aa; að Þ ¼ f1 ��rr�rr; ��aa�aað Þ þ f2ðaÞ ð9Þ

The form (9) is not so restrictive in practice and is

general enough to enable one to deal with new plasticity

models. Note that variables ��rr�rr; ��aa�aað Þ do not necessarily

appear in the form of their difference ��rr�rr� ��aa�aa, as we will see
below in the case of non-linear kinematic hardening.



Since the elastic and hardening energies are strictly

convex, D and G ��aa�aað Þ are invertible. Taking into account

(9) at each local iteration for solving (8), the plastic

corrections d��rr�rr; d��aa�aa; da; dkð Þ for ��rr�rr; ��aa�aa; a;Dkð Þ are given by�
D�1 þ Dk

o2f
o��rr�rr2

�
: d��rr�rrþ Dk

o2f
o��aa�aao��rr�rr

: d��aa�aa

¼ �W ��rr�rr; ��aa�aa;Dkð Þ � of
o��rr�rr

dk

Dk
o2f
o��rr�rro��aa�aa

: d��rr�rrþ G�1

�
þ Dk

o2f
o��aa�aa2

þ DkG�1 :
of
o��aa�aa

:
o3w��aa�aa

o��aa�aa3

� �
: G�1

�
: d��aa�aa

¼ �U ��rr�rr; ��aa�aa;Dkð Þ � of
o��aa�aa

dk

1

GðaÞ

�
þ Dk

o2f
oa2

þ Dk
G2ðaÞ

o3wa

oa3
of
oa

�
da

¼ �Uða;DkÞ � of
oa

dk

of
o��rr�rr

: d��rr�rrþ of
o��aa�aa

: d��aa�aaþ of
oa

da ¼ �f ��rr�rr; ��aa�aa; að Þ

ð10Þ

where W and U are second-order tensors and U a scalar

function defined by

Definition

W ��rr�rr; ��aa�aa;Dkð Þ ¼ D�1 : ��rr�rrð � ��rr�rrn�1Þ þ Dk
of
o��rr�rr

��rr�rr; ��aa�aað Þ � D��ee�ee

U ��rr�rr; ��aa�aa;Dkð Þ ¼ G�1 ��aa�aað Þ : ��aa�aað � ��aa�aan�1Þ þ Dk
of
o��aa�aa

��rr�rr; ��aa�aað Þ

Uða;DkÞ ¼ a� an�1

GðaÞ þ Dk
of
oa

ðaÞ

ð11Þ

Note that the inner parentheses in the left-hand side of

Eq. (10b) are essential since the colon products therein are

not associative. Moreover, since the components of the

fourth-order tensor of
o��aa�aa :

o3w��aa�aa

o��aa�aa3
in a fixed orthonormal basis

read (with summation implied over repeated subscripts)

of
o��aa�aa

:
o3w��aa�aa

o��aa�aa3

� �
ijkl

¼ of
o��aa�aa

� �
mn

o3w��aa�aa

o��aa�aa3

� �
nmijkl

¼ of
o��aa�aa

� �
mn

o3w��aa�aa

o��aa�aamno��aa�aajio��aa�aalk

¼ of
o��aa�aa

:
o3w��aa�aa

o��aa�aa3

� �
klij

ð12Þ

the fourth-order tensor of
o��aa�aa :

o3w��aa�aa

o��aa�aa3
is symmetric. Therefore,

Eq. (10a) and (10b) form a symmetric system with un-

knowns d��rr�rr and d��aa�aa. These equations, uncoupled from

(10c) with unknown da, take the following formfAA : d��rr�rrþ eBB : d��aa�aa ¼ ��pp�ppeBBT : d��rr�rrþ eCC : d��aa�aa ¼ ��qq�qq
ð13Þ

In practice, the incremental plastic multiplier Dk is small

enough like the strain increment. Thus, the fourth-order

tensors
4

eCC � G�1 þ Dk
o2f
o��aa�aa2

þ DkG�1 :
of
o��aa�aa

:
o3w��aa�aa

o��aa�aa3

� �
: G�1

and

fAA � D�1 þ Dk
o2f
o��rr�rr2

are invertible like G�1 and D�1. In such conditions, the

system (13) is solved as follows

d��rr�rr ¼ eDD : ��pp�pp þfLL : ��qq�qq

d��aa�aa ¼ fLLT : ��pp�pp þ eGG : ��qq�qq
ð14Þ

with eDD ¼ ðfAA � eBB : eCC�1 : eBBTÞ�1
, fLL ¼ �fAA�1 : eBB : eGG

and eGG ¼ ðeCC � eBBT : fAA�1 : eBBÞ�1
.

From (14), the incremental plastic multiplier Dk, the

stress ��rr�rr and the hardening variables ð��aa�aa; aÞ are updated at

each local iteration using the following plastic correc-

tions [36,37]

d��rr�rr ¼ �Dalg : W�Lalg : U

� Dalg :
of
o��rr�rr

�
þLalg :

of
o��aa�aa

�
dk

d��aa�aa ¼ �LT
alg : W� Galg : U

� LT
alg :

of
o��rr�rr

�
þ Galg :

of
o��aa�aa

�
dk

da ¼ � Galg

�
Uþ of

oa
dk

�
ð15Þ

where the scalar function Galg and the fourth-order

tensors Dalg, Galg and Lalg are defined by

Definition

Dalg ¼
"
D�1 þ Dk

o2f
o��rr�rr2

� ðDkÞ2 o2f
o��aa�aao��rr�rr

: G�1 þ Dk
o2f
o��aa�aa2

�

þ DkG�1 :
of
o��aa�aa

:
o3w��aa�aa

o��aa�aa3

� �
: G�1

��1

:
o2f
o��rr�rro��aa�aa

#�1

Galg ¼
"
G�1 þ Dk

o2f
o��aa�aa2

þ DkG�1 :
of
o��aa�aa

:
o3w��aa�aa

o��aa�aa3

� �
: G�1

�ðDkÞ2 o2f
o��rr�rro��aa�aa

: D�1 þ Dk
o2f
o��rr�rr2

� ��1

:
o2f
o��aa�aao��rr�rr

#�1

Galg ¼
GðaÞ

1þ DkGðaÞ o2f
oa2 þ Dk

GðaÞ
o3wa

oa3
of
oa

Lalg ¼ � D�1 þ Dk
o2f
o��rr�rr2

� ��1

: Dk
o2f
o��aa�aao��rr�rr

: Galg

ð16Þ

One can check that the transpose of Lalg can be put in

the form



LT

alg ¼ �eCC�1 : eBBT : eDD
¼ � G�1 þ Dk

o2f
o��aa�aa2

þ DkG�1 :
of
o��aa�aa

:
o3w��aa�aa

o��aa�aa3

� �
: G�1

� ��1

: Dk
o2f
o��rr�rro��aa�aa

: Dalg

Eventually, inserting relations (15) into (10d) provides

the correction for the plastic multiplier

dk ¼
�
f � of

o��rr�rr
: Dalg

�
þ of

o��aa�aa
: LT

alg

�
: W

� of
o��rr�rr

: Lalg

�
þ of

o��aa�aa
: Galg

�
: U� Galg

of
oa

U

�
,"

of
o��rr�rr

: Dalg :
of
o��rr�rr

þ 2
of
o��rr�rr

: Lalg :
of
o��aa�aa

þ of
o��aa�aa

: Galg :
of
o��aa�aa

þ Galg

of
oa

� �2
#

ð17Þ

Recall that the right-hand sides of (15)–(17) are com-

puted with values obtained at the previous local itera-

tion. Since the fourth-order tensor of
o��aa�aa :

o3w��aa�aa

o��aa�aa3
is symmetric,

Dalg and Galg are symmetric too. To sum up, the local

solution of the elastoplastic problem is described by the

following algorithm.

Local integration loop

(a) Compute�
G�1 þ Dk

o2f
o��aa�aa2

þ DkG�1 :
of
o��aa�aa

:
o3w��aa�aa

o��aa�aa3

� �
: G�1

��1

and derive Dalg from (16a).

(b) Compute�
D�1 þ Dk

o2f
o��rr�rr2

��1

and derive Galg from (16b) and Lalg from (16d).

(c) Compute Galg from (16c).

(d) Compute the plastic corrections dk by (17),

d��rr�rr; d��aa�aa; dað Þ by (15), and update the solution

Dk;��rr�rr; ��aa�aa; að Þ.
(e) Check the convergence, based on dk for instance,

to exit the loop.

End of the loop

The proposed local integration procedure combines the

quadratic convergence rate of Newton scheme with the

unconditional stability of implicit Euler scheme. Expres-

sions (15)–(17) for the plastic corrections show the major

role of tensors Dalg, Galg, Lalg and scalar function Galg in

the inversion of the local equation set (8). The quantities

Dalg, Galg and Galg represent the algorithmic or discrete

finite-step counterparts of the usual theoretical continuum

quantities: the elastic tensorD, the plastic tensorG and the
5

plastic scalar functionG, see definition (7), respectively. As

shown by definition (16), when the incremental plastic

multiplier Dk tends to zero, all the algorithmic quantities

tend to their theoretical counterparts.

In this study, we assume that the hardening energies

w��aa�aa ��aa�aað Þ and waðaÞ in Eq. (2) can be given general expres-

sions. Thus, the plastic (hardening) tensor G and the

plastic (hardening) scalar function G, defined by relation

(7), are not constant a priori. In particular, this leads to

the term of
o��aa�aa :

o3w��aa�aa

o��aa�aa3
in Eq. (16a) and (16b), which is not

reported in the literature, see e.g. Box 3.5 in [31].

Although to date usual models involve quadratic ex-

pressions for w��aa�aa so that of
o��aa�aa :

o3w��aa�aa

o��aa�aa3
is zero, theoretical con-

siderations give rise to the latter term which must be

taken into account in general.

In the case of arbitrary yield functions and hardening

energies, fourth-order tensors Dalg, Galg and Lalg must

be computed numerically from definition (16), and this

requires inversions of 6· 6 symmetric matrices.

Remark. In some cases, these numerical computations

can be avoided as recently shown by Palazzo et al. [27].

These authors, by using an original linear combination

of dyadic and square tensor products, have successfully

derived explicit representations for the stress update and

the consistent tangent operator, for general isotropic

yield functions depending upon all the three invariants

of the relative stress ��rr�rr� ��aa�aa.

Furthermore, using the symmetry of Dalg and Galg,

relations (15a), (15b) and (17) can be recast as follows

dk ¼ f � of
o��rr�rr

� �
alg

: Dalg : W

"
� of

o��aa�aa

� �
alg

: Galg : U

� Galg

of
oa

U

#,
of
o��rr�rr

: Dalg :
of
o��rr�rr

� �
alg

"

þ of
o��aa�aa

: Galg :
of
o��aa�aa

� �
alg

þ Galg

of
oa

� �2
#

ð18Þ

and

d��rr�rr¼Dalg :

"
�WþDk

o2f
o��aa�aao��rr�rr

:

�
G�1þDk

o2f
o��aa�aa2

þDkG�1 :
of
o��aa�aa

:
o3w��aa�aa

o��aa�aa3

� �
:G�1

��1

:U� of
o��rr�rr

� �
alg

dk

#

d��aa�aa¼Galg :

"
�UþDk

o2f
o��rr�rro��aa�aa

: D�1þDk
o2f
o��rr�rr2

� ��1

:W� of
o��aa�aa

� �
alg

dk

#
ð19Þ

where of
o��rr�rr

� �
alg

and of
o��aa�aa

� �
alg

are second-order tensorsdefinedby



Definition

of
o��rr�rr

� �
alg

¼ of
o��rr�rr

� Dk
of
o��aa�aa

:

�
G�1 þ Dk

o2f
o��aa�aa2

þ DkG�1 :
of
o��aa�aa

:
o3w��aa�aa

o��aa�aa3

� �
: G�1

��1

:
o2f
o��rr�rro��aa�aa

of
o��aa�aa

� �
alg

¼ of
o��aa�aa

� Dk
of
o��rr�rr

: D�1 þ Dk
o2f
o��rr�rr2

� ��1

:
o2f
o��aa�aao��rr�rr

ð20Þ

Expression (18) for dk, strictly equivalent to (17), is quite

analogous to the theoretical expression for _kk derived

from the continuous problem:

_kk ¼
of
o��rr�rr : D : _��ee�ee��ee�ee

of
o��rr�rr : D : of

o��rr�rr þ
of
o��aa�aa : G

��aa�aað Þ : of
o��aa�aa þ GðaÞ of

oa

� �2 ð21Þ

where the sum appearing in the denominator

�hh � of
o��aa�aa

: G ��aa�aað Þ : of
o��aa�aa

þ GðaÞ of
oa

� �2

is usually referred to as the plastic modulus. When the

incremental plastic multiplier Dk tends to zero, tensors
of
o��rr�rr

� �
alg

and of
o��aa�aa

� �
alg

tend to their theoretical continuum

counterparts of
o��rr�rr and

of
o��aa�aa, respectively.
3. Consistent tangent modulus

The local integration is now assumed to be achieved

so that the local solution ��rr�rr; ��aa�aa; a;Dkð Þ at present time tn of
the system (3)–(5) is available and a formal implicit re-

lation has been established between stress and strain,
��rr�rr ¼ �̂�rr�rr��rr�rr ��ee�ee; state at tn�1ð Þ, where the expression ‘‘state at tn�1’’

designates the known values of all the variables at pre-

vious time tn�1. The concepts developed in the previous

section will allow us to readily derive the consistent

tangent modulus o��rr�rr
o��ee�ee

� �
alg

¼ o �̂�rr�rr��rr�rr
o��ee�ee as the algorithmic coun-

terpart of the theoretical tangent modulus [13,21,34].

Differentiating relations (8) with respect to time yields

_��rr�rr��rr�rr ¼ D : _��ee�ee��ee�ee� _DDkD :
of
o��rr�rr

� DkD :
o2f
o��rr�rr2

: _��rr�rr��rr�rr

�
þ o2f
o��aa�aao��rr�rr

: _��aa�aa��aa�aa
�

_��aa�aa��aa�aa ¼ � _DDkG :
of
o��aa�aa

� Dk G :
o2f
o��rr�rro��aa�aa

: _��rr�rr��rr�rr

�
þ G :

o2f
o��aa�aa2

: _��aa�aa��aa�aaþ of
o��aa�aa

:
oG

o��aa�aa
: _��aa�aa��aa�aa
�

_aa ¼ � _DDkG
of
oa

� Dk G
o2f
oa2

�
þ of

oa
oG
oa

�
_aa

_ff ¼ of
o��rr�rr

: _��rr�rr��rr�rrþ of
o��aa�aa

: _��aa�aa��aa�aaþ of
oa

_aa ¼ 0

ð22Þ

In the above relations, computations are made with the

values Dk;��rr�rr; ��aa�aa; að Þ deduced from the local integration.
6

By comparison with the theoretical tangent tensor o��rr�rr
o��ee�ee

derived from system (6) for the continuous problem, the

algorithmic or consistent tangent tensor o��rr�rr
o��ee�ee

� �
alg

must be

different because of additional terms in (22).

By noting that system (22a) and (22b) is analogous to

system (10a) and (10b) (replace tensor W in (10a) by �_��ee�ee��ee�ee
and make U ¼ ��00�00 in (10b)), it can be inverted using (14)

as follows

_��rr�rr��rr�rr ¼ Dalg : _��ee�ee��ee�ee� Dalg :
of
o��rr�rr

�
þLalg :

of
o��aa�aa

�
_DDk

_��aa�aa��aa�aa ¼ LT
alg :

_��ee�ee��ee�ee� LT
alg :

of
o��rr�rr

�
þ Galg :

of
o��aa�aa

�
_DDk

ð23Þ

where tensors Dalg, Galg and Lalg are defined in (16).

Inserting relations (22c) and (23) into (22d) leads to

_DDk ¼ of
o��rr�rr

: Dalg

�"
þ of

o��aa�aa
: LT

alg

�� 
of
o��rr�rr

: Dalg :
of
o��rr�rr

þ 2
of
o��rr�rr

: Lalg :
of
o��aa�aa

þ of
o��aa�aa

: Galg :
of
o��aa�aa

þ Galg

of
oa

� �2
!#

: _��ee�ee��ee�ee ð24Þ

Eventually, by putting (24) in (23a) we obtain the con-

sistent tangent modulus

o��rr�rr
o��ee�ee

� �
alg

¼ Dalg � Dalg :
of
o��rr�rr

��
þLalg :

of
o��aa�aa

�
� of

o��rr�rr
: Dalg

�
þ of

o��aa�aa
: LT

alg

��
,"

of
o��rr�rr

: Dalg :
of
o��rr�rr

þ 2
of
o��rr�rr

: Lalg :
of
o��aa�aa

þ of
o��aa�aa

: Galg :
of
o��aa�aa

þ Galg

of
oa

� �2
#

ð25Þ

where symbol � denotes dyadic tensor product defined

by ð��cc�cc� ��dd�ddÞijkl ¼ cijdkl, 8 second-order tensors ��cc�cc and ��dd�dd.
Relation (25) can be recast into a simpler expression

using algorithmic tensors of
o��rr�rr

� �
alg

and of
o��aa�aa

� �
alg

introduced

in (20)

o��rr�rr
o��ee�ee

� �
alg

¼ Dalg � Dalg :
of
o��rr�rr

� �
alg

"
� of

o��rr�rr

� �
alg

:Dalg

#
of
o��rr�rr

: Dalg :
of
o��rr�rr

� �
alg

"
þ of

o��aa�aa
: Galg :

of
o��aa�aa

� �
alg

,

þGalg

of
oa

� �2
#

ð26Þ

The consistent tangent modulus is symmetric since Dalg

is so. Expression (26) shows strong analogy with the

continuum theoretical tangent tensor



o��rr�rr
o��ee�ee

¼ D�
D : of

o��rr�rr �
of
o��rr�rr : D

of
o��rr�rr : D : of

o��rr�rr þ
of
o��aa�aa : G ��aa�aað Þ : of

o��aa�aa þ GðaÞ of
oa

� �2 ð27Þ

Also, the consistency of tensor o��rr�rr
o��ee�ee

� �
alg

is directly con-

firmed according to the limit properties discussed in the

previous section when Dk tends to zero.

Remarks

(i) The proposed formulation can be extended to non-

associated plasticity by using a potential F different from

the yield function f in the evolution laws (5). Then one

observes that the new tensors Dalg and Galg––equivalent

to (16a) and (16b)––remain symmetric but the new

tangent modulus––equivalent to (25) or (26)––does not,

as expected.

(ii) Only two hardening variables have been consid-

ered as usually done in plasticity, one second-order

tensor and one scalar function. In more elaborate plas-

ticity models or in damage mechanics where a larger

number of internal variables is required, it is more dif-

ficult to derive closed-form expressions like (18), (19)

and (26) for the local iteration corrections and the

consistent tangent modulus.
4. Numerical results

The above local integration procedure is now incor-

porated in a three-dimensional finite element program.

The description of a given hardening model must include

the first and second derivatives of the yield function f ,
Eq. (9), as well as the derivatives of the hardening energy

whard, Eq. (2), in order to define the plastic quantities (7)

and the algorithmic tensors (16) and (20).

Elasticity is assumed to be isotropic, characterized by

the Young modulus E and the Poisson ratio m, and the

hardening energy and the yield function are given by

[3,5]

whard ¼ w��aa�aa ��aa�aað Þ ¼ 1

2

2H
3

��aa�aa : ��aa�aa

f ��rr�rr; ��aa�aað Þ ¼
ffiffiffi
3

2

r
k��ss�ss� ��aa�aak þ 1

2

3K
2H

��aa�aa : ��aa�aa� r0

ð28Þ

where ��ss�ss denotes the deviator of stress ��rr�rr, r0 the initial

yield stress, H the kinematic hardening modulus and K
the saturation velocity. To investigate cyclically loaded

structures, the model (28) is commonly used in the frame

of non-associative plasticity, that is, the evolution laws
Table 1

Material properties

Young modulus E Poisson ratio m Initial yield st

2 · 1011 Pa 0.3 3 · 108 Pa
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(5) are derived from potential f given by (28), whereas

the yield function is given by (28) with K ¼ 0. Here, the

model (28) is used in the frame of standard associative

plasticity which means that the potential coincide with

the yield function given by (28). Although any combi-

nation of non-linear isotropic and non-linear kinematic

hardenings is possible, the numerical results presented

in this paper only involve a pure kinematic non-linear

hardening, as it is enough to describe the ratcheting

phenomenon.

The material properties have the same values for all

the numerical examples, see Table 1.

Throughout, the finite element computations are

carried out using three-dimensional 20-node hexahedral

elements with 3· 3· 3¼ 27 Gauss integration points.

4.1. Uniaxial ratcheting effect

The first numerical computation is performed on a

bar of constant section under uniaxial loading. The

uniaxial stress is applied cyclically from rm ¼ �2� 108

Pa to rM ¼ 4:5� 108 Pa corresponding to an asym-

metric loading process. The stress–strain curve resulting

from the tension-compression cyclic loading is shown in

Fig. 1.

The non-zero mean load has led to accumulation of

the plastic strain which is known as the uniaxial rat-

cheting. The ratcheting step, corresponding to the ac-

cumulation of plastic strain during one cycle, only

depends on the material properties and loading process,

and is given by

Dep ¼ 1

K
ln

H
K

� �2 � a2m
H
K

� �2 � a2M

" #
ð29Þ

where

am ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðrm þ r0Þ K

H

q
K
H

aM ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ðrM � r0Þ K

H

q
K
H

ð30Þ

The computed value Dep ¼ 1:88� 10�3 is identical with

the analytical solution within 1%.

4.2. Multiaxial ratcheting effect

Now consider a bar of rectangular section subjected to

a constant tension r11 ¼ r and symmetrically alternated
ress r0 Kinematic hardening

modulus H
Saturation velocity K

3 · 1010 Pa 60
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/σ
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Fig. 1. Uniaxial ratcheting, axial stress r versus axial strain e.
shear stress r12, going from �s to s, which represents the

coupling between traction and cyclic twisting. Here the

stresses r and s take the same value 2 · 108 Pa.
The stress–strain curve, Fig. 2, resulting from the

cyclic loading shows that combining a constant tensile

stress with a symmetric alternated shear yields accu-

mulation of the axial plastic strain. The multiaxial rat-

cheting is essentially due to the non-zero value of the

axial stress.

In this case, a constant ratcheting step is reached

after a few cycles corresponding to a transitional stage,

subsequent to the progressive accommodation encoun-

tered in the case of linear kinematic hardening.

Since it is difficult to obtain an analytical relation like

Eq. (29), we shall confine ourselves to an approximate

expression for the limit ratcheting step. This can be done
ε11

12σ 
  /

σ 0

00 .005 0.01 0.015 0.02
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

τ

τ
σ σ

τ τ

Fig. 2. Multiaxial ratcheting, shear r12 versus axial strain e11.
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by calculating the evolution laws (5) with potential f
given by (28), whereas the yield function is given by (28)

with K ¼ 0 (this is what is done in non-associated

plasticity). One obtains the following relation between

the variations of the two plastic strains ep11 and ep12

Dep11 ¼
4ffiffiffi
3

p rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H
K þ r0

� �2 � r2

q Dep12 ¼ 0:596Dep12 ð31Þ

The numerical factor 0.612 obtained is 3% higher than

the value given by (31).
4.3. Cylinder under internal pressure

Let us consider a thick-walled cylinder of internal

and external radii Ri ¼ R ¼ 1 m and Re ¼ 2R ¼ 2 m.

Boundary conditions are applied so as to realize the

plane strain conditions. The mesh of one quarter of the

cylinder contains 503 nodes and 60 elements (10 ele-

ments along the radial direction by 6 elements along the

circumferential direction). The cylinder is subjected to a

cyclic internal pressure, going from p ¼ 0 to a given

maximum pressure p ¼ pmax ¼ 430 MPa. Fig. 3 depicts

the variation of pressure p and loop stress rhh versus the

evolution of inner radial displacement.

Since pmax is sufficiently high to induce plasticity

during the unloading, a ratcheting phenomenon occurs

with a nearly constant ratcheting step, similar to Fig. 1.

However, the situation here is different from the previ-

ous ones, as the stress state is not homogeneous in the

cylinder and the plastic zone spreads out progressively in

the radial direction. The peak in rhh in Fig. 3 is not

proper to non-linear kinematic hardening, it also occurs

for the same cylinder in perfect plasticity.
u(R)/R
-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

-0.5

-0.25
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1.25
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p/σ
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-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

/σ0θθ

Fig. 3. Thick-walled cylinder, internal pressure p and loop

stress rhh versus inner radial displacement uðRÞ.



4.4. Beam under bending moment

The last numerical example is related to a beam of

square section (the width and the height are equal,

b ¼ h ¼ 2 cm, and the length is l ¼ 10 cm), subjected to

a bending moment M applied at each end so that the

beam undergoes a pure bending. The beam is discretized

as a three-dimensional body with 20-node hexahedral

elements. The mesh is made of eight elements in length

and six elements in height to take account of the non-

homogeneous stress state in the section.

Loading and unloading cycles are computed between

Mm ¼ �600 Nm and MM ¼ 800 Nm. The load–dis-

placement curve, Fig. 4, where M0 is the moment cor-

responding to the onset of plastification, clearly shows

that ratcheting occurs with a nearly constant ratcheting

step. The result is similar to that obtained by Mahbadi

and Eslami [17] using a one-dimensional beam model.

The maximum deflection at the center of the beam in-

creases regularly and always takes positive values (ex-

cept for the first cycle), see Table 2. Thus, the beam

remains in the upper half-plane during the bending

process.

All the numerical results obtained above have been

compared to analytical or numerical models only, when
v/l

M
/M

0

0 0.005 0.01 0.015 0.02

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

v

M M

Fig. 4. Beam under pure bending, load–displacement curve:

moment M versus maximum deflection v.

Table 2

Beam under pure bending, extremum deflections at extremum

moments

M=M0 2 )1.5 2

v=‘ 1.24· 10�2 )1.53· 10�3 1.43· 10�2

M=M0 )1.5 2 )1.5
v=‘ 3.65· 10�4 1.61· 10�2 2.16· 10�3
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these are available. It is also necessary to experimentally

identify the mechanical properties of the theoretical

model in order to assess its validity. This important

work is not considered in this paper.
5. Conclusions

In this paper, a general local integration procedure in

small strain elastoplasticity has been analyzed together

with the corresponding consistent tangent modulus. The

proposed formulation––established within the frame-

work of the generalized standard materials theory––

utilizes a minimal number of assumptions, and is general

enough to be applied to arbitrary hardening models. The

salient features of the present work are summarized

below.

The yield function has been decomposed as the sum

of one term depending on the stress and the back-stress

tensor, and another one depending on a scalar. Here the

stress and the back stress do not necessarily appear in

the form of their difference, as seen in the case of non-

linear kinematic hardening.

When the hardening energy w��aa�aa ��aa�aað Þ in relation (2) take

general expressions other than a quadratic one––simi-

larly to waðaÞ in non-linear isotropic hardening––it has

been shown that there appears the additional term
of
o��aa�aa :

o3w��aa�aa

o��aa�aa3
in Eqs. (16a) and (16b), which does not exist in

the literature. This term is a symmetric fourth-order

tensor which should be taken into account in general

theoretical considerations.

The plastic corrections have been given in closed

forms, Eqs. (15)–(19). The consistent tangent modulus

has a symmetrical expression, Eqs. (25) or (26). All these

expressions have been given in tensorial forms which

are ready to be converted to matrical expressions for

computational use.

The expressions for the plastic corrections and the

consistent tangent modulus involve the scalar function

Galg and the fourth-order tensors Dalg, Galg and Lalg, the

first two being symmetric. These algorithmic quantities

represent the discrete finite-step counterparts of the

usual theoretical continuum quantities: the plastic scalar

function G, the elastic tensor D and the plastic tensor G,

respectively. When the time step tends to zero, all the

algorithmic quantities tend to their theoretical counter-

parts.

The numerical computations using a particular non-

linear kinematic hardening model have provided results

which are in good agreement with analytical or other

numerical solutions available in the literature. They also

show that non-linear kinematic hardening models are

effective in reproducing the important ratcheting phe-

nomenon, responsible for one of the structural failure

cases.
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