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From single-scale to two-scales kinetic theory descriptions
of rods suspensions

Francisco Chinesta

Abstract This paper proposes a first attempt to define a two-scales kinetic theory

description of suspensions involving short fibers, nano-fibers or nanotubes. We start

revisiting the description of dilute enough suspensions for which microscopic, meso-

scopic and macroscopic descriptions are available and all them have been successfully

applied for describing the rheology of such suspensions. When the suspensions become

too concentrated fiber-fiber interactions cannot be neglected and then classical dilute

theories fail for describing the rich microstructure evolution. In the semi-concentrated

regime some interaction mechanisms that mimetic the randomizing effect of fiber-fiber

interactions were successfully introduced. Finally, when the concentration becomes

high enough, richer microstructures can be observed. They involve a diversity of fiber

clusters or aggregates with complex kinematics, and different sizes and shapes. These

clusters can interact to create larger clusters and also break because the flow induced

hydrodynamic forces. In this paper we propose a double-scale kinetic theory model

that at the first scale consider the kinematics of the clusters, whose structure itself is

described at the finest scale, the one related to the rods constituting the clusters.

1 Introduction

Short fibers, nanofibers or CNTs suspensions present different morphologies depending

on their concentrations. When the concentration is dilute enough one can describe the

microstructure by tracking a population of rods that move with the suspending fluid

and orient depending on the velocity gradient according to the Jeffery’s equation [38]

that relates the orientation evolution with the flow velocity field. In that case the motion

and orientation of each fiber is assumed decoupled from the others. The representative
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population can involve too many fibers, and in that case the computational efforts to

track the population is unaffordable. Thus, the simple and well-defined physics must

be sacrificed in order to derive coarser descriptions.

Kinetic theory approaches [27] [15] describe such systems at the mesoscopic scale.

Their main advantage is their capability to address macroscopic systems, while keep-

ing the fine physics through a number of conformational coordinates introduced for

describing the microstructure and its time evolution. At this mesoscopic scale, the mi-

crostructure is defined from a distribution function that depends on the physical space,

the time and a number of conformational coordinates - the rods orientation in the case

of slender bodies suspensions -. The moments of this distribution constitutes a coarser

description in general used in macroscopic modeling [2].

At the macroscopic scale the equations governing the time evolution of these mo-

ments usually involve closure approximations whose impact in the results is unpre-

dictable. Other times, macroscopic equations are carefully postulated in order to guar-

antee the model objectivity and the thermodynamical admissibility.

In the case of dilute suspensions of short fibers the three scales have been extensively

considered to models such systems, without major difficulties. However, as soon as the

concentration increases the difficulties appear. In the semi-dilute or semi-concentrated

regimes fiber-fiber interactions occur, but in general they can be accurately modeled

by introducing a sort of randomizing diffusion term. Again, models based on this mech-

anism describe quite well the experimental observations. The reader can refer to [4]

[51] [34] [13] [35] [36] [37] [54] and the references therein. The worst scenario con-

cerns concentrated suspensions involving entangled clusters of particles and in which

aggregation/disaggregation takes place.

The first natural question is how describing such systems? At the macroscopic

scale one could try to fit some power-law constitutive equation, however, this descrip-

tion does not allow to describe the microstructure. At the microscopic scale, direct

numerical simulations describing complex fiber-fiber interactions can be carried out in

small enough representative volumes. A natural candidate to be a reasonable compro-

mise between (fine) micro and (fast) macro descriptions consists of considering again

a kinetic theory description.

The main issue of such an approach lies in the fact that it must include two scales,

the one involving the aggregates and the one related to the rods constituting the ag-

gregates. What are the appropriate conformational coordinates? How to determine the

time evolution of these conformational coordinates? How to represent simultaneously

both physical scales, one related to the aggregates and the other to the fibers? How

to derive the aggregation/disaggregation mechanisms? How to derive the expression of

the stress tensor? ... Some key questions that we will address in this work.

1.1 A concrete example: suspensions of carbon nanotubes

All these questions arise for example when addressing carbon natotubes suspensions

the more and more used in nanocomposites [45] [26].

In the case of chemically treated single-walled carbon nanotubes (CNTs) suspended

within an epoxy resin the aggregation is prevented and we can consider that we are

dealing with a large population of free rods in the dilute regime or rods experiencing

interactions in the semi-concentrated or concentrated regimes. Thus, when a CNT sus-

pension was subject to a steady shear flow, it exhibited a shear-thinning characteristic,
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which was subsequently modelled by a Fokker-Planck (FP) based orientation model

[47]. The model assumes that shear flow aligns CNT in the flow direction, but there

are events such as Brownian motion and tube-tube interaction trying to randomise the

orientation. In the FP orientation model, randomising events were modelled with an

appropriate rotary diffusion coefficient Dr and the shear-thinning behaviour was ex-

plained in terms of progressive alignment of CNTs towards the shear direction. In terms

of linear viscoelasticity (LVE), small-amplitude oscillatory measurements revealed mild

elasticity for semi-dilute treated CNT suspensions. The exact origin for this elasticity

is not clear and both tube-tube interaction and bending/stretching of CNTs have been

proposed by other authors as possible origins (see [24] and the references therein).

In [47] experimental LVE data of the treated CNT suspensions were fitted using

the FP orientation model with an ”effective diffusion coefficient” term and an empirical

relation was subsequently identified for the effective diffusion term. Intuitively, chemical

treatment has created a weakly interconnected network of CNT and it is believed that

the mild elasticity originated from this weak network as well as other randomizing

events (Brownian motion and tube-tube hydrodynamic interaction). Finally, step strain

experiments confirmed the presence of a weak network at small strains, which at large

strains was found to be destroyed. Incorporation of a strain softening factor allowed

for the formulation of a self-consistent FP based orientation model describing both

the steady shear and LVE responses of treated CNT suspensions. A finer Brownian

dynamics modeling was addressed in [25], where the elasticity effects were explained as

a direct consequence of the nanotube bending, more in particular, the bending of those

having a non-straight natural configuration because the presence of side-wall defects

at the origin of the CNT bent conformation.

The rheological modelling of untreated Carbon Nanotubes (CNTs) suspended within

an epoxy resin in a kinetic theory framework was addressed in [?]. The untreated CNT

suspensions exhibited significant steady shear-thinning and contained optically resolv-

able aggregate structures depending on the applied shear rate as observed in Fig. 1.

A simple orientation model, based on a Fokker-Planck advection-diffusion description,

failed to capture the experimentally observed rheological responses for untreated CNT

suspensions. A new model named the ”Aggregation/Orientation” (AO) model has been

developed to describe the experimental findings. The model integrated elements of both

a standard orientation model and aggregation modelling concepts within the Fokker-

Planck formalism. A hierarchy of states between CNTs that are free from entanglement

and a complete CNT network was incorporated into the AO model, thereby enabling

different microstructure populations to exist for different shear conditions. Using a

small number of adjustable parameters, it was found that the experimental data could

be fitted with reasonable precision. However, important assumptions, somewhat unjus-

tified, concerning the microstructure evolution of CNTs clusters immersed in the flow

were introduced.

In this work we are first revisiting the description of dilute fibers suspensions, before

moving to more concentrated regimes exhibiting richer evolving microstructures.

2 Dilute suspensions of non-Brownian rods

We consider a suspending medium consisting of a newtonian fluid of viscosity η in which

there are suspended N rigid slender rods. We assume as first approximation that the

fibers presence and orientation do not affect the flow kinematics that is defined by the
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Fig. 1 Optical microstructure of 0.1% CNT suspended within an epoxy resin after shearing
at (a) 0 s−1, (b) 0.5 s−1, (c) 10 s−1 and (d) 100 s−1 . The micrographs were captured after
a shearing time of 100 seconds and using the Cambridge Shear System (CSS 450) with an
optical depth of 130 μm.

velocity field v(x, t), with x ∈ Ω ∈ Rd. For the sake of simplicity, and without loss of

generality, in what follows we are considering a 2D domain, i.e. Ω ∈ R2.

2.1 Microscopic description

The microstructure could be described at the microscopic scale by given the unit vector

defining the orientation of each rod, i.e. pi, i = 1, · · · , N . For ellipsoids the orientation

evolution is given by the Jeffery’s equation [38] that particularized for rods (ellipsoids

with infinite aspect ratio) leads to:

ṗi = ∇v · pi −
(
pTi · ∇v · pi

)
· pi, i = 1, · · · , N (1)

It can be noticed that this expression consists of two contributions, a sort of affine

deformation given by the term ∇v·pi and the second one that removes the deformation

in the rod direction because the rod is considered inextensible. It easy to verify that

pTi · ∇v · pi ≡ pTi ·D · pi, being D the rate of strain tensor (symmetric component of

the gradient of velocity tensor ∇v).

This equation could be derived by considering the system illustrated in Fig. 2

consisting of a rod and two beads located at both rod ends where we assume that

hydrodynamic forces apply. We assume that the forces that apply on each bead Fi
depend on the difference of velocities between the fluid and the bead, the first one

given by ∇v · pi · L and the second one by ṗi · L. Thus, forces Fi write:
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Fig. 2 Hydrodynamic forces applying on a rod immersed in a Newtonian fluid

Fi = ξ · (∇v · pi · L− ṗi · L) (2)

being ξ the friction coefficient.

Obviously if Fi applies on the bead pi ·L, then in the opposite bead −pi ·L applies

−Fi ensuring a null balance of forces compatible with the assumed rood inertialess.

However, because the rod mass is assumed null, and then its associated inertia moment,

the resulting torque must also vanish. The only possibility for this is that force Fi acts

along pi, that is Fi = λ · pi, with λ ∈ R. Thus we can write

λ · pi = ξ · (∇v · pi · L− ṗi · L) (3)

Premultiplying Eq. (3) by pi and taking into account that pTi · pi = 1 and conse-

quently pTi · ṗi = 0, it results:

λ = ξ · L · pTi · ∇v · pi (4)

implying

Fi = ξ · L · (pTi · ∇v · pi) · pi (5)

that introduced into Eq. (2) leads to the Jeffery’s equation for infinite aspect ratio

ellipsoids:

ṗi = ∇v · pi −
(
pTi · ∇v · pi

)
· pi (6)

The extra-stress tensor results from the addition of the suspending medium con-

tribution τ f and the contribution due to the forces applying on the rods τ r. The first

contribution can be expressed from τ f = 2 · η ·D, being the second one

τ r = L ·
i=N∑
i=1

pi ⊗ Fi = L ·
i=N∑
i=1

λ · pi ⊗ pi (7)

where the symbol ”⊗” denotes the tensor product that for two vectors a and b results

(a⊗ b)ij = ai · bj .
Introducing the expression of λ it results

τ r =

i=N∑
i=1

ξ · L2 · (pTi · ∇v · pi) · (pi ⊗ pi) (8)
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Eq. (8) can be rewritten as:

τ r =

i=N∑
i=1

ξ · L2 · ((∇v) : (pi ⊗ pi ⊗ pi ⊗ pi)) (9)

where the symbol ” : ” denotes the tensor product twice contracted.

The Cauchy stress tensor reads:

τ = τ f + τ r = 2 · η ·D+

i=N∑
i=1

ξ · L2 · ((∇v) : (pi ⊗ pi ⊗ pi ⊗ pi)) (10)

It is important to notice that as forces apply in the rod direction, the resulting

stress tensor will be symmetric, i.e. τ = τT .

Thus using all the previous developments, the microstructure evolution could be

described as follows:

– Given the flow velocity field v(x, t), the initial position of the centre of gravity of

each rod xGi (t = 0) and its orientation pi(t = 0) or knowing both them at time t

– For each fiber i = 1, · · · , N :

– Update the position of the centre of gravity by integrating:

dxGi
dt

= v(xGi , t) (11)

The simplest integration, by considering a time step Δt, consists in the first

order backward scheme that writes:

xGi (t+Δt) ≈ xGi (t) + v(xGi , t) ·Δt (12)

– Update its orientation by integrating

dpi
dt

= ∇v(xGi , t) · pi −
(
pTi · ∇v(xGi , t) · pi

)
· pi (13)

Again, the simplest integration consists of writing:

pi(t+Δt) = pi(t)+

+
(
∇v(xGi , t) · pi(t)−

(
pTi (t) · ∇v(xGi , t) · pi(t)

)
· pi(t)

)
·Δt (14)

– Compute the stress at position x and time t by considering all the fibers inside a

control volume V(x) centered at x by applyying

τ (x, t) = 2 · η ·D(x, t) +
∑

i∈V(x)

ξ · L2 · ((∇v(x, t)) : (pi ⊗ pi ⊗ pi ⊗ pi)) (15)

In the case of coupled models this stress will serve to update the velocity field,

however, as previously indicated, in the present paper we will consider that the

velocity field is not perturbed by the presence and orientation of the rods.
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2.2 Mesoscopic description

Because the high number of rods involved in the suspension the description that we

just described, and despite its conceptual simplicity, fails to address the situations

usually encountered in practice. For this reason coarser descriptions are preferred. The

first plausible coarser description applies a zoom-out, in which the rods individuality

is loosed in favor of averaged descriptions.

In the case of rods, one could described the microstructure at a certain point x and

time t from the orientation distribution function ψ(x, t,p) given the fraction of rods

that at position x and time t are oriented in the direction p. Obviously, function ψ

verifies the normality condition:∫
S(0,1)

ψ(x, t,p) dp = 1, ∀x, ∀t (16)

where S(0, 1) is the surface of the unit ball (circumference of unit radius in the 2D

case and spherical surface of unit radius in the 3D case) that defines all the possible

rod orientation in 2D and 3D respectively.

Thus, we substituted the fine microscopic description, needing for the specification

of each rod orientation, by an averaged scalar function. However, in order to use it, one

needs to derive the equation governing the evolution of such an orientation distribution

function.

The balance ensuring the rods conservation implies:

∂ψ

∂t
+

∂

∂x
(ẋ · ψ) + ∂

∂p
(ṗ · ψ) = 0 (17)

where for inertialess rods ẋ = v(x, t) and the rotational velocity of the rods is given

by the Jeffery’s equation already introduced:

ṗ = ∇v · p−
(
pT · ∇v · p

)
· p (18)

Eq. (17), known as Fokker-Planck equation, is a well balanced compromise between

the macroscopic scale that defines the overall process, where the space and time coordi-

nates are defined, and a finer microscopic information describing the rods flow induced

orientation mechanism described by the Jeffery’s equation (18).

The price to be paid is the increase of the model dimensionality, because the orien-

tation distribution is defined in a high-dimensional domain consisting of 5 dimensions in

the general 3D case, i.e. ψ : (x, t,p) → R+ where x ∈ Ω ⊂ R3, t ∈ I ⊂ R+,p ∈ S(0, 1).
The extra-stress due to the presence of such a population of rods is determined by

averaging the discrete virial stress defined at the microscopic scale

τ = τ f + τ r =

= 2 · η ·D+ 2 · η ·Np ·
∫
S(0,1)

(∇v) : (p⊗ p⊗ p⊗ p) · ψ(x, t,p) · dp =

= 2 · η ·D+ 2 · η ·Np ·
(
∇v : a(4)

)
(19)

where a(4) represents the fourth order moment of the orientation distribution function

and Np is the so-called particle number that depends on the rods concentration and
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shape. Because the symmetry of a(4) the gradient of velocities in the previous expression

can be replaced by the rate of strain tensor D:

τ = τ f + τ r = 2 · η ·D+ 2 · η ·Np ·
(
D : a(4)

)
(20)

In summary, the mesoscopic decoupled modeling, consists of:

– Given the flow velocity field v(x, t) and the initial orientation distribution ψ(x, t =

0,p)

– Solve the Fokker-Planck equation that governs the rods orientation distribution:

∂ψ

∂t
+

∂

∂x
(v · ψ) + ∂

∂p
(ṗ · ψ) = 0 (21)

with

ṗ = ∇v · p−
(
pT · ∇v · p

)
· p (22)

– Compute the stress tensor:

τ = τ f + τ r = 2 · η ·D+ 2 · η ·Np ·
(
D : a(4)

)
(23)

with

a(4) =

∫
S(0,1)

p⊗ p⊗ p⊗ p · ψ(x, t,p) · dp (24)

2.3 Macroscopic description

Fokker-Planck based descriptions were rarely considered precisely because the curse of

dimensionality that the introduction of the conformation coordinates (the rod orien-

tation in the case here considered) implies. Thus standard mesh-based discretization

techniques, as finite differences, finite elements or finite volumes, fail when addressing

models defined in high-dimensional spaces. For this reason, mesoscopic models were

coarsened one step further to derive macroscopic models defined in standard physical

domains, involving space and time.

In this section we are illustrating the transition from the mesoscopic to the macro-

scopic scale. At the macroscopic scale the orientation distribution function is substi-

tuted by its moments for describing the microstructure.

The first moment a(1) results:

a(1) =

∫
S(0,1)

p · ψ dp (25)

that represents the mean local orientation. Its time evolution can be obtained by taking

the time derivative of Eq. (25) and using the expression of ṗ previously deduced:

ȧ(1) =

∫
S(0,1)

ṗ · ψ dp =

∫
S(0,1)

(
∇v · p−

(
pT · ∇v · p

)
· p

)
· ψ dp =

= ∇v · a(1) − a(3) : ∇v (26)
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where ” : ” represents the tensor product twice contracted.

We can notice that the evolution of the first moment involves the third one and so

on, needing for a closure relation.

Now, considering the second moment a(2):

a(2) =

∫
S(0,1)

p⊗ p · ψ dp (27)

its time derivative reads:

ȧ(2) =

∫
S(0,1)

(ṗ⊗ p+ p⊗ ṗ) · ψ dp =

=

∫
S(0,1)

(
∇v · p−

(
pT · ∇v · p

)
· p

)
⊗ p · ψ dp+

+

∫
S(0,1)

p⊗
(
∇v · p−

(
pT · ∇v · p

)
· p

)
· ψ dp =

= ∇v · a(2) + a(2) · (∇v)T − 2 · a(4) : ∇v (28)

where

a(4) =

∫
S(0,1)

p⊗ p⊗ p⊗ p · ψ dp (29)

Again a closure relation is needed in order to express the fourth order moment as

a function of the lower order moments.

Different closure relations have been introduced and widely used [3] [40]. One of

the most used is the quadratic one that reads:

a(4) = a(2) ⊗ a(2) (30)

that results exact when the microstructure is locally perfectly aligned in a direction

p̂(x), because in that case the distribution function writes ψ(x, t,p) = δ(p− p̂) (δ(•)
being the Dirac’s delta distribution) and consequently

â(4) =

∫
S(0,1)

p⊗ p⊗ p⊗ p · δ(p− p̂) dp = p̂⊗ p̂⊗ p̂⊗ p̂ = â(2) ⊗ â(2) (31)

Moreover, as the model until now described does not involve Brownian effects it

can be proved that an exact closure relation exists, known as natural closure relation

[29] [52].

In summary, the decoupled macroscopic description consists of:

– Given the flow velocity field v(x, t) and the initial second order moment of the

orientation distribution a(2)(x, t = 0)

– Solve the equation governing the evolution of a(2):

ȧ(2) = ∇v · a(2) + a(2) · (∇v)T − 2 · a(4) : ∇v (32)

by using an exact or an approximated closure relation.
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– Compute the stress tensor:

τ = τ f + τ r = 2 · η ·D+ 2 · η ·Np ·
(
D : a(4)

)
(33)

using again an appropriate closure relation, that in the present case, because there

is not Brownian effects, an exact closure relation exists.

2.3.1 On the objectivity of ȧ(2)

One must be careful with the time derivatives of tensors. In our case, when considering

the time derivative of the second order moment, and introducing the decomposition of

∇v in its symmetric D and skew-symmetric part Ω it results

ȧ(2) = Ω · a(2) − a(2) ·Ω +D · a(2) + a(2) ·D− 2 · a(4) : D (34)

that can be rewritten as

δa(2)

δt
= ȧ(2) −Ω · a(2) + a(2) ·Ω = D · a(2) + a(2) ·D− 2 · a(4) : D (35)

where we can identify in the left hand member the Oldroyd’s derivative δa(2)

δt and in

the right hand member only dependences on the rate of strain tensor. Form that we

can conclude on the objectivity of the equation governing the time evolution of the

second order moment a(2).

In what follows and for the sake of clarity we will denote by a the second order

moment a(2) and by A the fourth order one a(4).

3 Dilute suspensions of Brownian rods

Until now Brownian effects were neglected. The Brownian effects are due to the fluid

molecules bombardment acting on the beads. These effects were widely analyzed in

[32] [33] [25] when focusing in a microscopic description.

3.1 Microscopic description

In this case the road beads are subjected to the hydrodynamical forces and the ones

coming from such bombardment. The first one was introduced previously

FH = ξ · (∇v · p · L− ṗ · L) (36)

where the superscript ”H” refers to its hydrodynamic nature. Now the Brownian force

FBI is assumed applying during a short time interval δt following a certain statistical

distribution concerning its magnitude and its orientation. The first one is assumed

described by a gaussian distribution of zero mean and a certain standard deviation

and the one related to the orientation by a uniform distribution on the unit circle (2D)

or in the unit sphere (3D).

Brownian forces applying in the rod direction are assumed equilibrated. However,

the components of those forces perpendicular to the rod axis contribute to the rod

rotation, and then they affect the rod rotational velocity. In what follows, for the sake
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of clarity, we restrict our analysis to the 2D case. Because the rod inertialess, the

resultant moment must vanish:

FH · t+ FB · t = 0 (37)

being t the unit vector tangent to the unit cercle. By introducing in this balance the

expression of the hydrodynamic force it results

tT · ∇v · p− ‖ṗ‖ = −FB · t
ξ · L (38)

and taking into account that necessarily ṗ = ‖ṗ‖ · t, it results

ṗ =
(
tT · ∇v · p

)
· t+ FB · t

ξ · L · t (39)

that using the vectorial equivalence(
tT · ∇v · p

)
· t = ∇v · p−

(
pT · ∇v · p

)
· p (40)

results in

ṗ = ∇v · p−
(
pT · ∇v · p

)
· p+

FB · t
ξ · L · t =

= ∇v · p−
(
pT · ∇v · p

)
· p+

FB − (FB · p) · p
ξ · L (41)

where we can notice that the rotation velocity is given by the Jeffery expression ṗJ

complemented with a term accounting for the Bownian effects ṗB :

ṗJ = ∇v · p−
(
pT · ∇v · p

)
· p (42)

and

ṗB =
FB − (FB · p) · p

ξ · L (43)

from which

ṗ = ṗJ + ṗB (44)

Finally, we must discuss on the effects of such Brownian contribution to the extra-

stress tensor.

Consider a rod aligned along the x-axis, such that pT = (1, 0) and the fluid at

rest. This rod is subjected to a continuous bombardment from the solvent molecules

(remember that the regime is dilute enough for neglecting the rod-rod interactions).

The components of forces aligned with the rod axis do not participate to the rod

rotation and by averaging on a time Δt � δt the contributions of the components of

those forces along the rod direction vanish. On the contrary, the ones perpendicular

to the rod will participate to the stress. To derive the expression of this Brownian

contribution we consider that due to a Brownian force the rod rotates a small angle

δθ > 0, being the rod orientation defined by pδθ. Considering the Brownian force

applying at that position [32] [33], i.e. ‖FB‖ · tδΘ, it results the contribution to the

virial stress given by:
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−‖FB‖ · pδθ ⊗ tδθ = ‖FB‖ ·
(
sin(δθ) · cos(δθ) − cos2(δθ)

sin2(δθ) − sin(δθ) · cos(δθ)
)

(45)

where the negative sign accounts for the fact that the hydrodynamic force applies in

the opposite direction of the Brownian force.

We can notice in that expression two facts: (i) the trace is zero, and (ii) the contri-

bution is non-symmetric. However, we can imagine that a little bit later, a Brownian

force will apply in the opposite direction, leading to an angle −δθ, from which

‖FB‖ · p−δθ ⊗ t−δθ = ‖FB‖ ·
(
sin(δθ) · cos(δθ) cos2(δθ)

− sin2(δθ) − sin(δθ) · cos(δθ)
)

(46)

and then after averaging in Δt it results a Brownian contribution to the extra-stress

due to the rod aligned on the x-direction (ϕ = 0)

τBϕ=0 ≈
(
β 0

0 −β
)

= β ·
(
1 0

0 −1

)
= β ·U (47)

that becomes almost symmetric and traceless.

Now, for rods aligned in any other direction ϕ, it suffices to apply a rotation of

angle ϕ to tensor τBϕ=0:

τBϕ = β ·RT
ϕ ·U ·Rϕ (48)

with

Rϕ =

(
cos(ϕ) sin(ϕ)

− sin(ϕ) cos(ϕ)

)
(49)

that finally results:

τBϕ = 2 · β ·
((

cos2(ϕ) sin(ϕ) · cos(ϕ)
sin(ϕ) · cos(ϕ) sin2(ϕ)

)
−
(

1
2 0

0 1
2

))
(50)

that can be written in compact form

τBpi
= 2 · β ·

(
pi ⊗ pi − I

2

)
(51)

where I is the identity tensor.

For a population of rods pi, i = 1, · · · , N , the contribution of Brownian effects

results finally:

τB = 2 · β ·
i=N∑
i=1

(
pi ⊗ pi − I

2

)
(52)

The microscopic description can be summarized as follows:

– Given the flow velocity field v(x, t), the initial position of the centre of gravity of

each rod xGi (t = 0) and its orientation pi(t = 0) or knowing both them at time t

– For each fiber i = 1, · · · , N :
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– Update the position of the centre of gravity by integrating:

dxGi
dt

= v(xGi , t) (53)

– Update its orientation by integrating

dpi
dt

= ∇v(xGi , t) · pi −
(
pTi · ∇v(xGi , t) · pi

)
· pi + FBi − (FBi · pi) · pi

ξ · L (54)

– Compute the stress at position x and time t by considering all the fibers inside a

control volume V(x) centered at x by applying

τ (x, t) = 2 · η ·D(x, t)+

+
∑

i∈V(x)

(
ξ · L2 · ((∇v(x, t)) : (pi ⊗ pi ⊗ pi ⊗ pi)) + 2 · β ·

(
pi ⊗ pi − I

2

))

(55)

In the case of coupled models this stress will serve to update the velocity field,

however, as previously indicated, in the present paper we will consider that the

velocity field is not perturbed by the presence and orientation of the rods.

3.2 Mesoscopic description

At the mesoscopic scale we postulate that Brownian effects try to randomize the rods

orientation distribution, mechanism that can be modeled by assuming a diffusion term

in the Fokker-Planck equation:

∂ψ

∂t
+

∂

∂x
(v · ψ) + ∂

∂p
(ṗ · ψ) = Dr

∂2ψ

∂p2
(56)

with the same flow induced orientation term given by the Jeffery’s equation:

ṗ = ∇v · p−
(
pT · ∇v · p

)
· p (57)

and where Dr is the rotary diffusion.

We can notice that in absence of flow, i.e. v(x, t) = 0 the Fokker-Planck equation

reduces to

∂ψ

∂t
= Dr

∂2ψ

∂p2
(58)

that ensures an steady state isotropic orientation distribution: ψ(x, t → ∞,p) = 1
2·π

in 2D and ψ(x, t→ ∞,p) = 1
4·π in 3D. The higher is the rotational diffusion the faster

the isotropic orientation distribution in reached.

Thus, at the mesoscopic level the introduction of Brownian effects seems quite

simple. The question is what is the microscopic and macroscopic counterpart of the

just introduced diffusion term?

The Fokker-Planck equation can be rewritten in the form:

∂ψ

∂t
+

∂

∂x
(v · ψ) + ∂

∂p
(ṗ · ψ)−Dr

∂2ψ

∂p2
=
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=
∂ψ

∂t
+

∂

∂x
(v · ψ) + ∂

∂p

(
˙̃p · ψ) = 0 (59)

where the effective rotational velocity ˙̃p is given by

˙̃p = ∇v · p−
(
pT · ∇v · p

)
· p−Dr

∂ψ
∂p

ψ
(60)

which contains the flow induced Jeffery’s contribution ṗJ plus the Brownian one ṗB ,

i.e. ˙̃p = ṗJ + ṗB with

ṗJ = ∇v · p−
(
pT · ∇v · p

)
· p (61)

and

ṗB = −Dr
∂ψ
∂p

ψ
(62)

The Fokker-Planck multidimensionality issue was usually circumvented by using

stochastic strategies on the Ito’s equation related to its Fokker-Planck counterpart

[50]. It is important to mention that any Fokker-Planck equation has an Ito’s coun-

terpart, however, not all the Ito’s stochastic equations has necessarily a Fokker-Planck

counterpart.

It is also important to mention that the Brownian rotational velocity just defined

has not a physical meaning because as we are considering a dilute enough suspension,

rod-rod interactions are excluded and then the expression relating Brownian velocity

with the gradient of the orientation distribution is meaningfulness.

At the mesoscopic scale the Brownian contribution to the extra-stress tensor results

from the generalization of Eq. (52):

τB = 2 · γ ·
∫
S(0,1)

(
p⊗ p− I

2

)
· ψ(p) dp = 2 · γ

(
a− I

2

)
(63)

In summary, the mesoscopic decoupled description consists of:

– Given the flow velocity field v(x, t) and the initial orientation distribution ψ(x, t =

0,p)

– Solve the Fokker-Planck equation that governs the rods orientation distribution:

∂ψ

∂t
+

∂

∂x
(v · ψ) + ∂

∂p
(ṗ · ψ) = Dr · ∂

2ψ

∂p2
(64)

with

ṗ = ∇v · p−
(
pT · ∇v · p

)
· p (65)

– Compute the stress tensor:

τ = τ f + τ r = 2 · η ·D+ 2 · η ·Np · (D : A) + 2 · γ ·
(
a− I

2

)
(66)
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3.3 Macroscopic description

When moving towards the macroscopic scale the Brownian contribution to the extra-

stress is defined by Eq. (63), however at the macroscopic scale the microstructure is

defined by the different moments of the orientation distribution. In what follows we are

deriving the contribution of Brownian effects on the equation governing the evolution

of the second order moment.

We start from the second order moment definition

a =

∫
S(0,1)

p⊗ p · ψ dp (67)

whose time derivative involves now the effective rotational velocity ˙̃p

ȧ =

∫
S(0,1)

(
˙̃p⊗ p+ p⊗ ˙̃p

) · ψ dp (68)

As proved in the previous sections, the effective rotational velocity contains the flow

induced contribution given by the Jeffery’s expression ṗJ and the one induced by the

Brownian effects ṗB , given by Eqs. (61) and (62) respectively. With this decomposition

Eq. (68) can be written as

ȧ =

∫
S(0,1)

((
ṗJ + ṗB

)
⊗ p+ p⊗

(
ṗJ + ṗB

))
· ψ dp =

=

∫
S(0,1)

(
ṗJ ⊗ p+ p⊗ ṗJ

)
· ψ dp+

+

∫
S(0,1)

(
ṗB ⊗ p+ p⊗ ṗB

)
· ψ dp = ȧJ + ȧB (69)

where the flow induced microstructure evolution ȧJ is given by Eq. (32)

ȧJ = ∇v · a+ a · (∇v)T − 2 ·A : D (70)

We are now calculating the expression of the remaining contribution ȧB :

ȧB =

∫
S(0,1)

(
ṗB ⊗ p+ p⊗ ṗB

)
· ψ dp (71)

with ṗB given by

ṗB = −Dr
∂ψ
∂p

ψ
(72)

For the sake of clarity we consider again the 2D case that allows writing

ṗB = −Dr
∂ψ
∂θ

ψ
· t (73)

with t being the unit tangent vector to the unit circle. In this case Eq. (71) reduces to

ȧB = −Dr ·
∫
S(0,1)

(t⊗ p+ p⊗ t) · ∂ψ
∂θ

dθ (74)
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Now, integrating by parts Eq. (74) and taking into account

dp

dθ
= t (75)

and

dt

dθ
= −p (76)

it results:

ȧB = −2 ·Dr ·
∫
S(0,1)

(p⊗ p− t⊗ t) · ψ(θ) dθ (77)

It is easy to prove that

t⊗ t+ p⊗ p = I → t⊗ t = I− p⊗ p (78)

that allows writing Eq. (77) in the form

ȧB = −2 ·Dr ·
∫
S(0,1)

(2 · p⊗ p− I) · ψ(θ) dθ = −2 ·Dr · (2a− I) (79)

or

ȧB = −4 ·Dr ·
(
a− I

2

)
(80)

We can notice that in absence of flow, ȧJ = 0, and then ȧ = ȧB

ȧ = −4 ·Dr ·
(
a− I

2

)
(81)

ensuring an isotropic steady state, i.e. a(t→ ∞) = I
2 in the 2D case.

In summary, the decoupled macroscopic description consists of:

– Given the flow velocity field v(x, t) and the initial second order moment of the

orientation distribution a(x, t = 0)

– Solve the equation governing the evolution of a:

ȧ = ∇v · a+ a · (∇v)T − 2 ·A : D− 4 ·Dr ·
(
a− I

2

)
(82)

by using an exact or an approximated closure relation.

– Compute the stress tensor:

τ = τ f + τ r = 2 · η ·D+ 2 · η ·Np · (D : A) + 2 · γ ·
(
a− I

2

)
(83)

using again an appropriate closure relation, that in the present case due to the

presence of a diffusion term will be no more exact.
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4 Semi-concentrated regime

Semi-dilute and semi-concentrated regimes have been widely addressed, most of time

by using phenomenological approaches. The most common approach consists of consid-

ering that rod-rod interactions tends to randomize the orientation distribution. Thus, a

second diffusion coefficient is introduced for accounting for rods interactions, however,

in the present case that diffusion coefficient should scale with the flow intensity in order

to ensure that in absence of flow the microstructure does not evolve artificially because

such a diffusion term. In general the interaction diffusion coefficient DI is assumed in

the general form

DI = CI · f(Deq) (84)

where Deq is related to the second invariant of the rate of strain tensor, i.e. Deq =√
D : D. [31] considered the simplest dependence f(Deq) = Deq.

Obviously, there are finer approaches based on the direct simulation where the

rod-rod interactions are taken into account explicitly [28]. A nice mesoscopic based

macroscopic approach was proposed in [30].

In what follows we are considering a different approach based on the kinematics

and dynamics of entangled rods generating aggregates or clusters, allowing to derive

an, in our knowledge original two-scales kinetic theory approach.

5 Suspensions involving rigid clusters

As just discussed, when the concentration is high enough, a sort of clusters composed of

entangled rods are observed. When the suspension flows, those clusters seem animated

of almost rigid motions.

Clusters can be sketched in two dimensions as entangled aggregates of rods (see

Fig. 3). As in the previous sections rods can be idealized by a rigid segment joining the

two opposite beads. Forces are assumed applying on the beads. Microscopic simulations

become unaffordable because the computational resources needed to address scenarios

of real interest. On the other extremum, macroscopic modeling is without any doubt

too phenomenological for describing the main flow and microstructure features. Kinetic

theory approaches could be again an appealing compromise between accuracy and

computational efficiency.

To define the cluster representation that we will consider in the analysis that follows

we extract the beads located on the periphery of the cluster as illustrated in Fig. 4.

Then we consider the star configuration depicted in Fig. 5 that will be the cluster

idealization on which we are performing the analysis of its kinematics and dynamics.

Obviously, this process constitutes a tremendous simplification but it constitutes

the simplest model that could be enriched without major difficulties to cover more

complex and rich systems.

5.1 Microscopic description of rigid clusters composed of rods

First we are considering a rigid cluster consisting of N rods, oriented in the directions

pi as sketched in Fig. 6. Brownian effects can be neglected and then only flow induced
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Fig. 3 Entangled rods constituting a rigid cluster

Fig. 4 Extracting the active beads located on the cluster periphery

Fig. 5 Defining the rigid star representation

hydrodynamic forces must be considered. A force Fi applies on each bead L · pi,
assumed again given by:

Fi = ξ · (∇v · pi · L− ṗi · L) (85)

Now, instead of enforcing a null resulting moment for each rod as was the case

when addressing dilute solutions, we are enforcing a null resulting moment for the

whole cluster.

The moment associated with rod i is given by
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Fig. 6 Hydrodynamic forces applying on a rigid cluster composed of rods

Mi = 2 · L · pi × Fi (86)

where the symbol ”× ” denotes the cross product.

The forces are by construction self-equilibrated for the whole cluster, thus we only

need to enforce the nullity of the resulting moment:

i=N∑
i=1

Mi = 0 (87)

that taking into account Eqs. (86) and (85) results in

i=N∑
i=1

pi × (∇v · pi) =
i=N∑
i=1

pi × ṗi (88)

If we define the cluster angular velocity ω such that

ṗi = ω × pi (89)

then:

– In the 2D case, and because ω and pi are orthogonal, pi × ṗi = ω ∀i, implying:

i=N∑
i=1

pi × (∇v · pi) =
i=N∑
i=1

pi × ṗi = N · ω (90)

Thus, the kinematics of the rigid 2D cluster can be defined from:

ω =

∑i=N
i=1 pi × (∇v · pi)

N
(91)

being the angular velocity of each rod j:

ṗj = ω × pj =

(∑i=N
i=1 pi × (∇v · pi

)
× pj

N
(92)
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Remark: In the case of a single rod N = 1 whose orientation is defined by p, the

previous expression reduces to

ṗ = ω × p = (p× (∇v · p))× p (93)

and using the vector triple product formula a× (b× c) = b · (a · c)− c · (a · b) it

results

ṗ = ∇v · p−
(
pT · ∇v · p

)
· p (94)

that corresponds with the Jeffery’s equation for rods. �
– In the general 3D case, ω and pi are not necessarily orthogonal and then

pi × ṗi = pi × (ω × pi) (95)

and using again the vector triple product formula it results:

pi × ṗi = pi × (ω × pi) = ω − (ω · pi) · pi (96)

Thus, we obtain in this case from (88)

i=N∑
i=1

pi × (∇v · pi) = N · ω −
i=N∑
i=1

(ω · pi) · pi = N · ω −
i=N∑
i=1

(pi ⊗ pi) · ω (97)

that can be rewritten in a more compact form as:

ω =

(
N · I−

i=N∑
i=1

(pi ⊗ pi)

)−1

·
(
i=N∑
i=1

pi × (∇v · pi)
)

(98)

5.2 Jeffery revisited

Until now we addressed the Jeffery’s solution for infinite aspect ratio ellipsoids, i.e.,

slender bodies or rods. The Jeffery’s solution for an ellipsoid immersed into a newtonian

fluid flow whose unperturbed velocity field is described by the velocity field v is given

by [38]:

ṗ = Ω · p+ r ·D · p− r
(
pT ·D · p

)
· p (99)

where r depends on the ellipsoid aspect ratio λ, the former given by the length-diameter

ratio:

r =
λ2 − 1

λ2 + 1
(100)

It can be noticed that by considering λ→ ∞, r ≈ 1 and then Eq. (99) reduces to

ṗ = (Ω +D) · p−
(
pT ·D · p

)
· p = ∇v · p−

(
pT ·D · p

)
· p (101)

or

ṗ = ∇v · p−
(
pT · ∇v · p

)
· p (102)



21

Fig. 7 Two-rods rigid cluster representing an ellipsoidal 2D particle

by considering the equality pT · ∇v · p = pT · D · p. This expression corresponds

to the expression previously derived by considering a simple momentum balance of a

two-beads rod.

We are proving that in order to represents non-infinite aspect ratio 2D particles it

suffices to consider a rigid system composed of two rods, aligning perpendicularly the

one with respect to the other, and having lengths 2 ·L1 and 2 ·L2, L1 ≥ L2, as depicted

in Fig. 7, such that the parameter r in the general Jeffery’s equation (99) results from

λ = L1
L2

r =
L2
1 − L2

2

L2
1 + L2

2

(103)

In the present configuration the forces applying in bead L1 · p1 and L2 · p2 read

F1 = ξ · L1 · (∇v · p1 − ṗ1) (104)

and

F2 = ξ · L2 · (∇v · p2 − ṗ2) (105)

respectively, with {
ṗ1 = ω × p1

ṗ2 = ω × p2
(106)

The moment balance implies:

L2
1 · p1 × (∇v · p1 − ṗ1) + L2

2 · p2 × (∇v · p2 − ṗ2) = 0 (107)

Introducing (106) into (107) and taking into account that p1 × ω × p1 = ω and

p2 × ω × p2 = ω, it results

ω =
L2
1

L2
1 + L2

2

· (p1 × (∇v · p1)) +
L2
2

L2
1 + L2

2

· (p2 × (∇v · p2)) (108)
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Now, the ellipsoid velocity of rotation will be given by:

ṗ1 = ω × p1 =

=
L2
1

L2
1 + L2

2

· ((p1 × (∇v · p1))× p1) +
L2
2

L2
1 + L2

2

· ((p2 × (∇v · p2)× p1)) (109)

It is easy to verify that as expected ṗ1 · p1 = 0, i.e. the variation of p1 is directed

along its perpendicular direction that in this case corresponds to p2.

Now, applying again the triple vector product formula (a× b)× c = −a · (b · c) +
b · (a · c), Eq. (109) reads:

ṗ1 =
L2
1

L2
1 + L2

2

·
(
∇p1 −

(
pT1 · ∇v · p1

)
· p1

)
−

− L2
1

L2
1 + L2

2

·
((

pT1 · ∇v · p2

)
· p2

)
(110)

We are developing the last term in Eq. (110) in order to obtain an equation that

only contains p1 in order to compare with the Jeffery’s expression (99).

First we apply the decomposition ∇v = D + Ω from with the last term in Eq.

(110) writes:(
pT1 · ∇v · p2

)
· p2 =

(
pT1 ·D · p2

)
· p2 +

(
pT1 ·Ω · p2

)
· p2 (111)

We proceed from the first term in the right hand member of Eq. (111), using the

fact that D is symmetric (
pT1 ·D · p2

)
· p2 =

= p2 ·
(
pT1 ·D · p2

)
= p2 ·

(
pT2 ·D · p1

)
= (p2 ⊗ p2) ·D · p1 (112)

Being p1 and p2 mutually perpendicular, it results

(p2 ⊗ p2) + (p1 ⊗ p1) = I (113)

and then Eq. (112) can be written as(
pT1 ·D · p2

)
· p2 = (I− p1 ⊗ p1) ·D · p1 (114)

Finally we consider the second term in the right hand member of Eq. (111), using

the fact that Ω is skew-symmetric(
pT1 ·Ω · p2

)
· p2 =

= p2 ·
(
pT1 ·Ω · p2

)
= −p2 ·

(
pT2 ·Ω · p1

)
= −(p2 ⊗ p2) ·Ω · p1 (115)

that finally results in(
pT1 ·Ω · p2

)
· p2 = −(I− p1 ⊗ p1) ·Ω · p1 (116)

Now, coming back to Eq. (110), we obtain
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ṗ1 = Ω · p1 +
L2
1 − L2

2

L2
1 + L2

2

·D · p1 − L2
1 − L2

2

L2
1 + L2

2

(
pT1 ·D · p1

)
· p1 (117)

that corresponds exactly with the Jeffery’s expression for an ellipsoid of aspect ratio
L1
L2

.

For circular particles characterized by a unit aspect ratio L1 = L2 we obtain as

expected

ṗ = Ω · p (118)

5.3 Mesoscopic description of rigid clusters composed of rods

When the cluster contains many rods, an alternative description consists of defining

its orientation distribution ψ(p).

In this case all the sums in the previous section must be substituted by the corre-

sponding integrals weighted with the distribution function ψ.

Thus in the 2D case Eq. (91) leads to:

ω =

∫
S(0,1)

p× (∇v · p) · ψ(p) dp (119)

being the angular velocity of any rod q:

q̇ = ω × q =

∫
S(0,1)

(p× (∇v · p))× q · ψ(p) dp (120)

Cross products can be written in a more compact form by using the permutation

of Levi-Civita symbol ε that states (a× b)i = εijk · aj · bk = ε : (a⊗ b).

Because (p× (∇v · p))i = εijk · pj · (∇v)kl · pl, it is easy to prove that Eq. (119)

writes:

ω = ε :
(
a · (∇v)T

)
(121)

On the other hand we can define the rotation tensor W such that

ω × p = W · p (122)

that allows writting

ṗ = W · p (123)

As in the 2D case pT = (p1,p2, 0) and ωT = (0, 0,ω3), the rotation tensor writes:

W =

(
0 −ω3

ω3 0

)
(124)

Thus, the mesoscopic description uses:

ω = ε :
(
a · (∇v)T

)
(125)

and

ṗ = ω × p ≡ W · p (126)
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with W = W(ω)

Thus, a rigid cluster rotates with a velocity that only depends on the second mo-

ment of its orientation distribution function a. Any cluster having the same a will

have the same rotational velocity. In this case we should derive an expression given the

evolution of a. For this purpose, we start from the definition of a

a =

∫
S(0,1)

p⊗ p · ψ(p) dp (127)

and apply the time derivative

ȧ =

∫
S(0,1)

(ṗ⊗ p+ p⊗ ṗ) · ψ(p) dp (128)

Now, taking into account Eq. (126) it results

ȧ =

∫
S(0,1)

((W · p)⊗ p+ p⊗ (W · p)) · ψ(p) dp =

= W · a+ a ·WT (129)

5.3.1 On the objectivity of ȧ

Before going forward we should check the objectivity of expression (129). For this

purpose we develop the expression of ω3 involved in W, obtaining:

ω3 = f(D,a)−Ω12 (130)

with

f(D,a) = −D12 − 2 ·D11 · a12 + 2 ·D12 · a11 (131)

Thus W can be decomposed according to

W =

(
0 −f
f 0

)
+

(
0 Ω12

−Ω12 0

)
= F+Ω (132)

Thus, Eq. (129) reads

ȧ = Ω · a− a ·Ω + F · a− a · F (133)

or

ȧ−Ω · a+ a ·Ω = F · a− a · F (134)

where the left hand member corresponds to the Jauman’s objective derivative δ0a
δt

δ0a

δt
≡ ȧ−Ω · a+ a ·Ω = F · a− a · F (135)

Because the right hand member of Eq. (135) only depends of the rate of strain

tensor that is objective, we can conclude on the objectivity of the equation governing

the evolution of the second moment a of the orientation distribution ψ(p).

Moreover, as p · p = 1 and the orientation distribution function ψ(p) satisfies the

normality condition, it is immediate to prove that a has a unit trace, i.e. Tr(a) = 1. In

order to ensure it, the terms involved in the equation of ȧ must be traceless. It is easy

to verify that this is the case in Eq. (133).



25

5.3.2 On the absence of closure relations

Because the cluster is animated of a rigid motion, its kinematics is fully described by

the second order moment a of the orientations distribution related to the rods that

constitute it. At each time the orientation tensor a results a simple rotation of the

initial one, and therefore, only the second order moment is involved, and no closure

relations are needed for describing the microstructure evolution.

5.3.3 Numerical results

In what follows we consider a rod oriented initially along the direction p0 = (cos θ0, sin θ0)T

immersed in a simple shear flow characterized by the homogeneous velocity field vT =

(γ̇ ·y, 0), with γ̇ = −1. At time t the orientation of the rod will be given by θ (associated

to the unit vector p = (cos θ, sin θ)T ) and its rotational velocity by θ̇.

When the rod is assumed free of entanglements its kinematics is governed by the

Jeffery’s equation:

ṗ = ∇v · p− (pT ·D · p) · p (136)

Introducing the expressions of p

p =

(
cos θ

sin θ

)
(137)

and ṗ

ṗ =

(−θ̇ · sin θ
θ̇ · cos θ

)
(138)

into Eq. (136), then multiplying the first equation by − sin θ, the second one by cos θ

and then adding both, it results the Jeffery’s rotary velocity θ̇J

θ̇J = −SJ1 · sin θ + SJ2 · cos θ (139)

where SJi , i = 1, 2, are the components of the vector SJ

SJ = ∇v · p =

(
0 γ̇

0 0

)
·
(
cos θ

sin θ

)
(140)

Integrating Eq. (139) we can compute the orientation evolution of the free rod

θJ (t). Now, this orientation could be compared to the one resulting for the same rod

but now considered making part of a rigid cluster.

We consider at the initial time different orientation tensors a having p0 as one of its

principal directions. The orientation tensors having p0 as one of its principal directions

are defined by

a = α ·
(

cos2(θ0) sin(θ0) · cos(θ0)
sin(θ0) · cos(θ0) sin2(θ0)

)
+

+(1− α)

(
sin2(θ0) − sin(θ0) · cos(θ0)

− sin(θ0) · cos(θ0) cos2(θ0)

)
(141)

If α = 1 all the rods composing the rigid cluster are aligned along the direction

p0 and the resulting orientation evolution will coincide with the one predicted by the

Jeffery’s equation. When it is not the case, the orientation will be calculated from
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ṗ = W · p (142)

with

W = Ω + F (143)

F =

(
0 −f
f 0

)
(144)

and

f = −D12 − 2 ·D11 · a12 + 2 ·D12 · a11 (145)

Finally, the time evolution of tensor a reads:

ȧ = W · a+ a ·WT (146)

By introducing the expressions of p and ṗ given by Eqs. (137) and (138) respec-

tively, into Eq. (142), multiplying the first resulting equation by − sin θ and the second

one by cos θ and then adding both, it results

θ̇R = −SR1 · sin θ + SR2 · cos θ (147)

where SRi , i = 1, 2, are the components of the vector SR

SR = W · p =

(
0 γ̇

2 − f

− γ̇
2 + f 0

)
·
(
cos θ

sin θ

)
(148)

Integrating Eq. (147) we can compute the orientation evolution θR(t) of the rod

belonging to the rigid cluster.

Both orientations θJ (t) and θR(t) will be compared in the following cases:

– α = 1. In that case both evolutions coincide.

– α = 0.98. The orientation evolutions are depicted in Fig. 8. It can be noticed that

the cluster induces a faster rotation and also that the rod can scape from the trap

at θ = π because the effect of the other fibers not aligned along the direction θ = π.

On the contrary the free rod evolving according to the Jeffery’s equation cannot

overpass the orientation θ = π.

– α = 0.75. The orientation evolutions are depicted in Fig. 9. It can be noticed that

the cluster being more isotropic, the rods oriented in other directions contribute

to the cluster rotation that becomes the more and more uniform, and the traps

located at θ = n · π, with n = 1, 2, · · · , are less significant.

– α = 0.5. The orientation evolutions are depicted in Fig. 10. In this case because

the isotropy of the cluster, the cluster rotary velocity is constant.
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Fig. 8 Comparing θJ (t) and θR(t) for a cluster characterized by α = 0.98 in Eq. (141)
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5.4 Kinetic theory description of a suspension of rigid clusters

The fact that rigid clusters rotate with a velocity that only depends on the second

moment a of its orientation distribution function ψ(p) suggests a microstructure de-

scription of suspensions of rigid clusters based on a distribution function Ψ(x, t,a) given

the fraction of clusters that at position x and time t have a configuration described by

a related to the orientation of the rods composing it and that was noted by ψ(p).

Function Ψ(a) is subjected locally (at each position x and time t) to the normality

condition: ∫
A
Ψ(a) da = 1 (149)

The balance related to Ψ writes:

∂Ψ

∂t
+

∂

∂x
(v · Ψ) + ∂

∂a
(ȧ · Ψ) = 0 (150)

where

ȧ = Ω · a− a ·Ω + F · a− a · F (151)

with

F =

(
0 −f
f 0

)
(152)

and f given by

f(D,a) = −D12 − 2 ·D11 · a12 + 2 ·D12 · a11 (153)

5.4.1 Numerical results

In what follows we consider a suspension of rigid mono-disperse clusters in a simple

shear flow characterized by the homogeneous velocity field vT = (γ̇ · y, 0), with γ̇ = 1.

The suspension microstructure is described by the distribution function Ψ(x, t,a). For

the sake of simplicity we assume a homogeneous flow such that the microstructure does

not depend of the physical space coordinates x, being expressed by Ψ(t,a). Moreover

in 2D and because the symmetry of a and its unit trace, the microstructure will be

described from only two components of the second order moment: in what follows we

condier a11 and a12.

From

ȧ = Ω · a− a ·Ω + F · a− a · F (154)

we obtain after some trivial algebraic manipulations

ȧ =

(
2 · γ̇ · (1− a11) · a12 γ̇ · (1− 3 · a11 + 2 · a211)

γ̇ · (1− 3 · a11 + 2 · a211) −2 · γ̇ · (1− a11) · a12

)
(155)

from which we can ensure that the evolution of the orientation tensor a will preserve

the symmetry and its unit trace.

Now, the orientation distribution balance expressed by the Fokker-Planck equation

(150) writes:

∂Ψ

∂t
+

∂

∂a11
(ȧ11 · Ψ) + ∂

∂a12
(ȧ12 · Ψ) = 0 (156)

that can be rewritten as:
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∂Ψ

∂t
+

(
∂ȧ11
∂a11

+
∂ȧ12
∂a12

)
· Ψ + ȧ11 · ∂Ψ

∂a11
+ ȧ12 · ∂Ψ

∂a12
= 0 (157)

where taking into account the expression of the components of ȧ given by (155) it

results

∂ȧ11
∂a11

= −2 · γ̇ · a12 (158)

and
∂ȧ12
∂a12

= 0 (159)

The resulting balance equation (157) must be solved in the conformation domain

Ω = (0, 1)×(− 1
2 ,

1
2

)
, i.e. (a11,a12) ∈ Ω, but prior to apply any discretization technique

we should define the boundary conditions.

For the discussion that follows we explicit the expression of the second order mo-

ment a:

a =

∫
S(0,1)

p⊗ p · ψ(p) dp (160)

and taking into account the expression of p, pT = (cos θ, sin θ), the components of a

result:

a =

( ∫ 2π
0

cos2 θ · ψ(θ) dθ ∫ 2π
0

cos θ · sin θ · ψ(θ) dθ∫ 2π
0

cos θ · sin θ · ψ(θ) dθ ∫ 2π
0

sin2 θ · ψ(θ) dθ

)
(161)

from which we can conclude that: {
0 ≤ a11 ≤ 1

− 1
2 ≤ a12 ≤ 1

2

(162)

We analyze the limit cases:

– When a11 = 1 the distribution function results necessarily ψ(θ) = δ(θ − 0), i.e. all

the fibers align along the x-direction, and then a12 = 0. Thus Ψ(a11 = 1,a12 �=
0) = 0.

– When a11 = 0 the distribution function results necessarily ψ(θ) = δ(θ − π
2 ), i.e.

all the fibers align along the y-direction, and then a12 = 0. Thus Ψ(a11 = 0,a12 �=
0) = 0.

– When a12 = 1
2 the distribution function results necessarily ψ(θ) = δ(θ− π

4 ), i.e. all

the fibers align along the π
4 -direction, and then a11 = 1

2 . Thus Ψ(a11 �= 1
2 ,a12 =

1
2 ) = 0.

– When a12 = − 1
2 the distribution function results necessarily ψ(θ) = δ(θ + π

4 ),

i.e. all the fibers align along the −π
4 -direction, and then a11 = 1

2 . Thus Ψ(a11 �=
1
2 ,a12 = − 1

2 ) = 0.

As there are 4 configurations on the domain boundary where the distribution func-

tion does not vanish necessarily, we should prove that in any case we can ensure the

conservation balance. For this purpose it suffices to prove that the conformational ve-

locity normal to the domain boundary at those points vanishes. Taking into account

the expression of the conformational velocities given in Eq. (155):
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{
ȧ11 = 2 · γ · (1− a11) · a12
ȧ12 = γ · (1− 3 · a11 + 2 · a211)

(163)

it results:

– If a11 = 0 and a12 = 0 then ȧ11 = 0.

– If a11 = 1 and a12 = 0 then ȧ11 = 0.

– If a11 = 1
2 and a12 = 1

2 then ȧ12 = 0.

– If a11 = 1
2 and a12 = − 1

2 then ȧ12 = 0.

that ensures the conservation balance.

The isotropic orientation distribution is defined by the center of the conformation

domain Ω, i.e. a11 = 0.5 and a12 = 0. The velocities ȧ11 and ȧ12 in the domain Ω

given by Eq. (163) are depicted in Figs. 11 and 12 respectively, whereas the velocities

directions are sketched in Fig. 13.

Because the balance equation involves pure advection appropriate stabilizations

must be considered for integrating it. For example when using the finite differences,

the first order derivatives of the distribution function must be up-winded, i.e. at node

(i, j) we should consider:

– If (i, j) is located in a12 ≥ 0 where ȧ11 ≥ 0, then

∂Ψ

∂a11

∣∣∣∣
i,j

≈ Ψi,j − ψi−1,j

h11
(164)

where h11 is the distance between nodes in the a11−direction.

If (i, j) is located in a12 < 0 where ȧ11 < 0, then

∂Ψ

∂a11

∣∣∣∣
i,j

≈ Ψi+1,j − ψi,j
h11

(165)
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– Analogously, when considering the velocity ȧ12, if (i, j) is located in a11 ≥ 1
2 where

ȧ12 ≤ 0, then

∂Ψ

∂a12

∣∣∣∣
i,j

≈ Ψi,j+1 − ψi,j
h12

(166)
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where h12 is the distance between nodes in the a12−direction.

If (i, j) is located in a11 <
1
2 where ȧ12 > 0, then

∂Ψ

∂a12

∣∣∣∣
i,j

≈ Ψi,j − ψi,j−1

h12
(167)

We discretized the balance equation by using an implicit upwind finite differences

scheme. However, despite its simplicity, the numerical scheme exhibited too high nu-

merical diffusion for very localized initial orientation distributions and for long times.

Fig. 14 depicts a sequence of snapshots of the time evolution of the distribution function

Ψ(t,a11,a12).

To improve the accuracy avoiding artificial numerical diffusion, we decided to im-

plement a discretization of the balance equation based on the method of particles [18]

[19].

This technique consists in approximating the initial distribution Ψ(t = 0,a) from

D Dirac’s masses:
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Ψ(t = 0,a) =

i=D∑
i=1

αi · δ(a− a0i ) (168)

Now, the time evolution is computed by integrating

ai(t) = a0i +

∫ τ=t

τ=0

ȧi(ai(τ)) dτ (169)

and the orientation distribution at time t is reconstructed from

Ψ(t,a) =

i=D∑
i=1

αi · δ(a− ai(t)) (170)

This technique, that in the incompressible case corresponds to an integration by

characteristics, can be extended for considering diffusion terms as described in [5] by

smoothing the Dirac’s masses. However, as the equation that we are here addressing

only involves pure advection, the standard method of particles runs perfectly. It can

be noticed that this method is the equivalent to a direct integration of the Jeffery’s

equation when applied to the orientation distribution related to suspensions of ellip-

soidal particles described by p or to an integration by characteristics when applied to

the equation governing the evolution of the second order moment a.

We first validate the integration scheme by considering an isotropic mono-disperse

suspension of rigid clusters. In that case the intial distribution can be approximated

by a single Dirac’s mass concentrated at a0 =
(
a011 = 1

2 ,a
0
12 = 0

)
. In that case:

Ψ(t = 0,a) = δ(a− a0) (171)

and because according to Eq. (163) the conformational velocity vanishes in the case of

isotropic microstructures, then we obtain:

Ψ(t,a) = δ(a− a0), ∀t (172)

When considering a mono-disperse microstructure characterized by a011 >
1
2 and

a012 = 0, the orientation tensor a evolves because the rotation of the aggregate. Some

time later, a quarter of the cluster rotation period T , t = T
4 , the cluster has rotated

an angle π
2 and the orientation becomes:

a

(
t =

T

4

)
=

(
1− a011 0

0 a011

)
(173)

Obviously, after a half of a complete turn, t = T
2 , the microstructure come back

to the initial state, i.e. a
(
t = T

2

)
= a0. Then a

(
t = n · T2

)
= a0, with n an arbitrary

integer (n ∈ N ). Fig. 15 depicts the periodic trajectory in the space of configurations

(a11,a12).

Finally we are considering an elongational flow characterized by the incompressible

velocity field vT = (ε · x,−ε · y).
From the expressions of Ω and F we can calculate W and from it the expression

of ȧ that in the present case writes:

ȧ =

(
4 · ε · a212 2 · ε · a12 · (a22 − a11)

2 · ε · a12 · (a22 − a11) −4 · ε · a212

)
(174)
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Fig. 15 Trajectory in the conformational space related to a0
11 = 0.8 and a0

12 = 0.

Thus, as the tensor describing the initial microstructure a0 is symmetric and has

a unit trace, its time evolution (174) will preserve both, the symmetry and the unit

trace.

To verify the model we considered the flow characterized by ε = 1 and an initial

microstructure given by:

ã =

(
0.8 0

0 0.2

)
(175)

rotated of an angle θ = π
4 , i.e. a

0 = RT · ã ·R with

R =

(
cos θ sin θ

− sin θ cos θ

)
(176)

and θ = π
4 .

Thus, the initial microstructure reads:

a0 =

(
0.5 0.3

0.3 0.5

)
(177)

It is expected that the elongation orients the rigid cluster in order to align its major

axis along the elongation direction (x-direction) in order to obtain the steady solution

a(t→ ∞) =

(
0.8 0

0 0.2

)
(178)

where the cluster rotates without experiencing deformation because its rigid nature.

The trajectory a(t) that the microstructure follows from a0 until reaching the

steady state a(t → ∞) is depicted in Fig. 16. This trajectory is defined by a(t) com-

puted by integrating
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Fig. 16 Trajectory in the conformational space related to a0
11 = 0.5 and a0

12 = 0.3 when
applying an elongational flow.

a(t) = a0 +

∫ τ=t

τ=0

ȧ(a(τ)) dτ (179)

At each time, the microstructure is defined by the localized distribution function

Ψ(t,a) = δ(a− a(t)) (180)

5.5 Virial stress

The contribution of a rigid cluster composed of N roods to the virial stress results:

τ = ξ · L2 ·
N∑
i=1

pi ⊗ (∇v · pi − ṗi) (181)

that taking into account the expression of ṗi reads:

τ = ξ · L2 ·
N∑
i=1

pi ⊗ (∇v · pi −W · pi) (182)

or

τ = ξ · L2 ·
N∑
i=1

(
(pi ⊗ pi) · (∇v)T − (pi ⊗ pi) ·WT

)
(183)

In the continuous mesoscopic framework Eq. (183) results:
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τ i = 2 ·Np
∫
S(0,1)

(
(p⊗ p) · (∇v)T − (p⊗ p) ·WT

)
· ψ(p) dp =

= 2 ·Np ·
(
a · (∇v)T − a ·WT

)
= 2 ·Np ·

(
a · (D+Ω)T − a · (Ω + F)T

)
=

= 2 ·Np · (a ·D+ a · F) (184)

The identity

D · a− F · a = a ·D+ a · F (185)

ensures the stress tensor symmetry, i.e. τ = τT .

Now, by considering all the clusters that contribute to the local stress,

τ = 2 · Ñp ·
∫
A
(D · a− F · a) · Ψ(a) da (186)

In order to avoid spurious non-symmetries when solving the kinetic model by using

stochastic simulations we could consider a symmetrized form of the virial stress:

τ = Ñp ·
∫
A
(D · a+ a ·D− F · a+ a · F) · Ψ(a) da (187)

where the fact that FT = −F has again being taken into account.

5.5.1 Model verification

Unidirectional suspension

There is a limit case in which the results already known should be found, the one

consisting of rigid clusters, all them constituted of rods aligned in the same direction

p̂. In that case, with ψ(p) = δ(p− p̂), the classical Jeffery’s theory predicts:

â =

∫
S(0,1)

p⊗ p · ψ(p) dp = p̂⊗ p̂ (188)

whose components write âij = p̂i · p̂j .
Thus, wa can explicitly calculate the expression W = Ω + F and from it the one

of ˙̂p = W · p̂ and compare it with the one resulting from the Jeffery’s expression
˙̂p = ∇v · p̂− (p̂T ·D · p̂) · p̂. As expected we obtain exactly the same expression.

Suspensions of discs

Other case of interest is the one consisting of rigid spheres, discs in 2D. As previously

proved, the systems can be represented by a rigid cluster composed of two orthogonal

rods having the same length.

In this case F = 0 and then the virial stress reads:

τ = 2 · γ ·D (189)

such that the suspension only experiences an increase of its viscosity η̃ = η + γ as

predicted by the Einstein’s formula.
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6 Suspensions involving deformable clusters

In this section we are considering a more realistic scenario, that consisting in deformable

clusters.

6.1 Microscopic kinematics

We assume two kind of applied forces, one due to the fluid-rod friction once more

modeled from

FHi = ξ · (∇v · pi · L− ṗi · L) (190)

where the superscript ”H” refers to its hydrodynamic nature.

On the other hand, we assume a force acting on each bead due to the rods en-

tanglements. This force FCi is assumed scaling with the difference between the rigid

motion velocity (the one that the bead would have if the cluster would be rigid) and

the real one:

FCi = μ · (W · pi · L− ṗi · L) (191)

By adding both forces it results:

Fi = FHi + FCi = L · ((μ ·W + ξ · ∇v) · pi − (ξ + μ) · ṗi) (192)

that can be rewritten as:

Fi = L · (ξ + μ) ·
(
μ ·W + ξ · ∇v

ξ + μ
· pi − ṗi

)
(193)

Now, if we define the equivalent traceless gradient G

G =
μ ·W + ξ · ∇v

ξ + μ
(194)

we can generalize all the results obtained for suspensions of dilute rods, by considering

an equivalent friction coefficient ξ + μ and an equivalent gradient of velocities G. In

particular the rod rotary velocity results:

ṗi = G · pi −
(
pTi ·G · pi

)
· pi (195)

The term pTi · G · pi deserves some additional comment. Being both W and Ω

skew-symmetric it results: pTi ·W · pi = 0 and the same in the case of considering Ω,

implying pTi ·G · pi = ξ
ξ+μ · pTi ·D · pi and then:

ṗi = G · pi − ξ

ξ + μ

(
pTi ·D · pi

)
· pi (196)

that can be rewritten as

ṗi =
μ

ξ + μ
·W · pi + ξ

ξ + μ
· ∇v · pi − ξ

ξ + μ

(
pTi ·D · pi

)
· pi =

=
ξ

ξ + μ
· ṗJi +

μ

ξ + μ
·W · pi = ξ

ξ + μ
· ṗJi +

μ

ξ + μ
· ṗRi (197)
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where ṗJi is the Jeffery’s dilute contribution and ṗRi the one coming from the rigid

cluster contribution.

We can notice that when ξ � μ the cluster does not resist the flow induced rod

orientation, and in that case ṗi ≈ ṗJi . In the opposite case, μ � ξ, the cluster is too

rigid and the bead adopts the velocity dictated by the rigid cluster kinematics ṗi ≈ ṗRi .

6.2 Mesoscopic description

If we assume the orientation of the rods of a deformable cluster given by the orientation

distribution ψ(p), coarser descriptions will need the use of some of its moments as well

as te equations governing their time evolution.

We start considering again the usual second order moment:

a =

∫
S(0,1)

p⊗ p · ψ(p) dp (198)

whose time derivative reads

ȧ =

∫
S(0,1)

(ṗ⊗ p+ p⊗ ṗ) · ψ(p) dp (199)

where as just deduced the microscopic velocity is given by:

ṗ =
ξ

ξ + μ
· ṗJ +

μ

ξ + μ
· ṗR (200)

that introduced into the expression of the second order moment time derivative results

ȧ =
ξ

ξ + μ
· ȧJ +

μ

ξ + μ
· ȧR (201)

with ȧJ and ȧR given by Eqs. (32) and (111) respectively:{
ȧJ = Ω · a− a ·Ω +D · a+ a ·D− 2 ·A : D

ȧR = W · a+ a ·WT = Ω · a− a ·Ω + F · a− a · F (202)

Introducing Eq. (202) into Eq. (201) and grouping the different terms it results:

ȧ = Ω · a− a ·Ω +
ξ

ξ + μ
· (D · a+ a ·D− 2 ·A : D) +

μ

ξ + μ
· (F · a− a · F) (203)

that can be rewritten as:

ȧ−Ω · a+ a ·Ω − ξ

ξ + μ
· (D · a+ a ·D) =

= − ξ

ξ + μ
· 2 ·A : D+

μ

ξ + μ
· (F · a− a · F) (204)

where the left hand member defines the so called Johson & Segalman objective deriva-

tive:

δc(•)
δt

= ˙(•)−Ω · (•) + (•) ·Ω − c · (D · (•) + (•) ·D) (205)

for c = ξ
ξ+μ .

The two limit cases are:
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– When flow induced forces are preponderant, ξ � μ and c ≈ 1. In that case de

Johnson & Segalman derivative approaches de Oldroyd’s one that appears in the

standard Jeffery’s based rods suspension modeling.

– When cluster effects are preponderant, μ � ξ and then the Johson & Segalman

derivative approaches de Jauman’s one characterized by c = 0.

In any case, we just proved that the model just derived that incorporates drag and

network effects is fully objective.

6.2.1 Numerical results

In what follows we consider again a rod oriented initially along the direction p0 =

(cos θ0, sin θ0)T immersed in a simple shear flow characterized by the homogeneous

velocity field vT = (γ̇ · y, 0), with γ̇ = −1. At time t the orientation of the rod will be

given by θ (associated to the unit vector p = (cos θ, sin θ)T ) and its rotational velocity

by θ̇.

Again, when the rod is assumed free of entanglements its kinematics is governed

by the Jeffery’s equation:

ṗ = ∇v · p− (pT ·D · p) · p (206)

that as previously deduced results in:

θ̇J = −SJ1 · sin θ + SJ2 · cos θ (207)

whose integration leads the orientation evolution of the free rod θJ (t). Now, this ori-

entation will be compared to the one resulting for the same rod but now considered

making part of a deformable cluster.

We consider again at the initial time different orientation tensors a having p0 as

one of its principal directions, given by

a = α ·
(

cos2(θ0) sin(θ0) · cos(θ0)
sin(θ0) · cos(θ0) sin2(θ0)

)
+

+(1− α)

(
sin2(θ0) − sin(θ0) · cos(θ0)

− sin(θ0) · cos(θ0) cos2(θ0)

)
(208)

If α = 1 all the rods composing the cluster are aligned along the direction p0 and

again the resulting orientation evolution will coincide with the one predicted by the

Jeffery’s equation. When it is not the case, the orientation will be calculated from

ṗ = G · p− ξ

ξ + μ
(pT ·D · p) · p (209)

with

G =
ξ · ∇v + μ ·W

ξ + μ
(210)

W = Ω + F (211)

F =

(
0 −f
f 0

)
(212)
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Fig. 17 Comparing θJ (t) and θD(t) for a cluster characterized by ξ = 0.5, μ = 0.5 and
α = 0.75

and

f = −D12 − 2 ·D11 · a12 + 2 ·D12 · a11 (213)

Finally, the time evolution of tensor a reads:

ȧ =
μ

ξ + μ
·
(
W · a+ a ·WT

)
+

+
ξ

ξ + μ
·
(
∇v · a+ a · (∇v)T − 2 · (a : D) · a

)
(214)

where a quadratic closure relation has been considered.

By introducing the expressions of p and ṗ given by Eqs. (137) and (138) respec-

tively, into Eq. (209), multiplying the first resulting equation by − sin θ and the second

one by cos θ and then adding both, it results

θ̇D = −SD1 · sin θ + SD2 · cos θ (215)

where SDi , i = 1, 2, are the components of the vector SD

SD = G · p (216)

Integrating Eq. (215) we can compute the orientation evolution of the rod belonging

to the deformable cluster θD(t).

Both orientations θJ (t) and θD(t) will be compared in the following cases:

– α = 1. In that case both evolutions coincide for any value of ξ and μ.

– Figs. 17, 18 and 19 compare both orientation evolutions when ξ = 0.5, μ = 0.5 and

the rods constituting the initial cluster at time t = 0 describe an orientation tensor

given by α = 0.75, α = 0.5 and α = 0.25 respectively in Eq. (208).

– Figs. 20, 21 and 22 compare both orientation evolutions when ξ = 0.25, μ = 0.75

and the rods constituting the initial cluster at time t = 0 describe an orientation

tensor given by α = 0.75, α = 0.5 and α = 0.25 respectively in Eq. (208).

From these results we can conclude that as expected the cluster effect increases the

averaged rotary velocity.
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Fig. 18 Comparing θJ (t) and θD(t) for a cluster characterized by ξ = 0.5, μ = 0.5 and
α = 0.5
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Fig. 19 Comparing θJ (t) and θD(t) for a cluster characterized by ξ = 0.5, μ = 0.5 and
α = 0.25
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Fig. 20 Comparing θJ (t) and θD(t) for a cluster characterized by ξ = 0.25, μ = 0.75 and
α = 0.75
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Fig. 21 Comparing θJ (t) and θD(t) for a cluster characterized by ξ = 0.25, μ = 0.75 and
α = 0.5
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Fig. 22 Comparing θJ (t) and θD(t) for a cluster characterized by ξ = 0.25, μ = 0.75 and
α = 0.25

6.3 Kinetic description

In the present case, by assuming an appropriate closure relation for describing the

fourth moment A of the orientation distribution, we can consider again a kinetic the-

ory description based on the distribution function Ψ(x, t,a) given the fraction of clus-

ters that at position x and time t have a configuration described by a related to the

orientation of the rods composing it and that was noted by ψ(p).

Function Ψ(a) is subjected locally (at each position x and time t) to the normality

condition: ∫
A
Ψ(a) da = 1 (217)

The balance related to Ψ writes:

∂Ψ

∂t
+

∂

∂x
(v · Ψ) + ∂

∂a
(ȧ · Ψ) = 0 (218)
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Fig. 23 Trajectory in the conformational space related to a0
11 = 0.8 and a12 = 0 for a

deformable cluster.

where

ȧ = Ω · a− a ·Ω +
ξ

ξ + μ
· (D · a+ a ·D− 2 ·A : D) +

μ

ξ + μ
· (F · a− a · F) (219)

with

F =

(
0 −f
f 0

)
(220)

and f given by

f(D,a) = −D12 − 2 ·D11 · a12 + 2 ·D12 · a11 (221)

6.3.1 Numerical results

In this section we are addressing the same numerical experiments that were considered

in section 5.4.1 but now considering deformable clusters characterized by ξ = 0.3 and

μ = 0.7.

When considering a mono-disperse microstructure characterized by a011 >
1
2 and

a012 = 0 in a simple shear flow with γ̇ = 1, the orientation tensor a evolves because

the rotation of the aggregate and its deformation. In these flow conditions given by the

values of γ̇, ξ and μ the time evolution of the orientation tensor is again periodic in the

conformation space. Because the flow induced cluster deformation the microstructure

never reach the initial microstructure rotated of an angle π
2 as was the case when

dealing with rigid clusters. Fig. 23 depicts the trajectory in the space of configurations

(a11,a12).
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Finally we are considering an elongational flow characterized by the incompressible

velocity field vT = (ε · x,−ε · y), with ε = 1 and an initial microstructure given by

ã =

(
0.8 0

0 0.2

)
(222)

rotated of an angle θ = π
4 , i.e. a

0 = RT · ã ·R with

R =

(
cos θ sin θ

− sin θ cos θ

)
(223)

and θ = π
4 . Thus, the initial microstructure reads:

a0 =

(
0.5 0.3

0.3 0.5

)
(224)

It is expected that the elongation orients the rigid cluster in order to align its major

axis along the elongation direction (x-direction) but at the same time the elongation

tends to extend the cluster to reach a full alignment of all the rods composing it in the

direction of the applied extension, that results in the steady state orientation tensor:

a(t→ ∞) =

(
1 0

0 0

)
(225)

The trajectory a(t) that the microstructure follows from a0 until reaching the

steady state a(t → ∞) is depicted in Fig. 24. This trajectory is defined by a(t) com-

puted by integrating

a(t) = a0 +

∫ τ=t

τ=0

ȧ(a(τ)) dτ (226)

At each time, the microstructure is defined by the localized distribution function

Ψ(t,a) = δ(a− a(t)) (227)

Finally, in order to conclude on the qualitative and quantitative significance of

the cluster effect, we compute the time evolution of a mono-disperse microstructure

characterized by a011 >
1
2 and a012 = 0 in a simple shear flow with γ̇ = 1 but neglecting

the effects of the whole cluster on the orientation of each rood composing it, that is, by

assuming μ = 0 and ξ = 1. When starting from an initial microstructure characterized

by (a011 = 0.8,a012 = 0), the computed trajectory in the conformation space (a11,a12)

is depicted in Fig. 25.

We can notice that the orientation of the rods composing the soft cluster evolves

because the flow induced orientation, without any affect of the cluster because we set

μ = 0. When the orientation of rods reach the shear direction pT = (1, 0) the rotation

velocity vanishes and the rods remain at rest. Thus, the steady state microstructure is

characterized by all the rods composing the cluster aligned in the shear direction, i.e.

a11(t→ ∞) = 1 and a12(t→ ∞) = 0.
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Fig. 24 Trajectory in the conformational space related to a0
11 = 0.5 and a12 = 0.3 when

applying an elongational flow.
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Fig. 25 Trajectory in the conformational space related to a0
11 = 0.8 and a12 = 0 in a simple

shear flow when cluster effects are neglected.
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6.4 Virial stress

The virial stress associated with a deformable cluster is computed by considering the

hydrodynamic forces acting on each bead L · p

FH(p) = ξ · L · (∇v · p− ṗ) (228)

from

τ i = L ·
∫
S(0,1)

p⊗ FH(p) · ψi(p) dp (229)

where the subindex ”i” refer to the contribution of cluster i located around point x

and time t where the stress is being computed.

If we introduce now into the expression of the hydrodynamic force the expression

of the rod velocity given by Eq. (196)

ṗ = G · p− ξ

ξ + μ

(
pT ·D · p

)
· p (230)

it results

FH(p) = ξ · L · (∇v · p−G · p+
ξ

ξ + μ

(
pT ·D · p

)
· p) (231)

Now, by making use of the relations:⎧⎨
⎩

G = μ·W+ξ·∇v
ξ+μ

W = Ω + F

∇v = D+Ω

(232)

the expression of the hydrodynamic forces reduces to:

FH(p) = ξ · L ·
(

μ

ξ + μ
· (D · p− F · p) + ξ

ξ + μ

(
pT ·D · p

)
· p

)
(233)

from with the cluster virial becomes:

τ i = L ·
∫
S(0,1)

p⊗ FH(p) · ψi(p) dp =

= 2 ·Np ·
(

μ

ξ + μ
· τRi +

ξ

ξ + μ
· τJi

)
(234)

where the cluster and hydrodynamic contributions, τRi and τJi , read:

τRi = D · a− F · a (235)

and

τJi = A : D (236)

respectively.

As previously proved, both terms are symmetric, ensuring the whole symmetry of

the virial stress.

The two limits cases previously addressed, the Jeffery’s regime is reached by as-

suming the cluster contribution negligible. In the opposite way, when cluster effects is

dominant, the virial related to a rigid cluster is obtained.
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7 Fist steps towards more concentrated regimes involving cluster-cluster

interaction

When the concentration of aggregates is high enough, cluster interaction cannot be

more neglected.

From one side, big aggregates break because the flow induced hydrodynamic forces.

The destruction rate could be considered scaling with the equivalent rate of strain.

We could assume in first approximation that a cluster breaks originating two smaller

descendant clusters, having the same microstructure that the father cluster.

On the other side the coalescence is assumed also being produced from the interac-

tion (collision) of two clusters for giving a bigger one. In general the coalescence rate

is expected scaling with the equivalelent rate of strain, because it depends on the clus-

ter interactions that scales with the gradient of velocity. The resulting microstructure

deserves somme additional comment.

If cluster A composed of NA rods and having a microstructure described by the

orientation distribution function ψA(p) meets cluster B composed of NB rods and

having a microstructure described by the orientation distribution function ψB(p), the

resulting normalized orientation distribution for the resulting cluster C reads:

ψC(p) =
NA · ψA(p) +NB · ψB(p)

NA +NB
(237)

If clusters A and B were characterized by the second moment of their respective

orientation distributions, aA and aB respectively, the moment for the resulting cluster

C writes:

aC(p) =

∫
S(0,1)

p⊗ p · ψC(p) dp =

=

∫
S(0,1)

p⊗ p · NA · ψA(p) +NB · ψB(p)
NA +NB

dp =
NA · aA +NB · aB

NA +NB
(238)

that constitutes a simple mixing rule.

The kinetic modelling should integrate an additional coordinate quantifying the

cluster size S (related to the number of rods that it contains), allowing the mesoscopic

description of polidisperse suspensions involving rigid or deformable clusters. Such

microstructural description uses the distribution function Ψ(x, t,a, S). When clusters

involve too many rods, a continuous description of its size is more suitable than a

discrete one based on the number of rods, because it allows defining coarse and fine

microstructure descriptions depending on the level of discretization of the continuous

coordinate S.

If we denote by vc and vd the cluster construction and destruction rates respectively,

the associated terms in the distribution balance at position x and time t will be denoted

by Ψ̇C(x, t,a, S) and Ψ̇D(x, t,a, S) respectively. The resulting Fokker-Planck equation

reads:

∂Ψ

∂t
+

∂

∂x
(v · Ψ) + ∂

∂a
(ȧ · Ψ) = Ψ̇C(x, t,a, S) + Ψ̇D(x, t,a, S) (239)

where in the general case

ȧ = Ω · a− a ·Ω +
ξ

ξ + μ
· (D · a+ a ·D− 2 ·A : D) +

μ

ξ + μ
· (F · a− a · F) (240)
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with

F =

(
0 −f
f 0

)
(241)

and f given by

f(D,a) = −D12 − 2 ·D11 · a12 + 2 ·D12 · a11 (242)

The source terms related to the construction mechanism Ψ̇C(x, t,a) reads:

Ψ̇C(x, t,a, S) =

∫
A

∫ Smax

Smin

vC · Ψ(x, t,a′, r) · Ψ(x, t,a′′, S − r) dr · da−

−
∫
A

∫ Smax−S

Smin

vC · Ψ(x, t,a, S) · Ψ(x, t,a′, r) dr · da (243)

where in order to ensure that the resulting microstructure generated from clusters

having microstructures a′ and a′′ is precisely a, the microstructure a′′ must verify

r · a′ + (S − r) · a′′
S

= a (244)

The first term in the right hand side of Eq. (243) express that two clusters of sizes

r and S− r having appropriate microstructures meets with a probability depending on

their fractions (expressed by the value of the corresponding distribution functions) to

create a bigger cluster of size S with a microstructure a. However, clusters of size S and

microstructure a that meet any other cluster with compatible size Smin ≤ r ≤ Smax−S
and an arbitrary microstructure a′ produce the decrease of population (a, S).

On the other hand, the source terms related to the destruction mechanism Ψ̇D(x, t,a)

is given by:

Ψ̇D(x, t,a, S) =

∫ Smax

S

vD · 1
r
· Ψ(x, t,a, r) dr−

−vD · Ψ(x, t,a, S) (245)

In this expression the first term accounts for the generation of clusters of size S and

microstructure a due to the destruction of bigger clusters with the same microstructure

(we assumed in first approximation that the descendants have the same microstructure

that the progenitor cluster). By assuming that all the sizes of the descendants are

equiprobable, the probability that a cluster of size r generates a cluster of size z and

other with the complementary size r− z will be 1
r i.e. P(r; z, r− z) = 1

r , justifying the

factor that appears in the first term of the right hand member of Eq. (245). The last

term is trivial, because it is related to the simple destruction of cluster of size S and

microstructure a.

It is easy to prove that both, the construction and destruction terms just proposed

allow to ensure the conservation balance.

The main issue related to enriched kinetic theory descriptions lies in its curse

of dimensionality, because generalized Fokker-Planck equations are defined in highly

multidimensional spaces involving the physical coordinates (space and time) and a

number of conformational coordinates describing the microstructure at the desired

level of detail. Classically the curse of dimensionality was circumvented by different

ways, being the most usual:
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– the solution of the stochastic counterpart, however, it is well known that the con-

trol of the statistical noise and the variance reduction are the main tricky issues,

making possible the calculation of the distribution moments but making difficult

the reconstruction of the distribution itself;

– the derivation of macroscopic approaches, some times purely phenomenological,

other times inspired or derived from finer descriptions, but even in the last case

the use of closure approximations is generally compulsory;

– introducing a first discretization by substituting conformational coordinates by a

series of populations. Thus, for example, in the polydisperse case we could introduce

different populations of size Si and describe the microstructure of each one from

its distribution function Ψi(x, t,a) whose evolution is given by the coupled Fokker-

Planck equations:

∂Ψi
∂t

+
∂

∂x
(v · Ψi) + ∂

∂a
(ȧ · Ψi) =

∑
j �=i

(
Φj→i − Φi→j

)
(246)

where the source terms couple the different populations through the fluxes coming-

in or coming-out of each population i. Obviously, one could imagine to remove the

second order moment as coordinate by considering additional populations charac-

terized by their size Si and their microstructure ak and described at the mesoscopic

scale from the distribution functions Ψik(x, t). This approach was considered in the

kinetic description of systems of active particles, in order to circumvent the curse

of dimensionality [14], however, as soon as the dimensionality increases the number

of populations explodes;

– the use of separated representations in order to ensure that the complexity scales

linearly with the model dimensionality. These approaches were widely employed in

our former works, and because in our opinion it is the most plausible way to address

such multidimensional models we revisits its foundations in the next section.

8 Efficient solvers of multidimensional partial differential equations

When we are addressing models in quantum chemistry (the finest description of atomic

and molecular bonds responsible of the structure and mechanics of materials), the so

called wavefunction Ψ representing the distribution of an elementary particle is defined

in the whole physical space, i.e. Ψ(x, t). Its evolution is governed by the Schrodinger

equation (or its fully relativistic Dirac counterpart) that defines a standard 3D transient

model. However, when the physical system contains d particles, the evolution of the

associated wavefunction Ψ(x1, · · · ,xd, t) is governed by a transient problem defined in

a space involving 3 + 1 + 3 · d dimensions [17] [43]. If one proceeds to the solution of

such model by using a standard mesh based discretization technique, where M nodes

are used for discretizing each space xi, ∀i ∈ [1, · · · , d], the resulting number of nodes

reaches the astronomical value of Md. With M ≈ 1000 (a very coarse description in

practice) and d ≈ 30 (a very small atomic system) the numerical complexity results

1090. It is important to recall that this value corresponds to the presumed number of

elementary particles in the universe. For this reason, the Nobel Prize R.B. Laughlin

affirmed [42]:

”... the theory of Everything is not even remotely a theory of every thing. We know

this equation (Laughlin refers to the Schrödinger equation) is correct because it has been
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solved accurately for small number of particles -isolated atoms and small molecules- and

found to agree in minute detail with experiments. However it cannot be solved accurately

when the number of particles exceeds about 10. No computer existing, or that will ever

exist, can break this barrier because it is a catastrophe of dimension. If the amount of

computer memory required to represent the quantum wavefunction of one particle is M

then the amount required to represent the wavefunction of d particles is Md ...”

The curse of dimensionality is present in many other scales in the description of

the structure and mechanics of materials. For example, when we consider a linear

macromolecule, its conformation can be expressed by giving the position ri of some

points (beads) along its contour, or equivalently, by giving the vectors qi joining two

consecutive beads. Within the kinetic theory framework, molecular systems are de-

scribed (see for example [15]) by a distribution function instead of the specification

of the conformation of each individual molecule (in real systems there are too many

molecules). Thus, the system can be described by a function Ψ(x, t,q1, · · · ,qd) given

the fraction of molecules that at position x and time t have a conformation expressed

by the vectors q1, · · · ,qd. Now, the conservation of that distribution function results

into an equation known as the Fokker-Planck equation whose solution is affected by

the redoubtable curse of dimensionality because it is defined in a space of dimension

3 + 1 + 3 · d (the physical space, the time and the d conformation vectors). Even for a

coarse description d ≈ 10, the model is defined in a space involving 34 dimensions!

Other branches in science suffer this illness as for example the chemistry when the

number of molecules of the reacting species is too low. In that case, the continuum

approach based on the introduction of concentrations is no more a valid alternative.

This situation is usually found in the modeling of genetic processes (e.g. expression of

genes). Now, the state of the system is defined by the number of individuals of each

one of the d coexisting species Ψ(x, t,#S1, · · · ,#Sd) and again the balance equation

governing the evolution of such system, the so-called chemical master equation, is

defined in a multi-dimensional space that makes impossible its treatment by using the

standard mesh based discretization techniques.

There are many other models defined in multidimensional spaces but for our dis-

cussion below these examples suffice.

In that concerns the issue related to the curse of dimensionality different tech-

niques have been proposed for circumventing it, being Monte Carlo simulations the

most widely used. The main drawback of stochastic simulations lies in the inevitable

statistical noise affecting the solution, whose impact is important in particular when

other than the moments of the distribution functions are computed [39]. Other possi-

bility lies in the use of sparse grids based discretizations [16], within the deterministic

framework, but they fail when the dimension of the space increases beyond a cer-

tain value (of about 20 dimensions as argued in [1]). In our knowledge there are few

precedents of deterministic techniques able to circumvent efficiently the curse of dimen-

sionality in highly multidimensional spaces. An appealing alternative that the author

introduced some years ago in [6] for steady simulations and in [8] for transient solu-

tions consists of expressing the unknown field as a finite sum of functional products,

i.e. expressing a generic multidimensional function u(x1, · · ·xd) as:

u(x1, · · ·xd) ≈
i=N∑
i=1

F 1
i (x1)× · · · × F di (xd) (247)
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Remark. In this expression the coordinates xi denote any coordinate, scalar or vectorial,

involving the physical space, the time or any other conformation coordinate. �
Thus, if M nodes are used to discretize each coordinate, the total number of un-

knowns involved in the solution is N × d ×M instead of the Md degrees of freedom

involved in mesh based discretizations. We must recall that these functions are not

”a priori” known, they are computed ”on the fly” by introducing the approximation

separated representation (247) into the model weak form and then solving the resulting

non-linear problem. The interested reader can refer to [21] for a detailed description

of the numerical and algorithmic aspects. The construction of such approximation is

called Proper Generalized Decomposition because this decomposition is not orthogonal

but for many usual transient models the number of terms in the finite sum is very close

to the optimal decomposition obtained by applying the Proper Orthogonal Decompo-

sition -POD- (or the Singular Value Decomposition -SVD-) on the model solution. As

it can be noticed in the expression of the approximation separated representation (247)

the complexity scales linearly with the dimension of the space in which the model is

defined, instead of the exponential growing characteristic of mesh based discretization

strategies. In general, for many models, the number of terms N in the finite sum is quite

reduced (few tens) and in all cases the approximation converges towards the solution

associated with a fully tensorial product of the approximation bases considered in each

space xi. Thus, we can conclude about the generality of the separated representation,

but its optimality depends on the solution features.

When we consider multidimensional models involving the physical space, the time,

and a number of ”exotic” extra-coordinates, the verdict concerning the CPU time

savings when using the PGD is implacable: the PGD allows solving models never until

now solved, suffering the so-called curse of dimensionality, and that were qualified many

times as irresolvable! The PGD allows solving them, in some minutes, using a simple

laptop.

Separated representations were applied for solving the multidimensional Fokker-

Planck equation describing complex fluids in the kinetic theory framework. In [6], the

authors addressed the solution of the linear Fokker-Planck equation describing multi-

bead-spring molecular models in the steady state and in homogeneous flows. In that

case the distribution function describing the molecular conformation only depends

on the molecule configurational coordinates. The solution procedure was extended

to non-linear kinetic theory formulations of more complex molecular descriptions in

[48]. The transient solution was addressed in [8] in which the time was added as an

extra-coordinate. Transient solutions making use of reduced bases in the context of

an adaptive proper orthogonal decomposition [53] were considered in the case of low

dimensional configuration spaces: the FENE model was addressed in [7] and liquid

crystalline polymers in [10]. In [44], the authors considered multi-bead-spring models

but considered spectral approximation for representing all the functions involved in the

finite sums decomposition. A deeper analysis of non-linear and transient models was

considered in [11]. Complex fluid models were coupled with complex flows in [52] and

[49] opening very encouraging perspectives. In [20] the PGD was applied for solving

the stochastic equation within the Brownian Configuration Field framework. Paramet-

ric models were addressed in [12]. The interested reader can refer to [21] [23] and the

references therein for an exhaustive overview of PGD in computational rheology.

Multidimensional models encountered in the finer descriptions of matter (ranging

from quantum chemistry to statistical mechanics descriptions) were revisited in [9]. The
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multidimensional chemical master equation was efficiently solved in [22]. The Langer’s

equation governing phase transitions was considered in [41].

The application of separated representations for solving the highly multidimen-

sional models describing concentrated suspensions of clusters constitutes a work in

progress.
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