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Abstract

The mechanical behavior of materials is usually simulated by a continuous mechanics approach. However, non-
continuous phenomena such as multi-fracturing cannot be accurately simulated using a continuous description. The
discrete element method (DEM) naturally accounts for discontinuities and is therefore a good alternative to the con-
tinuum approach.

This study continues previous work in which a DEM model was developed to quantitatively simulate an elastic
material with the cohesive beam bond model. The simulation of brittle cracks is now tackled. This goal is attained by
computing a failure criterion based on an equivalent hydrostatic stress. This microscopic criterion is then calibrated to
fit experimental values of the macroscopic failure stress. The simulation results are compared to experimental results
of indentation tests in which a spherical indenter is used toload a silica glass, which is considered to be a perfectly
brittle elastic material.

Keywords: discrete element method, DEM, calibration, silica, brittle, crack, indentation, hertzian cone.

1. Introduction

The discrete element method (DEM) can quite nat-
urally describe a granular medium. However, compu-
tational resources are required to manage a large num-
ber of discrete elements. The method was first devel-
oped in the early 1980s (1). More recently, researchers
have used this method to study damage in heteroge-
neous solids, such as concrete (2) or rock (3), and ho-
mogeneous materials, such as ceramics (4).

In this paper, studies are conducted on the silica glass
material, which can be considered to be a homogeneous,
isotropic and perfectly brittle elastic material. This re-
search is related to the subsurface damage of silica glass
due to surface polishing. In a preliminary study (5),
discrete element models were used to obtain qualita-
tively good agreement with experiments. The current
challenge is to develop a 3D DEM spherical model to
quantitatively simulate silica glass as a continuous me-
dia. The first step of simulating the elastic behavior of
silica (as represented by the Young’s modulus and Pois-
son’s ratio), was achieved using the cohesive beam bond
model. This method was detailed in a previous paper
(6).

In this study, an improvement of this method is first
presented. The modification to the original method con-
sists of increasing the number of bonds for each discrete
element to improve the convergence of the numerical
results. The main advantage of this modification that
a better description of a continuous media is obtained
at a reasonable computational cost, which only involves
increasing the bond number and not the number of dis-
crete elements.

In this work, brittle fracture is simulated using the
discrete element method. Continuous mechanics laws
cannot be used directly in a DEM formulation; there-
fore, the main challenge in using DEM is to develop a
model that quantitatively fits the experimental observa-
tions of brittle phenomena, which are generally treated
and analyzed within a continuous mechanics framework
(7).

A preliminary task is to choose a microscopic fail-
ure criterion for the discrete element model. The main
failure criteria are based on computing the bond strain
(8) or stress (9). In these cases, a bond is deleted if the
stress or the strain of the bond exceeds a threshold. This
process mimics crack formation in a material. These
thresholds are determined by calibration tests. In this
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study, a novel criterion is developed based on the equiv-
alent hydrostatic stress exerted on the discrete elements.
The associated calibration procedure is also detailed.

Polishing processes can be viewed as repeated inden-
tation by abrasives on a glass surface (10); therefore, the
developed method is validated using indentation tests
with spherical indenters. Spherical indenters produce a
conical crack geometry. This result was first observed
by Hertz (11, 12). This phenomena has been inten-
sively studied; however, computational models are still
in discussion (13, 14, 15, 16, 17). The objective of this
paper is to investigate DEM as an effective alternative
for studying complex cracking phenomena such as the
hertzian cone crack. The numerical results from the dis-
crete element method are compared to the experimental
observations.

In this paper, the developed method is presented in
four steps, as given below :

1. First, background on DEM is briefly reviewed. The
integration time scheme and the elastic model are
introduced. The main results given in (6) are also
summarized in this section.

2. Second, a detailed procedure is presented for im-
proving the description of a continuous media, by
increasing the cardinal number of the discrete do-
main. These results are compared to those given in
(6).

3. Third, a failure criterion and an associated calibra-
tion procedure are developed. A series of standard
failure tests (tensile, bending and torsion) are sim-
ulated to validate the method.

4. Finally, indentation tests using a spherical indenter
are presented. The numerical results are compared
to the experimental observations and the prediction
of an analytical formulation for the following char-
acteristics :

• the contact area between the indenter and the
silica glass substrate,

• the critical load where the fracture occurs,
and

• the cone crack geometry.

2. DEM background

In this section, the explicit time scheme and the
method used to simulate the elastic behavior are de-
scribed. The reader is referred to (6) for further details.

2.1. Explicit time scheme

The numerical solution is based on an explicit in-
tegration scheme that is well suited to massive DEM
simulations (18) and high velocity phenomena, such as
fracturing or impact. The velocity Verlet scheme is
chosen for its simplicity. The discrete element orien-
tations are described by quaternions, which are an effi-
cient mean of computing the discrete element rotations
(19, §2.5). The quaternions are normalized at every time
step to prevent numerical drift.

2.2. Elastic behavior of the discrete domain

The discrete elements are connected by cohesive
beams. These beams are fixed to the centers of the
connected discrete elements. The beam reactions are
computed using the material strength theory for Euler-
Bernoulli beams (20) according to the relative displace-
ments and rotations of the connected discrete elements.
The cohesive beams operate in tensile, bending and tor-
sion modes.

The beam parameter values (which are called micro-
scopic parameters) are evaluated by fitting the tensile
stress to the elastic properties values of the material to
simulated (which are called macroscopic properties)1.
The beam parameter values are stable when the discrete
domain satisfies geometrical criteria : the geometrical
isotropy, the cardinal number, the volume fraction and
the fineness. That is, the same set of microscopic beam
parameter values can be associated with a given material
and are independent of the discrete domain morphol-
ogy, in terms of the discrete element number and the
sample shape. This property is the main contribution of
this method. This property is illustrated in the figure 1,
which shows the evolution of the macroscopic Young’s
modulusEM and Poisson’s ratioνM with the number of
discrete elements in the sample. The figure 2 shows the
simulated discrete samples. It appears that, for a num-
ber of discrete elements higher than 10 000, the macro-
scopic parametersEM andνM become stable with total
fluctuation amplitudes of, respectively, 3% and 2.5%.

3. A simple method for improving the elastic behav-
ior

In the previous study, the initial discrete domain was
compacted to obtain a cardinal number value of approx-
imately six. This value was chosen to correspond to the
definition of therandom close packing(RCP) of spheres

1To distinguish micro from macro properties, micro parameters are
denoted by ’µ’ and macro parameters by ’M’.
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Figure 1: Macroscopic Young’s modulusEM and Pois-
son’s ratioνM with the number of discrete element in
the samples with a given set of microscopic parameter
values.

(a) 200 ED (b) 2 000 ED (c) 20 000 ED

Figure 2: Increasingly refined discrete cylindrical sam-
ples, i.e., the number of discrete elements increased
from left to right.

(21). In the simulations, each contact was replaced by a
cohesive beam bond. The number of cohesive bonds per
discrete element was thus similar to the cardinal number
of the RCP.

To improve the discrete description of a continuous
media, the number of cohesive beams per discrete ele-
ment was increased using the method described below
:

1. An initial discrete domain was built following the
RCP definition. This step was similar to the previ-
ous method.

2. A Delaunay triangulation (22, §9.3) was applied.
The initial point cloud used to build the Delaunay
triangulation corresponded to the discrete element
centers.

3. Cohesive beam bonds were constructed for each
edge obtained by the Delaunay triangulation link-
ing two discrete element centers.

This process increased the number of cohesive beams
per discrete element to thirteen.

A preliminary question concerns the level of geomet-
ric isotropy of the given discrete domain. This level
should not be degraded by the Delaunay triangulation.
Figure 3 shows 3D histograms of the beam direction

(a) Before triangulation (b) After triangulation

Figure 3: 3D histogram of cohesive beam direction be-
fore and after increasing the cardinal number.
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Figure 4: Macroscopic Young’s modulusEM and Pois-
son’s ratioνM with the number of discrete elements the
samples with an increased cardinal number.

that were obtained before and after a Delaunay trian-
gulation. The results are quite similar. Therefore, the
isotropy level was not affected by the Delaunay triangu-
lation process.

Figure 4 shows the convergence of the elastic prop-
erties. The elastic properties are more stable than to
those without the Delaunay processing (see figure 1).
The macroscopic parametersEM andνM were stable for
more than 10 000 discrete elements with a total fluctua-
tion amplitudes of, respectively, 1.9% and 1.3%. Also,
the improved method reduced the error bars. That is, the
dispersion between the elastic properties of distinct dis-
crete samples with a same number of discrete elements
were reduced.
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4. The fracture criterion

Within the discrete element approach, cracks are sim-
ulated by breaking bonds that reach a particular criterion
(23, 24, 25, 26, 27, 28). This approach mimics crack ex-
tension in a material. The broken bond causes an over-
load on the bonds localized around the broken bond. In
turn, these overloaded bonds quickly reach the fracture
criterion and also break.

4.1. The standard failure criterion

The main existing approaches are based on the com-
putation of bond strains (8) or stresses (9). Strain or
stress can be viewed as dual variables; therefore, these
two approaches can be considered as similar to each
other. The implemented failure model is based on com-
puting the Rankine criterion, which has been suitably
for brittle materials (29, §3.3) :

σµ =
1
2

(

σµmax +

√

σ2
µmax
+ 4τ2µmax

)

(1)

where :

• σµ is the maximal equivalent Rankine stress,

• σµmax is the maximal normal stress and,

• τµmax is the maximal shear stress.

If the maximal equivalent Rankine stressσµ is higher
than a calibrated valueσµ f , the cohesive beam is de-
stroyed.

This model was investigated using a qualitative in-
dentation test (in two dimensions) with a spherical in-
denter. Figure 5 illustrates a cone crack, which was
produced by loading a brittle material with a spherical
indenter in experiments (12, 11). Figure 6 shows the
results of a qualitative 2D simulation in which the stan-
dard failure criterion defined in equation 1 was used.
The simulation did not produce expected crack geome-
try. The fracture occurred near the indenter and prop-
agated throughout the thickness of the material. This
crack morphology did not conform to the experimental
observations. In conclusion, the standard failure crite-
rion could not reproduce the hertzian cone crack.

4.2. Development of a novel fracture criterion

A criterion is developed using the hypothesis that
fused silica fracture occurs when the material is stressed
in a tensile hydrostatic mode. An equivalent Cauchy
stress tensor is computed for each discrete element.

Figure 5: The hertzian cone; image taken from (30).

Indenter

2D discrete domain

Cracks

Figure 6: Qualitative 2D indentation test showing
cracks produced by using the standard failure criterion.

Zhou (31) developed a method to compute a stress ten-
sor for molecular dynamic simulations, which can for-
mulated for the DEM as follows :

σ̄i =
1

2Ωi

















1
2

∑

j

~r i j ⊗ ~fi j + ~fi j ⊗ ~r i j

















(2)

where :

• ⊗ is the tensor product between two vectors,

• σ̄i is the equivalent Cauchy stress tensor of the dis-
crete elementi,

• Ωi is the volume of the discrete elementi,

• ~fi j is the force exerted on the discrete elementi by
a cohesive beam that bonds the discrete elementi
to another discrete elementj and,

• ~r i j is the relative position vector between the center
of the two bonded discrete elementsi and j.

Zhou’s original formulation of the Cauchy stress ten-
sor is given below :

σ̄i =
1

2Ω

∑

i∈Ω

∑

j,i

~r i j ⊗ ~fi j (3)
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Cracks

Indenter

2D discrete domain

Figure 7: Qualitative 2D indentation test that shows
cracks performed with the developed failure criterion.

In this formulation, the stress tensor ¯σi is computed over
a volumeΩ and the forces~fi j are derived from Lennard-
Jones potential. In this case, the computed stress tensor
is symmetrical. This condition is not satisfied for dis-
crete elements with cohesive beam bonds, because the
beams are not equally distributed around a discrete ele-
ment. The formulation, in equation 2, ensures that the
computed stress tensor is symmetric. This computed
stress tensor is used to determine the equivalent hydro-
static stress acting on discrete elementi.

Brittle solid fracture is thought to be initiated under a
tensile stress in mode I (32). Accordingly, the developed
criterion assumes that fracture occurs if the hydrostatic
stress is higher than a threshold valueσhyd

f :

1
3

trace(σ̄i) ≥ σ
hyd
f (4)

If the criterion is reached, all the cohesive beams
bonded to the discrete elementi are broken. In the next
sections, this discrete element is called acritical ele-
ment.

A qualitatively similar indentation test to that in the
previous section was performed using the improved fail-
ure criterion. Figure 7 shows the simulation result. The
crack pattern exhibits a cone geometry. In conclusion,
the improved failure criterion in equation 2 provides a
better description of brittle fracture and will be used in
the remainder of the paper.

5. Calibration procedure

The failure criterionσhyd
f was calibrated using the

same procedure described for the microscopic elastic
parameters in (6). A series of failure tensile tests was
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Figure 8: Evolution of the macroscopic failure stress
σM f for different values of the microscopic failure cri-

terionσhyd
f for discrete samples containing 10 000 dis-

crete elements.

processed with different values ofσhyd
f . Each discrete

sample consisted of approximately 10 000 discrete ele-
ments. Four distinct discrete samples were used. Figure
8 shows the evolution of the macroscopic failure stress
for different values of the microscopic failure criterion.
The stress evolved linearly. The macroscopic failure
stress for silica is 50MPa. The corresponding value
of the failure criterionσhyd

f is approximately 64MPa.

5.1. Convergence study

The mesh dependence of the failure criterion was in-
vestigated in the same way as the elastic parameter.
Figure 9 shows the evolution of the macroscopic fail-
ure stressσM f as the function of the number of dis-
crete elements in the discrete sample. For this study the
calibrated value of the failure criterion for silica glass
σ

hyd
f = 64 MPa was used. The results showed a good

stability of the macroscopic failure stress around the sil-
ica glass values of 50MPa.

5.2. Validation tests

At this stage, only tensile tests were performed. The
behavior induced by the failure criterion was validated
by simulating bending and torsion tests for four distinct
discrete samples. The table 1 summarizes the macro-
scopic failure stresses obtained from the tensile, bend-
ing and torsion tests. Fairly similar average macro-
scopic failure stresses were obtained from tensile, bend-
ing and torsion tests accordingly to the material strength
theory.

The crack path for the numerical torsion tests were
also observed. Figure 10 shows an image of the test
results. The crack geometry conformed to the prediction
by the material strength theory of a path along a helical

5
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Figure 9: Evolution of the macroscopic failure stress
σM f as a function of the number of discrete element for

a failure criterionσhyd
f = 64 MPa.

Sample Tensile Bending Torsion
n◦ 1 53.3 MPa 47.0 MPa 51.5 MPa
n◦ 2 48.0 MPa 47.0 MPa 47.6 MPa
n◦ 3 48.3 MPa 46.2 MPa 50.9 MPa
n◦ 4 48.2 MPa 55.5 MPa 47.7 MPa

average 49.5 MPa 48.9 MPa 49.4 MPa
std. deviation 2.2 MPa 3.8 MPa 1.8 MPa

Table 1: Overview of macroscopic failure stresses from
tensile, bending and torsion tests; the four discrete sam-
ples used consisted of approximately 10 000 discrete el-
ements.

surface oriented at 45◦ to the main axis of the cylindrical
sample.

5.3. Conclusion

In this section, novel failure criterion was developed
corresponding to the application of a maximal hydro-
static stress to the discrete elements. A preliminary
study, involving qualitative indentation tests was used,
to compare the standard criterion to the developed cri-
terion in terms of the crack paths. The results using the
developed criterion agreed with the experimental obser-
vations, while the standard criterion did not describe the
experimental results accurately.

The calibration procedure for the microscopic failure
criterion for silica glass was also described. The sta-
bility of the elastic parameters and the failure behavior
were studied. The macroscopic failure stress was fairly
independent of the sample morphology. Thus, if the dis-
crete domain satisfied the geometric criteria (the geo-
metric isotropy, the coordination number, the compacity
and the fineness) the failure criterion could be consid-

Crack path

(a) View showing all discrete elements.

Crack path

(b) View showing only critical discrete elements.

Figure 10: View of crack path in a torsion test; The
highlighted discrete elements attained the failure crite-
rion (critical discrete elements).

ered to be independent of the discrete sample shape and
mesh size.

Finally, the failure criterion was validated by bend-
ing and torsion tests. The developed model adequately
predicted the failure stress levels and the crack paths in
comparison with the material strength theory. For com-
pleteness, more complex failure tests, known as inden-
tation tests, are presented in the next section.

6. Application of the model to indentation tests with
a spherical indenter

Figure 5 illustrates the crack geometry for an inden-
tation test with a spherical indenter for loading a silica
glass sample. Figure 11 shows an idealized view of the
sample and the indenter and the associated parametriza-
tion, where :

• ~P denotes the indenter load,

• Rdenotes the indenter radius,

• dc denotes the contact diameter indenter-sample,

• d denotes the cone surface diameter,

• l denotes the cone length and

• a denotes the cone angle.

6



l d
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~P

R
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(2)

Figure 11: Idealized sketch and parametrization of a
hertzian cone crack.

The simulation was based on the discrete element
model described in this paper. Contact management be-
tween the indenter and the silica discrete sample was
incorporated into this model.

6.1. Numerical method for indenter-sample contact
management

The indenter is simulated by a single discrete element
acting on the discretized silica glass sample. Figure 12
shows this configuration for the indenter and the sample.
A constant velocity along the−~y axis is applied to the
indenter to load the discrete sample. The displacement
along the~y axis of the discrete elements belonging to
the bottom face of the silica sample are forbidden. Dur-
ing its displacement, the indenter contacts some discrete
elements on the upper face of the discrete sample. The
reaction force induced by these elementary contacts are
calculated using the hertzian contact law (33) :

~fi j =
4
3

E∗
√

R∗h3
i j ~ui j (5)

with :
1
E∗
=

1− ν2i
Ei
+

1− ν2j
E j

(6)

1
R∗
=

1
Ri
+

1
Rj

(7)

where :

• i and j refer to two distinct discrete elements, one
of which is always the indenter. The contacts be-
tween discrete elements of the silica sample are not
take in account;

• ~ui j is the unit vector between the centers of the two
discrete elements, which are in contact;

• hi j is the interpenetration between the two discrete
elementsi and j;

7 µm

indenter
silica discrete sample

bottom surface

~x

~z

~y

Figure 12: Discrete element model for the indentation
test.

• E andν are the Young’s modulus and Poisson’s ra-
tio respectively and

• Ri is the radius of the discrete elementi.

6.2. Overview of the simulation conditions

The discrete silica sample is composed by 80 000 dis-
crete elements and 1 040 000 cohesive beams. Its size
is 40 µm along the~x and~z axes and 20µm along the
~y axis. The gravity was neglected. The time step is
approximately 1.5 10−11 s. The total number of iter-
ations for one simulation is approximately 80 000. A
constant velocity was applied to the indenter. Its value
was 0.3 m.s−1. Dynamic effects were minimized by in-
troducing a purely numerical damping factor into the
numerical scheme as described in (34, 6).

6.3. Validation of elastic behavior

The model was first validated in terms of the elastic
behavior. The theoretical evolution of the contact radius
between the indenter and the sample was compared with
the numerical data. The theoretical evolution of the con-
tact radius was calculated using the hertzian contact law,
which is given by (33):

ath
c =

(

3
4

PR
E∗

)
1
3

(8)

The contact radius was "measured" in the simulation
by recording the discrete elements in contact with the
indenter. However, this procedure does not produce an
exact measurement of the contact radius. The contact
area is overestimated because of the contribution from
the discrete elements at the boundary of this set. An un-
derestimated contact area can be obtain by subtracting

7
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Figure 13: Theoretical and numerical evolution of the
indenter contact radius with the indenter force.

the average value of the discrete element radii in this set
from the contact area overestimate.

Figure 13 shows the evolution of the theoretical and
the simulated contact radius with the indenter force. The
maximal and minimal measured diameters of the con-
tact area weredmax

c anddmin
c . The indenter force in the

simulation is computed using :

P = −
∑

i

~fi .~y (9)

Where~fi is the reaction force exerted by the the dis-
crete elementi on the indenter. In this figure, the gray
area represents the margin between the overestimate and
the underestimate contact radius. The red dashed line
corresponds to the theoretical contact radius, which is
bounded by the overestimate and the underestimate con-
tact radius. The elastic behavior of the numerical inden-
tation tests was therefore validated.

6.4. Overview of experimental observations used as ref-
erence

The work aims to further simulation techniques for
glass polishing. The abrasive particles used to polish
silica glass range in size from one micrometer to one
hundred micrometers. Spherical indenters with a radius
of ten micrometers were used in the indentation exper-
iments to correspond to the order of magnitude of the
size of practical abrasive particles.

The micro-indentation tests were carried out. The ex-
perimental procedure were similar to those described in
(35, 36). Tables 2 and 3 list the properties of the inden-
ter and the silica sample.

Figure 14 shows a hertzian crack in a fused silica
sample. The images were obtained using confocal mi-
croscopy using the apparatus described in (37). After

Material Diamond
Young modulus 1054 GPa
Poisson’s ratio 0.1
Indenter radius 10 µm

Table 2: Overview of indenter properties.

Material Silica glass
Young modulus 72.5 GPa
Poisson’s ratio 0.17
Sample radius 50 mm
Sample thickness 5 mm

Table 3: Overview of sample properties.

Critical indenter load Pf 200 mN
Cone angle a 25-35 ◦

Cone length l 8.0-9.2 µm
Cone diameter (at surface) d 15.0 µm

Table 4: Characteristics of the experimentally observed
hertzian cone.

indentation, the imaging of the hertzian cone was felic-
itated by soaking the sample in a fluorescent dye, fol-
lowed by thorough rinsing with DI water. This proce-
dure enabled the dye to penetrate into the cracks to en-
able its visualization.

A preliminary statistical study was performed. The
results showed that 90% of the hertzian cone cracks ap-
peared at indenter loads bellow 500mN. Each inden-
ter print was examined to reject tests in which radial
or lateral cracks happened that did not correspond to
a hertzian cone crack. Hertzian cone cracks were pro-
duced for an indenter force range between 200 and 500
mN. This dispersion was attributed to the microscopic
scale of the test. At this scale, small variations in param-
eters such as the surface roughness, the indenter erosion
or the material default induced large variations in the
results.

A test that produced a critical indenter load of 200
mN was chosen to compare numerical simulation re-
sults on the same order of magnitude as the experimen-
tal observation. Table 4 summarizes the characteristics
of the chosen hertzian cone crack. These characteris-
tics were obtaining by measuring several cross-sections
of the cone because the experimental cone was not per-
fectly axisymmetric. Consequently, different measured
values were obtained for different cross-sections.
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10µm

(a) 2D views : top view and side views

(b) 3D view

Figure 14: Image of a hertzian cone obtained by
photo-luminescence microscopy; the surface color cor-
responds to the image in reflexion mode at 458 nanome-
ters and the cone color corresponds to the image in flu-
orescence mode in the 435 to 661 nanometers spectral
band for an excitation wavelength of 405 nanometers.
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Figure 15: Evolution of the indenter force and the crit-
ical number of discrete elements with number of itera-
tions.

6.5. Indenter critical force Pf
Figure 15 shows the evolution of the simulated inden-

ter force and the critical discrete element number with
the iteration number. Thecritical discrete elementsare
the discrete elements that attained the failure criterion.
This graph shows the following three distinct zones:

1. theloadingzone, in which no fracture occurred,
2. theconezone, which corresponded to the hertzian

cone generation as the number of critical discrete
elements slowly increased,

3. theruin zone, in which the discrete sample was de-
stroyed as the number of critical discrete elements
increased quickly and the indenter load decreased
to a null value.

The indenter load corresponding to the beginning
(Pmin

f = 95 mN) and the ending (Pmax
f = 320 mN) of

the hertzian cone generation was on the same order of
magnitude as the experimental observations. An ex-
act concordance was difficult to obtain. A macroscopic
failure stress of silicaσ f = 50 MPa has been estab-
lished from macroscopic mechanical tests such as four
bending point tests or tensile tests. This macroscopic
value can be underestimated in micro-indentation tests,
because of the extremely small loaded volume. Grif-
fith hypothesized that, brittle material fractures are ini-
tiated by pre-existing micro or nano cracks (38). For
lower activated volumes, the probability of the stress
yield to open an pre-existing crack is lower and the re-
sultant failure stress is higher than the macroscopic fail-
ure stress. This size effect is well known for concrete
(39).

6.6. Hertzian cone geometry

In this section, the hertzian cone geometry in the sim-
ulation is compared to the experimentally observed ge-
ometry. The number of critical discrete elements at the

9
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Figure 16: Picture of a simulated hertzian cone crack.
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a ≈ 28◦

c
≈ 8.3µm
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7.8
µm
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Figure 17: Characteristics of the simulated hertzian
cone crack.

Pmin
f value (see the previous section) was insufficient to

observe the cone geometry. Figure 16 shows the critical
discrete elements at approximatelyPmax

f . The hertzian
cone was well-formed and could be compared to the ex-
perimental cone. Figure 17 shows the measured geo-
metrical characteristics of the numerical cross-section
that was used as a reference.

Table 5 summarizes the hertzian cone characteristics
for the experimentally observed cone and the simulated
cone. The simulated values agreed well with the exper-
imental values.

7. Conclusion

A novel failure criterion was developed based on an
equivalent hydrostatic stress for use in a spherical dis-
crete element method. The advantage of this criterion is
that is fairly independent of the sample morphology if
the discrete domains satisfy the following geometric cri-
teria : the geometrical isotropy, the cardinal number, the
compacity and the fineness. In this case, a given set of
microscopic parameter values could be associated with
a simulated material. The calibration procedure was

Exp. Num.
Critical load Pf 200 95-320 mN
Cone angle a 25-35 27-28 ◦

Cone length l 8.0-9.2 7.8-8.3 µm
Cone diameter d 15.0 13.5 µm

Table 5: Comparison of the characteristics of the exper-
imental and numerical observed cones.

highly simplified by this property. The convergence of
the results was also improved by significantly increas-
ing the cardinal number of the discrete domain with a
Delaunay triangulation process.

The failure criterion was validated by torsion and
bending tests. The results for the macroscopic failure
stresses and the crack path geometries agreed qualita-
tively and quantitatively with the predictions of material
strength theory.

Finally, this model was applied to a spherical inden-
tation problem. The discrete model predicted a crack
geometry similar to the experimentally observed geom-
etry.

In conclusion, the proposed model is an interesting
alternative for studying complex crack phenomena such
as the generation of hertzian cone cracks.
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