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1. Introduction

Generally an effective failure in a material gives rise to bursts of kinetic energy either in a homogeneous sample or in
boundary value problems. There is a transition (a bifurcation) from a quasistatic regime (the system admits a unique incre-
mental response over a given incremental loading) toward a dynamical regime (inertial effects govern the response of the
system). Effective failure means here that the experimentalist has tried to trespass the limit state reached by an ad hoc addi-
tional load or has perturbed the sample or the body at this limit state in an ad hoc way. Effective failure manifests itself by
suddenly exponentially growing strains, as observed in laboratory experiments (Darve et al., 2007) and in discrete numerical
modelling (Sibille et al., 2008). Moreover, these exponentially growing strains are associated with bursts of kinetic energy, as
also observed experimentally and numerically. The purpose of this paper is to explain why effective failure leads to these
bursts of kinetic energy in the context of geomaterials, and more specifically of granular materials.

From a theoretical point of view, by taking into account the energy conservation law in continuum mechanics (Mandel,
1966) expressed with a Lagrangian formalism and differentiated with respect to time (Nicot and Darve, 2007; Nicot et al.,
2007), it is possible to obtain the kinetic energy as a function of the integrals of the discrete second-order work related to
the external and body forces applied minus the integral of the continuous constitutive second-order work in the body. This
result is reviewed briefly in the first section of this paper, because it will be used as the basic equation for all further
developments.

The second-order work criterion was initially introduced by Hill (1958) as an instability criterion, with the meaning that
the material will continue to deform at least in one stress–strain direction without any external input of energy (see also for
cot).
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example Petryk (1993); Bigoni (2000) for a review of this issue). This means that a certain failure mode can be induced. Later
on, it appears (Valanis, 1989; Bigoni and Hueckel, 1991; Nicot and Darve, 2011) that the second-order work criterion (van-
ishing value of the determinant of the symmetric part of the elasto-plastic matrix) contains the particular cases of the strain
localisation criterion (vanishing value of the determinant of the acoustic matrix) and the plastic limit criterion (vanishing
value of the determinant of the elasto-plastic matrix). It was observed (Li and Richmond, 1997; Li and Karr, 2009) that in
initially homogenous materials obeying a nonassociated flow rule (the elasto-plastic matrix is non symmetric), plastic defor-
mation is intrinsically unstable. Thus, if flutter instabilities are not considered, the second-order work criterion is the first to
be encountered (according to a monotonously increasing loading parameter) (Challamel et al., 2008, 2010) and the other cri-
teria are simply particular cases within the bifurcation domain. The vanishing values of the determinant of the symmetric
part of the elasto-plastic matrix corresponds to the internal boundary of the bifurcation domain (Neilsen and Schreyer, 1993;
Darve et al., 2004; Sibille et al., 2007; Nicot et al., 2007), while its external boundary is the plastic limit condition. Thus the
second-order work criterion can be considered a necessary condition for failure (flutter instabilities excluded) according to
these theoretical results. This conclusion was also verified in experiments (Darve et al., 2007) and very carefully checked by
direct numerical simulations of failure with a discrete element method (Sibille et al., 2008).

Moreover, it is eventually worth mentioning here that, in grain avalanches, strong correlations have been observed
repeatedly in discrete element simulations (Darve et al., 2004) between second-order work and kinetic energy. From a spa-
tial point of view, the area where the second-order work computed on the particle scale1 takes negative values coincides with
the area of bursts of particle kinetic energy. From a temporal point of view, by considering the changes over time of the total
kinetic energy and the total second-order work for all the particles, the peaks of kinetic energy correlate very well with the neg-
ative minima of the second-order work. These strong correlations remain unexplained from a theoretical point of view.

Returning to the purpose of this paper and taking into account a convenient expression of kinetic energy, the external
second-order work (referred to as the second-order boundary term in the following) exactly balances the positive constitu-
tive second-order work outside the bifurcation domain, thereby maintaining zero kinetic energy. On the contrary, when the
bifurcation domain frontier is reached, in one specific loading direction, the constitutive second-order work will vanish
(Nicot et al., 2007; Prunier et al., 2009a). If the experimentalist applies an ad hoc additional load, the second-order boundary
term takes a strictly positive value, inducing a non-zero kinetic energy and thereby leading to the failure of the sample, or
more broadly to the material system considered.

This reasoning is very carefully established in this paper through four successive examples of increasing complexity: first
for the classical drained triaxial test where failure occurs on the plastic limit condition for a stress-controlled path, second for
the undrained triaxial compression where failure appears strictly inside the plastic limit surface for an axial force control,
third for proportional strain loading paths with a generalised failure criterion and an ad hoc mixed control and, finally, in
a fourth section, for a foundation and an applied increasing force.

Throughout the paper, only rate-independent materials are considered. Two-order tensors are represented as A, whereas
vectors are denoted ~X. The summation convention on repeated indices will be employed. For any (one- or two-order) tensor
A, tA denotes the transpose tensor. Incremental changes of any variable y are denoted dy, with dy ¼ _ydt. When discrete ele-
ment simulations are considered, incremental changes dy are replaced with small finite increments Dy.

2. A fundamental equation

In soil mechanics, many examples of soil specimen collapse have been reported in the literature. Herein, the term ‘‘col-
lapse’’ means that the soil specimen is suddenly no longer able to sustain external forces and experiences large deformation,
with strains increasing rapidly over time. This phenomenon is called diffuse failure (Darve et al., 2004), in contrast with
localised failure, when the kinematic field presents a chaotic aspect with no visible localisation pattern. In fact, this is a prop-
er bifurcation mode, since there is an abrupt transition from a quasi-static regime towards a dynamical regime. Through a
proper formalism, this section investigates how the kinetic energy of a system initially in equilibrium can arise when a cer-
tain external incremental loading is applied.

For this purpose, a system made up of a volume Vo of a given material, initially in a configuration Co (initial configuration)
is considered.~bo denotes the initial body force density field. After a loading history, the system is in a strained configuration C
and occupies a volume V, with a body force density field~b, in equilibrium under a prescribed external loading. As a result, an
external stress distribution~r acts on the current boundary (C) of the material. A part (Cr) of the current boundary (C) is
subjected to an external stress (the loading is stress controlled on this part of the boundary), whereas the complementary
part (Ce) is subjected to kinematic constraints (the loading is strain controlled on this part of the boundary), leading to a
reaction external stress.

The instantaneous evolution of the system, in the equilibrium configuration C at time t, is governed by the following
energy conservation equation that includes dynamical effects:
1 The
that it i
dEcðtÞ ¼
Z

C
ridui dSþ

Z
V

bidui dV �
Z

V
rij
@ðduiÞ
@xj

dV ð1Þ
second-order work computed on the particle (or the contact between particles) scale is also referred to as the discrete second-order work, to emphasise
s computed from local variables, contrary to the macroscopic second-order work computed in the continuum.
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where dEc represents the system’s current change in kinetic energy related to the incremental displacement field d~u. ��r is the
Cauchy stress tensor. Eq. (1) represents the Euler form of the energy conservation, since all variables are given with respect
to the current evolving configuration. In this configuration, any material point is described by the coordinate vector~x. It is
worth stressing that the differential notation dY denotes the incremental change in the variable Y, so that dY ¼ _Ydt. This
notation should not be confused with the notation used in the variational principle, where virtual variations in stress or
strain fields are considered. Eq. (1) does not correspond to the virtual work theorem but incorporates the real changes in
both stress and strain fields over the loading path (here graduated in time).

It is convenient to express the integrals in Eq. (1) with respect to the initial configuration, which yields:
dEcðtÞ ¼
Z

Co

fidui dSo þ
Z

Vo

bo;idui dVo �
Z

Vo

Pij
@ðduiÞ
@Xj

dVo ð2Þ
where P denotes the Piola–Kirchoff stress tensor of the first type and Co is the Vo boundary. P (resp.~f Þ is the transformed
quantity of ��r (resp.~rÞ through the bijection # mapping the material points from the reference configuration to the current
configuration:~x ¼ #ð~XÞ. This bijective transformation is convenient so as to obtain all integrals given with respect to a fixed
domain, that is Co and Vo. Thus, the time differentiation of Eq. (2) can be performed in a straightforward manner, without
referring to a Reynolds transform. Taking into account Green’s formula, differentiating Eq. (2) gives (Nicot et al., 2007).
d2EcðtÞ ¼
Z

Co

dfidui dSo þ
Z

Vo

dbo;idui dVo �
Z

Vo

dPij
@ðduiÞ
@Xj

dVo ð3Þ
Following Hill’s definition (Hill, 1958), W2 ¼
R

Vo
dPijdFij dVo denotes the second-order work of the system, associated with

the incremental evolution dPij; dFij
� �

, where Fij ¼ @xi
@Xj
¼ dij þ @ui

@Xj
is the general term of the deformation gradient tensor

F ¼ ��r#. Both incremental quantities dFij and dPij are related through the constitutive equation. Thus, Eq. (3) also reads:
d2EcðtÞ ¼
Z

Co

dfidui dSo þ
Z

Vo

dbo;idui dVo �W2 ð4Þ
In addition, the two-order Taylor expansion of kinetic energy reads:
Ecðt þ DtÞ ¼ EcðtÞ þ Dt _EcðtÞ þ
ðDtÞ2

2
€EcðtÞ þ oðDtÞ3ð8 DtÞ ð5Þ
Noting that EcðtÞ ¼ 1
2

R
Vo

qok _~uk2dVo, where qo is the density of the material in the initial configuration at point Mð~XÞ, since the
system is in an equilibrium state at time t, then Ec(t) = 0. Furthermore, _EcðtÞ ¼

R
Vo

qo
_~u � €~udVo, and at time t; _EcðtÞ ¼ 0. Eq. (5)

therefore reads:
d2EcðtÞ ¼
2Ecðt þ DtÞ
ðDtÞ2

dt2 þ oðDtÞdt2 ð6Þ
Thus, Eq. (6) establishes that the kinetic energy of the system at the subsequent time t + Dt is a second-order term. Ignoring
third-order terms and making Dt ? dt, then d2Ec(t) = 2Ec(t + dt); in combination with Eq. (4), it follows that:
2Ecðt þ dtÞ ¼
Z

Co

dfiduidSo þ
Z

Vo

dbo;idui dVo �W2 ð7Þ
Eq. (7) is the fundamental equation that relates the kinetic energy of the system to the second-order work. It should be
emphasised that Eq. (7) holds true only when the system is in an equilibrium state at time t. Eq. (7) shows that the kinetic
energy, immediately after an equilibrium state, and in absence of change in body forces, appears as the difference between a
boundary term, B2 ¼

R
Co

dFidui dSo, controlled by the loading path applied to the boundary of the system, and a body consti-

tutive term, W2 ¼
R

Vo
dPij

@ðduiÞ
@Xj

dVo, that is related to the constitutive behaviour of the material.

Ignoring body forces, Eq. (7) shows that necessarily
R
Co

dfidui dSo �W2 P 0. In addition, if the incremental evolution is
quasi-static, between two equilibrium states, then:
Z

Co

dfidui dSo �W2 ¼ 0 ð8Þ
Moreover, as when external stresses are balanced by internal stresses, dfi = dPijNj at any point of the boundary Co, where ~N is
the normal to the boundary at the point considered. Thus, the following second-order equilibrium equation can be recovered
(see Vardoulakis and Sulem, 1995):
Z

Vo

dPij
@ðduiÞ
@Xj

dVo ¼
Z

Co

dPijNjdui dSo ð9Þ
In this paper, the case where both external and internal stresses are unbalanced is investigated, that is:
Z
Co

dfidui dSo > W2 ð10Þ
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According to Eq. (7), this leads to an outburst in kinetic energy (Ec(t + dt) > 0), in absence of body forces. The occurrence of an
outburst in kinetic energy is therefore related to a conflict between the loading prescribed to the boundary of the system and
its bearing capacity dictated by its constitutive behaviour. The influence of body forces will be discussed in a forthcoming
paper. This is a nontrivial situation, of great importance in view of developing a proper mechanical framework to describe
the occurrence of mass-driven phenomena, such as landslides.

The paper is organised as follows. First, the case of the material point scale (Representative Volume Element) is consid-
ered, and standard loading paths are examined from a theoretical point of view. Then this investigation is corroborated by
numerical simulations run with a discrete element method. Finally, these developments are generalised to boundary value
problems, by considering a shallow foundation.

Throughout the following sections, the context of large strains is considered, and the investigation is carried out using a
Lagrangian formalism involving both the Piola–Kirchoff tensor P and the deformation gradient tensor F.

3. The laboratory specimen scale

The above-mentioned theoretical framework is now considered on the laboratory specimen scale. Investigating this ele-
mentary scale can be useful in, for example, laboratory tests and the interpretation of the derived experimental results,
where parallelepiped-like specimens subjected, on each wall, to a prescribed force or displacement directing both stress
and strain fields can be studied.

3.1. Local formulation

Let a parallelepiped specimen be considered, with three sides (i = 4,5,6) fixed. Sides ‘i’ and ‘i + 3’ (i = 1,2,3) are assumed to
remain parallel. The initial volume is Vo, the initial area of each side ‘i’ (i = 1,2,3) of normal ~v i is denoted Ai and the initial
length of each edge is denoted Li. Index ‘1’ refers to the axial direction (major principal direction), whereas indices ‘2’ and
‘3’ refer to the two lateral directions perpendicular to the axial direction (Fig. 1). When a static condition is assigned to a side
‘i’, it is convenient to introduce the resultant external force fi acting on this side. This force is assigned to be normal to the face
considered. The uniform external stress vector distribution si acting on side ‘i’ and related to fi, is also introduced: si ¼ fi

Ai
. The

displacement of each side ‘i’, along the direction ~v i, is denoted Ui ¼~u �~v i. No tangential displacement is assumed to take
place. When a kinematic condition is assigned to a side ‘i’, the resultant external force fi (or the stress vector distribution
si) acting on this side corresponds to the external loading that must be applied to ensure the prescribed displacement Ui.
In this context:
F
D E

¼
hF11i 0 0

0 hF22i 0
0 0 hF33i

264
375 and P

D E
¼
hP11i 0 0

0 hP22i 0
0 0 P33h i

264
375 ð11Þ
Fig. 1. Parallelepiped specimen and definition of the axes.
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where hYi ¼ 1=Vo
R

Vo
Y dV denotes the mean value of the variable Y over the whole volume Vo.

As hFiii ¼ 1
Vo

R
Vo

1þ @ui
@Xi

� �
dV , by virtue of the Green formula, the following holds:
Fig. 2.
(point M
hFiii ¼
1

Vo

Z
@Vo

uiv idS ¼ 1þ Ai

Vo
Ui ðwith no summation on repeated index ‘i’Þ ð12Þ
Moreover, the macro-homogeneity assumption makes it possible to invoke the fundamental Hill identity, stating that
hdPijdFiji ¼ hdPijihdFiji. In these conditions, the second-order reads:
W2 ¼
Z

Vo

dPijdFij dVo ¼ VohdPijdFiji ¼ VohdPijihdFiji ð13Þ
From above, Eq. (7) is expressed as:
2Ecðt þ DtÞ ¼ A1ds1dU1 þ A2ds2dU2 þ A3ds3dU3 � VoðhdP11ihdF11i þ hdP22ihdF22i þ hdP33ihdF33iÞ ð14Þ
Noting that the initial volume of the specimen is given by:
Vo ¼ L1A1 ¼ L2A2 ¼ L3A3 ¼ L1L2L3 ð15Þ
then Ai = Vo/Li. As dUi = LihdFiii (with no summation on repeated index ‘i’), Eq. (14) can be expressed as:
2Ecðt þ DtÞ ¼ Vo

X3

i¼1

ðdsi � hdPiiiÞhdFiii ð16Þ
In the sequel, for purposes of convenience, terms hFiii (resp. hdFiii) and hPiii (resp. hdPiii) are denoted Fi (resp. hdFii) and Pi

(resp. dPi).
It is essential to distinguish the forces (or stress vectors) acting on the boundary of the specimen, with stress acting within

the specimen. The constitutive response of the specimen is characterised by a relation between incremental strain dFi and
stress dPi components. However, the only information that can be obtained is recorded on the boundary, and therefore in-
volves si and Ui. During a quasistatic evolution of the specimen, along successive equilibrium states, the internal stress tensor
within the specimen is balanced with the external stress vector, so that for each side ‘i’ Pi = si. Thus, the constitutive response
of the specimen can be investigated in that case from the measurable variables si and Ui (or Fi = Ui/Li + 1). This is exactly what
is done during laboratory tests. This is sound until the specimen fails: if inertial effects take place, the external stress is not
balanced by the internal stress, and a heterogeneous strain field may develop within the specimen.

3.2. The drained triaxial test in axisymmetric conditions

In this test, an axisymmetric loading is applied by prescribing a constant axial displacement rate dU1 = L1dF1, together
with a constant lateral pressure (s2 = s3). For dense specimens, the curve giving the evolution of s1 versus U1 passes through
a peak, and then tends towards a plateau, as seen in Fig. 2. ŝ1 denotes the value of s1 at the peak. During this quasistatic
Drained triaxial test. Incremental stress direction during loading or unloading, at the axial stress peak (point P) and during the softening regime
).
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evolution, using this loading mode, P1 = s1. The second-order work for the specimen of volume V reads W2 = VodP1dF1 along
this loading path.

Let us focus on the axial stress peak (point P). At this point, a stress loading control is now adopted, so that an external
axial stress ŝ1 is applied to the specimen, the lateral stress (s2 = s3) being kept constant. The equilibrium state is unchanged,
and the internal stress within the specimen remains in equilibrium with the external stress. Let an additional infinitesimal
axial loading ds1 be applied to the specimen at time t. As shown in Appendix A, dU1 > 0. Thus, the additional axial loading ds1

also corresponds to an increase in the incremental axial displacement dU1. It is essential to note that the incremental internal
stress dP within the specimen, due to the application of ds1 = df1/A1 at time t, is the same as that which would exist if the
incremental axial displacement dU1 was indeed imposed. Thus, dP3 = 0 and according to the constitutive response of the
specimen shown in Fig. 2, dP1 = 0 at the peak. The second-order work is therefore nil. Moreover, since the lateral confine-
ment is unchanged, ds3 = 0. As a consequence,
Fig. 3.
(point M
2Ecðt þ DtÞ ¼ Vods1dF1 �W2 ¼ A1ds1dU1 ¼ df1dU1 > 0 ð17Þ
At the peak, under the effect of an additional axial loading, the specimen’s kinetic energy increases from zero to a strictly
positive value df1dU1 over the infinitesimal time interval [t, t + dt[. The failure mechanism of the specimen is initiated. In fact,
the internal axial stress r1 within the specimen is no longer able to balance the external axial stress s1: s1 is kept constant
(equal to ŝ1 þ ds1Þ, whereas P1 follows a constitutive path and decreases from ŝ1 along the descending branch. The unbal-
anced axial stress is responsible for the dynamical response of the specimen, characterised in Eq. (17) by a strictly positive
value of Ec(t + dt). Note that an infinitesimal external axial load is sufficient to provoke the failure of the specimen.

It is worth noting that Eq. (17), which holds true only from an equilibrium state (time t), describes the incremental evo-
lution of the system according to a second-order analysis. Eq. (17) therefore holds over time intervals [t, t + dt[ for small val-
ues of Dt. For larger values of Dt, the dynamical evolution of the system directs likely nonhomogeneous strain and stress
fields, leading to the definitive failure of the specimen. This failure evolution, beyond its initiating stage, cannot be described
by Eq. (17), nor more generally by Eq. (7). This conclusion will be confirmed by discrete element simulations in Section 3.5.

The same reasoning can be applied at any point after the peak. Along the descending branch, whatever the sign of dU1,
ds1 < 0. Thus, at point M (Fig. 2), the second-order work is strictly negative if dU1 > 0 (loading) and strictly positive if
dU1 < 0 (unloading).

Now let an infinitesimal axial loading ds1 be applied to the specimen at point M (Fig. 2). Necessarily dU1 > 0 (see Appendix
A). The second-order work is therefore strictly negative. As a consequence,
2Ecðt þ dtÞ ¼ A1ds1dU1 �W2 ¼ A1ðds1 � dP1ÞdU1 > 0 ð18Þ
The failure mechanism of the specimen is therefore initiated, and Eq. (18) clearly shows that this failure is related to the
unbalance between external (ds1) and internal (dP1) axial stresses acting on the axial side ‘1’ of the specimen.

3.3. The undrained triaxial test in axisymmetric conditions

The undrained triaxial test consists in imposing a constant axial displacement rate (dU1 = L1dF1), while the volume of the
specimen is kept constant (dF1/(1 + F1) + 2dF3/(1 + F3) = 0). As reported in an abundant literature (Castro, 1969; Lade and
Pradel, 1990; Lade, 1992; Biarez and Hicher, 1994; Chu et al., 2003), the experimental curve giving the evolution of the
deviatoric stress qs = s1 � s3 versus the axial displacement passes through a peak for sufficiently loose specimens (Fig. 3).
Undrained triaxial test. Incremental stress direction during loading or unloading, at the axial stress peak (point P) and during the softening regime
).
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The same reasoning as that considered in the previous section can be applied at the peak P or at a given point M along the
descending branch. An updated Lagrangian configuration will be considered in the subsequent analysis carried out at any of
these two points, so that the isochoric condition simplifies into dF1 + 2dF3 = 0.

Using this strain control loading mode (dU1 > 0 and dV = 0), the response of the specimen follows a quasistatic evolution:
Pi = si, and the curve in Fig. 3 can be given indifferently in terms of qs = s1 � s3 or qP = P1 �P3. Thus, the second-order work
for the specimen of volume Vo reads:
W2 ¼ VoððdP1 � dP3ÞdF1 þ dP3ðdF1 þ 2dF3ÞÞ ¼ VodqPdF1 ð19Þ
Let us focus on the deviatoric stress peak (point P). At this equilibrium point, the internal stress directs both an axial stress ŝ1

and a lateral stress ŝ3 to the boundary of the specimen. Imagine that the axial loading is henceforth stress controlled, so that a
deviatoric load q̂s ¼ ŝ1 � ŝ3 is applied. No change in the volume of the specimen is assigned. Let an infinitesimal deviatoric
stress loading dqs > 0 (dqs = ds1 � ds3 = df1/A1) be applied to the specimen (Fig. 3). The loading considered directs a strictly po-
sitive incremental evolution of the axial displacement dU1 (see Appendix B). dU1 = L1dF1 > 0. The second-order work reads:
W2 ¼ VodqPdF1 ¼ A1dqPdU1 ð20Þ
It should be noted that the internal stress within the specimen due to the application of dqs is the same as that which would
exist if the incremental axial displacement dU1 was effectively imposed. Thus, according to the constitutive response of the
specimen shown in Fig. 2, dqP = 0 at the peak. The second-order work is therefore nil: W2 = 0.

Moreover,
dsidFi ¼ dqsdF1 þ ðdF1 þ 2dF3Þds3 ¼ dqsdF1 ð21Þ
As a consequence,
2Ecðt þ dtÞ ¼ VodqsdF1 �W2 > 0 ð22Þ
As for the drained triaxial test, if an infinitesimal loading is applied at the deviatoric stress peak, the specimen is expected to
fail. The external force (A1dqs) cannot be balanced by the internal stress. An unbalanced stress is generated, responsible for
the dynamical response of the specimen. This is exactly what is observed experimentally (Castro, 1969; Lade and Pradel,
1990; Lade, 1992; Chu et al., 2003; Darve et al., 2007) and numerically when using a discrete element method (Sibille
et al., 2008; Darve et al., 2007). If the loading is strain controlled (dU1 > 0 and dV = 0), and for sufficiently loose specimens,
a static liquefaction is observed: both the effective mean pressure and deviatoric stress vanish without a dynamical effect. In
contrast, if the test is stress controlled (dqs > 0 and dV = 0), then the specimen abruptly fails at (or just after) the deviatoric
stress peak.

3.4. The proportional strain loading path

The investigation is now generalised to the proportional strain loading path, where a constant axial displacement rate
_U1 ¼ L1

_F1 is imposed, while the ratio between both axial and lateral strain rates ( _F1 and _F3) is kept constant. In incremental
form,
dF1 þ 2kdF3 ¼ 0 ð23Þ
As far as axisymmetric conditions hold, this monotonic incremental loading is general. The direction of the loading can be
chosen within the incremental strain path, according to the value of k, dU1 being the loading parameter.

For both drained and undrained triaxial loading paths, the occurrence of a failure was dictated by the existence of a peak
for a stress variable: the axial stress P1 for the drained triaxial test, the deviatoric stress qP for the undrained triaxial test. In
the context of a proportional strain path, the general stress variable P1 + lP3 can be considered. As constitutive equations
read in axisymmetric conditions (to transpose the metrics, dP1 and

ffiffiffi
2
p

dP3 are related to dF1 and
ffiffiffi
2
p

dF3).
dP1 ¼ K11dF1 þ 2K12dF3 ð24aÞffiffiffi
2
p

dP3 ¼
ffiffiffi
2
p

K21dF1 þ
ffiffiffi
2
p

K22 þ K23ð ÞdF3 ð24bÞ
where K is the tangent constitutive matrix relating d~F and d~P.
It follows that:
dP1 þ ldP3 ¼ ðK11 þ lK21ÞdF1 þ ð2K12 þ lðK22 þ K23ÞÞdF3 ð25Þ
As dF1 + 2kdF3 = 0, Eq. (25) yields:
dP1 þ ldP3 ¼ K11 þ lK21 �
1
k

K12 �
l
k

K22 þ K23

2

� �
dF1 ð26Þ
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which can be rewritten as:
dP1 þ ldP3 ¼ XtKYdF1 ð27Þ
with K ¼ K11

ffiffiffi
2
p

K12ffiffiffi
2
p

K21 K22 þ K23

	 

; Xt ¼ 1 lffiffi

2
p

h i
and Y ¼

1
� 1ffiffi

2
p

k

	 

:

Noting that K ¼ Ks þ K21�K12ffiffi
2
p 0 �1

1 0

	 

with Ks ¼

K11
K21�K12ffiffi

2
p

K21�K12ffiffi
2
p K22 þ K23

" #
are the symmetric part of K, Eq. (27) finally reads:
dP1 þ ldP3 ¼ XtKsYdF1 þ lþ 1
k

� �
K21 � K12

2
dF1 ð28Þ
This expression simplifies when both the stress variable P1 + lP3 and the strain variable F1 + 2kF3 verify the energy conju-
gation condition: couples (a,b) exist such that:
P1F1 þ 2P3F3 ¼ aðP1 þ lP3Þ þ bðF1 þ 2kF3Þ ð29Þ
a being a linear combination of F1 and F3, and b being a linear combination of P1 and P3.
Eq. (29) requires that:
lþ 1
k
¼ 0 ð30Þ
The stress variable thus reads P1 � 1
k P3. For k = 1 (isochoric conditions), the deviatoric term qs = s1 � s3 is recovered.

Taking Eq. (30) into account, Eq. (28) simplifies to:
dP1 �
1
k

dP3 ¼ XtKsXdF1 ð31Þ	 


with X ¼

1
�1ffiffi

2
p

k

.

Moreover, the second-order work W2(k) associated with the incremental strain direction X is related to the matrix Ks (Ni-
cot et al., 2009) as follows:
W2ðkÞ ¼ VoXtKsXðdF1Þ2 ð32Þ
As a consequence, Eqs. (30) and (31) become:
dP1 �
1
k

dP3 ¼
W2ðkÞ
VodF1

ð33Þ
Thus, the stress variable P1 � 1
k P3 admits a peak if and only if the second-order work is vanishing along the direction

X ¼
1
�1ffiffi

2
p

k

	 

corresponding to the condition dF1 + 2kdF3 = 0, where F1 + 2kF3 is the conjugate strain variable.
Fig. 4. Proportional strain triaxial loading paths. From Darve et al. (2004).
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Fig. 4 illustrates how s1 � 1
k s3 evolves in terms of F1, by considering a piece-wise incrementally linear constitutive relation

(Darve et al., 2004). Interestingly, it can be observed that the curve passes through a peak for sufficiently small values of k. In
what follows, such a k-value is considered.

As the response of the specimen follows a quasistatic evolution along the proportional strain loading path, then Pi = si.
Thus, as dF1 + 2kdF3 = 0, the second-order work for the specimen of volume Vo reads:
W2 ¼ Vo dP1 �
1
k

dP3

� �
dF1 þ

1
k

dP3ðdF1 þ 2kdF3Þ
� �

¼ Vo dP1 �
1
k

dP3

� �
dF1 ð34Þ
Likewise:
ds1dF þ 2ds3dF3 ¼ ds1 �
1
k

ds3

� �
dF1 þ

1
k

ds3 dF1 þ 2kdF3ð Þ ¼ ds1 �
1
k

ds3

� �
dF1 ð35Þ
Thus, Eq. (16) reads:
2Ecðt þ dtÞ ¼ Vo dqk
s � dqk

P

� �
dF1 ð36Þ
with qk
s ¼ s1 � 1

k s3 and qk
P ¼ P1 � 1

k P3.
At any point along the descending branch, both internal lateral stress bP3 and axial stress bP1 exist within the specimen,

directing external stresses ŝ3 and ŝ1. ŝ1 ¼ bP1 and ŝ3 ¼ bP3. Imagine that a mixed control mode is adopted, so that the external
stress ŝ1 � 1

k ŝ3 is imposed, together with the kinematic condition dF1 + 2kdF3 = 0. Let an infinitesimal stress loading dqk
s > 0 be

applied to the specimen. Thus, dF1 > 0 (see Appendix B). It should be noted that the incremental internal stress within the
specimen due to the application of ds1 is the same as that which would exist if the incremental axial strain dF1 was imposed.
Thus, according to the constitutive response of the specimen shown in Fig. 4, dqk

P < 0. As a consequence, according to Eq.
(36), Ec(t + dt) > 0.

Finally, the same conclusions as those derived in the previous sections hold: the constitutive response of the specimen
makes the internal stress decrease. The internal stress inside the specimen is therefore not able to balance the external stress
applied, and a dynamical regime takes place, leading to the failure of the specimen associated with a transition from a quasi-
static regime towards a dynamical regime.

3.5. Numerical inspection using a discrete element method

In this section, inspection is carried out from numerical experiments based on the discrete element method DEM (Cundall
and Strack, 1979) and conducted with the YADE code (Kozicki and Donzé, 2008). In the discrete element method, each par-
ticle constituting the granular assembly is explicitly described. Inertial terms are taken into account for each particle and its
position is updated at each time step by an explicit time integration of dynamic fundamental equations. Consequently, the
response of a granular assembly simulated by DEM is a dynamic response. However, as for real laboratory tests, a quasi-static
response (where the influence of inertial terms is negligible) can be assessed for a sufficiently low loading rate. Moreover,
given that inertial terms are taken into account, the DEM can be used as a tool to investigate the development of the effective
failure (leading to a dynamic response) from an equilibrium state when the system, made up of particles, is controlled in
such a way that effective failure can occur. In this section, DEM is mainly used within this latter framework in order to com-
pare the increase in kinetic energy just after the occurrence of effective failure, with the balance between the loading pre-
scribed at the boundary of the system and the bearing capacity of this system related to its constitutive behaviour.
Fig. 5. The particle assembly enclosed with six rigid and frictionless walls (a) the inter-particle contact law (b).
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The three-dimensional model developed is presented in Fig. 5(a) and consists of a cubical assembly of 10,000 particles
enclosed within six rigid and frictionless walls. A representative elementary volume can be estimated by checking the repro-
ducibility of the response to a given loading simulated from granular assemblies initially generated with different random
particle positions. An example of a test of reproducibility is presented in Appendix C for 10,000 particles in 3D. This number
of particles is a satisfactory compromise between the computation cost and result reproducibility, and Plassiard et al. (2009)
showed that increasing the number of particles beyond 10,000 does not affect the results significantly.

Particles are spheres with a continuous size distribution describing the grading of Fontainebleau sand. The walls are
square plates with a finite width, length and thickness; they can be subjected to Newton’s second law according to their
mass, as any particle constituting the numerical sample.

In the normal contact direction, the inter-particle contact behaviour (Fig. 5(b)) is modelled by an elastic force–displace-
ment relation characterised by the stiffness kn (kn/Ds = 250 MPa, where Ds is the sphere diameter). No tensile force is allowed.
In directions belonging to the tangent contact plane, the force–displacement relation is elastic-perfectly plastic and charac-
terised by the stiffness kt (kt/kn = 0.5) and the friction angle uc = 35�.

Since there is no tangential force in wall-grain contacts, the principal stress and strain directions coincide with the normal
directions to the walls. To prescribe a given loading program, each principal stress and strain component can be imposed on
the boundaries of the particle assembly by acting on the walls. In a given principal direction i, the average strain value Fi is
directly imposed by adjusting the wall displacements (in this case, walls do not follow the dynamic fundamental equations).
For a stress control, walls are considered dynamic objects (like particles), they can translate along their normal direction
according to Newton’s second law, but their rotation is locked. An external force f ext

i is applied to the walls, and the walls
move until reaching equilibrium. Then an external stress distribution si ¼ f ext

i =Ai develops on the boundary of the sample.
This type of stress control was adopted to simulate the application of a real force control resulting from the application
of additional external masses. Moreover, contrary to the case of a closed-loop control (Sibille et al., 2009), it directly gives
access to the value of the external stress si (if the walls’ inertia is small enough). To prevent too long a delay in the application
of si, due to inertial effects (that would transform the force control into a kind of strain control), a low value has been attrib-
uted to the mass of each wall, corresponding to 1% of the total mass of the particle assembly.
Fig. 6. Triaxial drained compression on the dense granular assembly, the internal axial stress r1 and the axial stress computed at the boundary of the
sample s1 are here equal.
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In the following simulations, only both the average stress and average strain states are assessed. The average strain state
is determined from wall positions. For the sake of simplicity, the average internal Cauchy stress state is computed with the
Love–Weber formula (see for instance Love, 1927; Weber, 1966). Thus an Eulerian expression for the stress tensor is used,
instead of a Lagrangian expression. Even though the theoretical approach was developed in a Lagrangian formalism, the main
results inferred in the previous sections will be checked from an Eulerian approximation of the stress terms:
rij ¼
1
V

X
contacts

rc
i lc

j ð37Þ
where rc! represents the inter-particle contact force and lc! the branch vector joining the centres of the two particles involved
in the contact. In the same way, an Eulerian approximation of the external stress distribution is considered. When the sample
is strain controlled in direction i, the external stress distribution si is computed as si = fi/Ai where Ai is the current area of side
‘i’, and fi is the reaction force of the sample on the wall, equal to the sum of all sphere-wall contact forces. When the sample is
force controlled, si can also be computed as si ¼ f ext

i =Ai, where f ext
i is the external force applied to the wall ‘i’.

First, the case of the drained triaxial compression on a dense sample is investigated. The sample is subjected to an iso-
tropic compression up to a confining pressure of 100 kPa. At this stage, the porosity is n = 0.387 and the coordination number
is z = 4.53. Then the sample is compressed by imposing a constant axial strain rate _F1 ¼ 0:01 s�1 while the radial stresses s2

and s3 are kept constant, equal to 100 kPa. For this simulation where a quasi-static response is expected, the inertial effects
can be estimated through the inertial number I which describes the ratio of inertial to pressure forces (da Cruz et al., 2005). It
is defined in 3D for a particle of diameter Ds and mass m by I ¼ _F1

m
DsP, where P is the pressure confinement applied to the

granular assembly. A value of I = 10�2 corresponds to the very limit of a quasi-static loading (da Cruz et al., 2005) and a lower
value should be respected to simulate a quasi-static loading with the DEM. In the present case, the maximum value (for the
largest particle) is I = 1.5 � 10�4. A series of simulations at different loading rates can also give an indication of the range of
loading rates to apply in order to avoid the inertial effect; this approach is illustrated in Appendix D.

The sample’s response to this drained triaxial compression is analysed in terms of axial stress, s1 or P1, and porosity, as
shown in Fig. 6. During this quasi-static evolution, it is shown that s1 and P1 remain very close.

Let us now consider the state MA after the peak of s1 (Fig. 6). In this state, the sample control is switched to a full stress
control defined by s1 ¼ rMA

1 ¼ 231:3 kPa and s2 = s3 = 100 kPa, until the sample stabilises under this imposed external stress
state. Then a small external axial stress increment Ds1 = 2 kPa is imposed, representing less than 1% of rMA

1 (the lateral con-
fining is kept constant: s2 = s3 = 100 kPa). Ds1 is not imposed instantaneously, but gradually within 400 numerical time steps,
in order to limit the development and the propagation of elastic waves. In this case, where a quasi-static response of the
sample is not imposed, the strain rate is not imposed by the operator but is actually a response of the sample to the small
additional stress increment Ds1. However, over the range of time considered in the following figures, the inertial number I
does not exceed 9.10�4 and inertial forces remain quite low with respect to pressure forces.

Changes in stress increments are presented in Fig. 7. The internal stress r1 first increases because the sample has slightly
strengthened during the stabilisation stage at the initial stress state rMA

1 . However, r1 rapidly decreases, moving away from
the applied external stress s1. Since r1 is no longer able to balance s1, the kinetic energy strongly increases, as shown in Fig. 8.

[W2]Dt, [VDsiDFi]Dt and [(VDsiDFi �W2)/2]Dt over the time period Dt, are given in Fig. 8. The negative sign of W2 is related
to a negative value of Dr1, whereas DF1 is positive, while V(Ds1DF1) is positive since Ds1 > 0. As expected from Eq. (16), good
agreement is obtained between [Ec]Dt and [(VDsiDFi �W2)/2]Dt for Dt < 0.05 s. The computation of the last expression is
based on the values of DFi and Dri over a given time period Dt, whereas their time series are strongly nonlinear and non-
monotonous. Consequently, the term [(VDsiDFi �W2)/2]Dt corresponds to a secant value over the time period Dt, whereas
Fig. 7. Time versus the stress increments resulting from the application of Ds1 = 2 kPa from the state MA defined in Fig. 6.

11



Fig. 8. Time series of the kinetic energy and terms [W2]Dt, [VDsiDFi]Dt, and [(VDsiDFi �W2)/2]Dt during and after the application of Ds1 = 2 kPa from the
state MA (a). Focus on shorter time increments (b).
the kinetic energy integrates the whole history of Fi and ri over the time increment Dt, explaining why the numerical results
depart from Eq. (16) when Dt increases. Moreover, Eq. (16) was established for an infinitesimally small time increment dt
from an initial equilibrium state. However, with direct numerical simulations only finite time increments Dt are applicable.
It is shown here that Eq. (16) holds true for time increments that are not too long (here less than 0.05 s) and fails for larger
Dt, since Eq. (6) is no longer valid.

The case of the undrained (isochoric) triaxial compression with a loose granular assembly is now considered. As for the
drained triaxial compression, the sample is first subjected to an isotropic compression up to a confining pressure of 100 kPa
(where n = 0.403 and z = 3.55). Then the isochoric condition DV/V = DF1 + DF2 + DF3 = 0 is imposed by adjusting, at each
numerical time step, the displacements of walls along the normal directions 2 and 3, such as DF2 = DF3 = �DF1/2. Together
with the isochoric constraint, the sample is compressed at the constant axial strain rate _F1 ¼ 0:01 s�1. As shown in Fig. 9,
after a maximum of the stress deviator qs, stresses totally vanish (the sample is liquefying). However, one can observe that
this sample is at the limit of liquefaction under the isochoric condition. After the maximum of qs, the sample temporally re-
gains strength, as shown by the local peak of qs. This type of sample was purposely chosen to make stabilisation easier at the
state MB after the maximum of qs, as indicated in Fig. 9. At this state, the sample control is switched to a stress control by
imposing a deviatoric stress qs ¼ qMB

r ¼ 43 kPa (while the isochoric condition is still applied; see Sibille et al., 2009, for the
implementation of the mixed stress–strain control mode), until the sample stabilises. If the assembly of spheres is very loose,
this stabilisation of the sample at a prescribed axial stress after the maximum of qs is almost impossible to achieve.

After stabilising the sample at the state MB, an additional external deviatoric stress Dqs = 1.6 kPa (corresponding to 3.7% of
qMB

r Þ is gradually imposed within 240 numerical time steps (the isochoric condition is maintained). It is worth emphasising
that the strain rate is not imposed so that an effective failure can possibly develop with a burst of kinetic energy. Changes in
stress increments are given in Fig. 10.

As shown in the case of drained conditions, the internal deviatoric stress qr first increases (possibly due to a kind of resid-
ual strength acquired during the stabilisation phase), then decreases to depart from the deviatoric stress qs applied to the
12



Fig. 9. Undrained (isochoric) triaxial compression of a loose particle assembly, qs and ps are computed from the stress state at the boundary of the sample,
qr and pr are computed from the internal stress state.

Fig. 10. Time versus the stress increments resulting from the application of Dqs = 1.6 kPa from the state MB defined in Fig. 9.
boundary of the sample. Due to this unbalanced state, the kinetic energy rapidly increases, as shown in Fig. 11, and good
agreement is found between [Ec]Dt and [(V(DsiDFi) �W2)/2]Dt up to Dt values of about 0.08 s (similar to the limit Dt value
observed in drained conditions).

It is worth noting that failure develops as W2 takes decreasing negative values (Fig. 11). The boundary term of Eq. (16)
remains greater than W2, leading to a positive value of Ec at the end of each time increment Dt.
13



4. Extension to the boundary value problem

The case of a boundary value problem leading to a bifurcation state is examined in this section, with the settlement of a
soil body under a shallow foundation. The problem is assumed to be two-dimensional and is modelled as described in Fig. 12.
A rectangular domain of soil is considered; a part JK of length L of the upper side is subjected to a controlled downward ver-
Fig. 11. Time series of the kinetic energy and terms [W2]Dt, [VDsiDFi]Dt, and [(VDsiDFi �W2)/2]Dt during and after the application of D qs = 1.6 kPa from the
state MB (a). Focus on shorter time increments (b).

Fig. 12. Simulation of the settlement under a shallow foundation.
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tical displacement denoted u, whereas the adjoining parts (IJ and KL) are free. The other three sides (LM, MN and IN) are re-
stricted from undergoing displacement. In contrast to what was done in Section 3, the mechanical state within the soil body
is not homogeneous.

The reaction force applied by the soil to the foundation is denoted Fu. This force evolves continuously with the vertical
displacement u. Omitting body forces (negligible here with respect to the external applied force), the boundary term of
Eq. (7) is written:
B2 ¼ LdudFu ð38Þ
Khoa (2005) has simulated this problem by means of a finite element method (LAGAMINE software, developed at Liege Uni-
versity) using the PLASOL elastic–plastic model for soil (Barnichon, 1998). A comprehensive review of this method can be
found in Prunier et al. (2009b), Lignon et al. (2009). It has been shown that the curve Fu(u) increases until a peak bF u is
reached, and then decreases (Fig. 13). The kinematic control ensures that no failure occurs. Internal stresses inside the soil
body are in balance with the external loading exerted on the boundary. Eq. (8) therefore yields:
W2 ¼ B2 ¼ LdudFu ð39Þ
Thus, given a strictly positive incremental displacement du, the second-order work linked to the external applied incremen-
tal loading is nil exactly at the peak and is negative along the descending branch (Fig. 14).

Imagine that at the peak, the loading is stress controlled (a force bF u is imposed on the foundation) and that a subsequent
incremental force dFu > 0 is imposed at time t. Following the same reasoning as previously, it can be shown that the incre-
mental displacement du is strictly positive. Exactly at the peak, this positive incremental displacement du directs a nil value
of the second-order work.
Fig. 13. Reaction force applied to the foundation.

Fig. 14. Normalised second-order work.
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As we have:
2Ecðt þ dtÞ ¼ VodudFu �W2 ¼ VodudF ð40Þ
where Vo is the initial volume of the soil body, the kinetic energy is strictly positive immediately after time t. The soil fails
under the foundation. This was ascertained from a numerical simulation based on a finite element method using the PLASOL
elasto-plastic model for soil. LAGAMINE software considers static balance equations, omitting inertial terms. If an additional
(even infinitesimal) load is applied to the foundation immediately after the peak bF u, then the software is no longer able to
converge towards a solution. This numerical divergence is in fact related to a transition from a static to a dynamical regime
that cannot be simulated by the software. This transition is the consequence of a sudden increase in kinetic energy.
5. Concluding remarks

This paper has investigated the issue of failure in specimens made up of granular, rate-independent materials. Basically,
failure of a material is described as the incapacity of this material to sustain an external loading. When a granular material
fails, in absence of localisation patterns, a chaotic kinematic field develops, with an abrupt increase in the strain rate. Starting
from this physical evidence, the approach developed in this paper is based on energy conservation, leading to a basic equa-
tion that introduces the second-order work. More exactly, the increase in the kinetic energy from an equilibrium state, under
an incremental loading, is shown to be equal to the difference between a boundary term involving the external loading
parameters and the second-order work. The purpose of this paper was to investigate how the boundary term can be greater
than the second-order work, leading to an increase in kinetic energy. The mechanical reason behind this is based on a dis-
tinction between the internal stress within the material, and forces or stresses applied to the boundary of the system. When
a stress limit state is reached, a certain stress component passes through a maximum and then may decrease. This feature
corresponds to a vanishing or a negative value of the second-order work. At this point, or along the descending branch, if a
certain additional external loading is applied, the system fails, sharply increasing the strain rates. The internal stress is no
longer able to balance the external stress, leading to a dynamic response of the specimen.

This theoretical framework was explored along a variety of loading paths, including drained and undrained triaxial paths,
and proportional strain triaxial paths as well. For the drained triaxial test, the stress limit state corresponds to the Mohr–Cou-
lomb plastic limit. For the undrained triaxial test, the stress limit state coincides with a maximum of the deviatoric stress,
occurring for loose materials well before the Mohr–Coulomb plastic limit is reached (Lade and Pradel, 1990; Lade, 1992). This
is an extension of the previous case, generalising the notion of the stress limit state. Going ahead, for denser materials, a stress
limit state is observed (before the Mohr–Coulomb plastic limit is reached) over proportional strain triaxial paths, for certain
ratios between both axial and lateral incremental strains. The theoretical approach properly shows why these (generalised)
stress limit states lead to an increase in kinetic energy and therefore to the failure of the materials. This is in line with the
investigation of Valanis (1985) or Bažant and Cedolin (1991), querying the uniqueness of the solution in the softening regime.
This paper extends the case of softening to that of generalised limit state with a mixed strain and stress loading control.

These theoretical conclusions were ascertained from numerical simulations based on a discrete element method. If an
(even very small) additional loading is applied after a stress limit state is reached, then the numerical specimen is shown
to collapse, with an abrupt increase in axial strain rates.

The last section was devoted to an extension towards boundary value problems. A shallow foundation was considered,
and the resulting force applied to the foundation when applying a settlement was simulated using a finite element method.
The same conclusions hold true. After a limit state is reached, if an additional loading is applied, the soil body under the foun-
dation collapses. Large strains develop, and the convergence of the software fails.

Finally, this approach developed on physical bases suggests an interpretation of the failure mechanisms in solid materials.
The most important feature is that failure is related to a transition from a static (equilibrium) regime towards a dynamical
regime. As suggested in many papers from the pioneering contribution of Hill (1958), the second-order work is shown to play
a basic role. Many applications are expected in engineering sciences, such as soil failure in soil mechanics. In particular, the
influence of body forces has to be accounted for to describe the occurrence of mass-driven phenomena, such as landslides.
The context of structure mechanics should also be considered. Some results have already been obtained in this direction
(Challamel et al., 2010).

The micromechanical understanding of failure in structured granular soils can be regarded as a natural continuation of
the current work. Some attempts were already made along this line (Kuhn and Chang, 2006; Nicot and Darve, 2006; Wan
et al., 2010; Tordesillas and Muthuswamy, 2009; Tordesillas et al., 2010; Steinhauser et al., 2009; Tsutsumi and Kaneko,
2008). For this purpose, using micromechanically-based models (see for example Chang and Hicher, 2005; La Ragione
et al., 2008; Zhu et al., 2010) could be a powerful approach to penetrate down into the microstructural scale.
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Appendix A

The axial stress peak (point P), in Fig. 2, is the subject of analysis. If dU1 > 0 then dP1 = 0. If an unloading is performed,
dU1 < 0 and dP1 < 0. Thus, at this peak, the second-order work is zero if dU1 > 0 (loading) and strictly positive if dU1 < 0
(unloading).

Now let an infinitesimal axial loading ds1 be applied to the specimen at time t. This loading directs an incremental evo-
lution of the axial displacement dU1. Whatever the sign of dU1, the incremental stress field is homogeneous: dP3 = ds3 = 0,
and dP1 is given by the constitutive response of the system, as shown in Fig. 2. In what follows, we query the sign of dU1.

If dU1 < 0, the second-order work is strictly positive and we have, according to Eq. (16):
Fig. 15
generat
2Ecðt þ dtÞ ¼ A1ds1dU1 �W2 < A1ds1dU1 ðA:1Þ
As ds1 > 0 and dU1 < 0, it follows that Ec (t + dt) < 0, which is not possible. Thus, necessarily dU1 > 0.

Appendix B

The deviatoric stress peak (point P), in Fig. 3, is now examined. If dU1 > 0 then dqP = 0. If an unloading is performed,
dU1 < 0 and dqP < 0. Thus, at this peak, the second-order work is zero if dU1 > 0 (loading) and strictly positive if dU1 < 0
(unloading).

Now let an infinitesimal positive deviatoric stress loading dqs be applied to the specimen, together with the isochoric con-
dition dF1 + 2dF3 = 0 (Fig. 3). This loading directs an incremental evolution of the axial displacement dU1. How does dU1

evolve? If dU1 < 0, the second-order work is strictly positive and we have, according to Eq. (16):
2Ecðt þ dtÞ ¼ Vðds1dF1 þ 2ds3dF3Þ �W2 < Vðds1dF1 þ 2ds3dF3Þ ðA:2Þ
As ds1dF1 þ 2ds3dF3 ¼ ðds1 � ds3ÞdF1 þ ds3ðdF1 þ 2dF3Þ ¼ dqsd~e1, with dqs > 0 and dF1 = dU1/L1 < 0, it follows that Ec(t + dt) < 0,
which is not possible. Thus, necessarily dU1 > 0.

This result can be generalised to proportional strain loading paths (dF1 + 2kdF3 = 0). If dU1 < 0, Eq. (A.2) holds, and:
ds1dF1 þ 2ds3dF3 ¼ ds1 �
1
k

ds3

� �
dF1 þ

1
k

ds3ðdF1 þ 2kdF3tÞ ¼ ds1 �
1
k

ds3

� �
dF1 ðA:3Þ
with ds1 � 1
k ds3 < 0 and dF1 < 0; it follows that Ec(t + dt) < 0, which is not possible. Thus, necessarily dU1 > 0.

Appendix C

For simulations of homogenous tests with the discrete element method, granular assemblies involving a sufficiently large
number of particles (as for real laboratory tests) should be considered such that the size of the greatest heterogeneity (here
comprising the largest particle) is small with respect to the size of the granular assembly. If this scaling is respected, the
response of the granular assembly to a homogenous loading is independent of its local heterogeneities. This latter point
has been investigated in 3D by performing classical triaxial compressions (samples are compressed in the axial direction
while the radial stress is kept constant) on ten cubical granular assemblies composed of 10,000 particles. Each granular
assembly is initially generated from an algorithm positioning particles randomly. Hence all granular assemblies have iden-
tical macroscopic properties (porosity, particle size distribution, etc.) but different local heterogeneities. The results pre-
sented in Fig. 15 show that fairly good reproducibility is assessed with 10,000 particles.
. Simulation of a drained triaxial compression under a confinement of 200 kPa on ten loose granular assemblies composed of 10,000 randomly
ed particles.
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Fig. 16. Simulations of drained triaxial compressions under a confinement of 50 kPa at different axial strain rates (0.001; 0.01; 0.1; 1.0 and 10 s�1).
Appendix D

The influence of the loading strain rate and inertial terms is presented in Fig. 16, where a drained triaxial compression is
simulated by DEM with a dense granular assembly by imposing the axial compression at different strain rates (all other
parameters are kept constant). For sufficiently low strain rate values (here from and below 0.1 s�1) the results are indepen-
dent of the loading rate and thus of the inertial terms. The simulated response can be considered quasi-static for these low
strain rate values. For the largest strain rates (1 s�1 and 10 s�1), the quasi-static shear strength (maximum of the stress devi-
ator q) of the granular assembly is overestimated due to non-negligible inertial forces with respect to pressure forces. Sim-
ilarly, the maximum contractancy (the minimum volume change) is also overestimated.
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