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Extension of the Vook–Witt and inverse Vook–Witt elastic
grain-interaction models to general loading states

U. WELZEL* and S. FRÉOURy

Max Planck Institute for Metals Research, Heisenbergstraße 3,
D-70569 Stuttgart, Germany

The recently developed Vook–Witt and inverse Vook–Witt elastic grain-
interaction models have been employed for the calculation of mechanical elastic
constants and diffraction (X-ray) stress factors of, in particular, thin films.
However, their applicability is limited to a planar, rotationally symmetric state of
macroscopic, mechanical stress. For such a loading state (and an, at least,
transversely, elastically isotropic specimen), only two mechanical elastic constants
are necessary to describe mechanical elastic behaviour and only the sum of two
diffraction (X-ray) stress factors is needed to relate lattice strains to the one
independent component of the mechanical stress tensor. The restriction to a
planar, rotationally symmetric state of mechanical stress will be removed in this
work. Calculation of the full stiffness tensor and all six diffraction (X-ray) stress
factors then becomes possible. It was found previously that the Vook–Witt and
inverse Vook–Witt models become (but only approximately) equivalent to the
Eshelby–Kröner model for certain ideal grain-shape textures. For this reason,
results of numerical calculations of mechanical elastic constants and diffraction
(X-ray) stress factors, based on the Vook–Witt and inverse Vook–Witt models,
will be presented and compared to corresponding results obtained from the
Eshelby–Kröner grain-interaction model considering ideal grain-shape (‘mor-
phological’) textures.

1. Introduction

For polycrystals, the macroscopic, mechanical elastic constants (relating mechanical
strains to mechanical stresses) and the so-called diffraction (X-ray) elastic constants
(diffraction stress factors for elastically anisotropic samples, relating lattice strains to
mechanical stresses) can be calculated from single-crystal elastic data of individual
grains composing the polycrystals [1–11]. To this end so-called elastic grain-
interaction models, describing the distribution of stresses and strains over the
differently oriented grains, can be employed [3–6].
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l’Université, 44602 Saint-Nazaire, France

1



Traditionally, isotropic grain-interaction models are considered, where the same

grain-interaction assumptions are adopted for all directions in the specimen [4].

A polycrystal with isotropic grain interaction is macroscopically, elastically isotropic

(sometimes termed quasi-isotropic) in the absence of crystallographic texture,

whereas macroscopic elastic anisotropy occurs in the presence of

crystallographic texture. The Voigt [7], Reuss [8], Neerfeld–Hill [9, 10] models and

the Eshelby–Kröner model (for polycrystals consisting of, on the average, spherical

grains) [11] fall in this category.
However, even in the absence of crystallographic texture, polycrystals cannot

generally be considered as being mechanically, elastically isotropic. Thin films

provide a possible example because, due to their reduced dimensionality, thin films

can exhibit transverse elastic isotropy (only) even in the absence of crystallographic

texture. Recently, it has been demonstrated theoretically and experimentally by van

Leeuwen et al. [12] that the application of a new type of grain-interaction model,

a direction-dependent grain-interaction model, is compatible with macroscopic,

anisotropic elastic behaviour, even in the absence of crystallographic texture [13–15].

The notion ‘‘direction-dependent grain interaction’’ signifies that different grain-

interaction assumptions prevail along different directions in the specimen. In the

Vook–Witt model, explored by van Leeuwen et al. [12] (cf. also [16]), for example, a

Reuss-type grain interaction (i.e. certain stress tensor components are identical for all

crystallites) is adopted for the out-of-plane components of the stress tensor, whereas

a Voigt-type grain interaction (i.e. certain strain tensor components are identical for

all crystallites) is adopted for all in-plane components of the strain tensor. As

extreme grain-interaction assumptions are adopted in the Vook–Witt model, it

cannot be expected to be fully compatible with physical reality. To overcome this

problem, the inverse Vook–Witt model, required for the construction of an effective

grain-interaction model, has been recently proposed [14, 15].
In thin films, planar, rotationally symmetric states of residual stress are

frequently met. However, other stress states may occur, in particular, in cases of

applied stress. So far, the Vook–Witt and inverse Vook–Witt models have only been

applied to a planar rotationally symmetric state of stress. This restriction will be

removed in this work by a generalization of the grain-interaction assumptions. This

generalization also enables the calculation of the full mechanical stiffness tensor (i.e.

of five independent tensor components), whereas previously, only two mechanical

elastic constants could be calculated. Moreover, all six diffraction (X-ray) stress

factors can now be calculated, whereas previously, only the sum of two diffraction

stress factors was accessible.
The results for mechanical elastic constants and diffraction stress factors will be

compared to results from the Eshelby–Kröner model for specimens with an ideal

grain-shape texture (see [17] for a detailed discussion of the calculation scheme).

In earlier investigations, similarities between the mechanical and diffraction elastic

constants, calculated using the Vook–Witt and Eshelby–Kröner models, have been

shown in the case of a polycrystal consisting of flat-disc shaped grains. Analogous

similarities occur (but much less outspokenly) with the inverse Vook–Witt model and

Eshelby–Kröner model in the case of a polycrystal consisting of needle-shaped

grains [5]. Analogous findings are obtained in this work.
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2. Theoretical background

2.1. Conventions

2.1.1. Frames of reference and transformation of tensors from one frame of reference

to another. Stresses, strains and elastic constants are tensorial quantities and
it is, thus, necessary to define frames of reference. It is convenient to employ the

following three Cartesian frames of reference: the crystal frame of reference (C),

the specimen frame of reference (S) and the laboratory frame of reference (L).

For details on the definition of these frames of reference, see, for example, [13]

(for a definition of the crystal frame of reference in the case of non-cubic

crystallites, see also [18]). A superscript (C, S or L) will be attached to a tensor

to indicate the reference frame adopted for the representation of the tensor. The

absence of any superscript implies the validity of an equation independent of the

reference frame used for tensor representation, but the same reference frame has

to be adopted for all tensors in the equation. Figure 1 shows the relative

orientation of the specimen and laboratory frame of references, and a definition

of angles  and ’, where  is the inclination angle of the diffraction vector with

respect to the sample surface normal and ’ denotes the rotation of the sample

around the sample surface normal.
Transformations of tensors from one frame of reference to another can be

performed employing rotation matrices. For a detailed description of the rotation

matrices required for performing calculations described in this paper, see [13] for the

case of cubic crystal symmetry and consider the appendix of [17] for cases of lower

S1
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L3

S2

L1

y

y

j

j

Figure 1. Definition of and relationship between the sample (S) and laboratory (L)
reference frames.
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crystal symmetry. For a general introduction to the use of transformation matrices,

see [3] and [18].

2.1.2. Calculation of averages. In the following, a single-phase polycrystal is
considered, which may be crystallographically textured. It is useful to distinguish

three types of averages of a tensor : (as, for example, the strain tensor e):

. Averages of a tensor : for all grains having the same crystallographic

orientation in the volume considered (the notion ‘‘mesoscopic scale’’ is also

used to denote such averages [19]). This average will be denoted by the symbol

:(g), where g represents a vector in the three-dimensional crystallographic

orientation (Euler) space G and defines the crystallographic orientation

(for details, see [13]). g¼ (�,�, �), where �, � and � are three Euler angles. The

convention of Roe and Krigbaum [20] for the definition of the Euler angles

will be adopted.
. Averages of a tensor : for all crystallographically, differently oriented grains

in the volume considered (so-called macroscopic, mechanical averages). This

average will be denoted by angular brackets h�i and can be calculated as

follows:

h:i ¼
1

8�2

Z
G

fðgÞ:ðgÞ d3g ð1Þ

where f(g), the crystallographic orientation distribution function (CODF), has

to be employed as a weighting function where crystallographic texture occurs

(for details, see [13]). The factor 1/(8�2) serves as a normalization factor and is

the volume of the Euler space G.
. Averages of a tensor : for the diffracting crystallites in a diffraction

measurement. As the orientation of the diffracting crystallites differs only by

a rotation around the diffraction vector, the averaging has to be performed with

respect to this degree of freedom, in the following called � (for details, see [13]):

f:ghkl’, ¼

R 2�
0 :ðhkl, �, ’, Þf �ðhkl, �, ’, Þd�R 2�

0 f �ðhkl, �,’, Þd�
: ð2Þ

f �ðhkl, �, ’, Þ denotes the representation of the CODF in terms of the

measurement parameters and the rotation angle with respect to the diffraction

vector. The CODF, as used in equation (1), cannot be directly used in

equation (2) since the angles �, ’,  are not Euler angles representing a

rotation of the C system with respect to the S system (they provide the rotation

of the system L with respect to the system S). However, the values of �, �, �
and, thus, f(�,�, �) at every � can be calculated from hkl, �, ’ and  , to be

finally substituted for f �ðhkl, �, ’, Þ in equation (2) (for a more detailed

treatment of the necessary calculations, see [13]).
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2.1.3. Lattice strains and diffraction stress factors. The lattice strain for a particular
reflection hkl at the orientation of the diffraction vector (’, ) can be calculated

according to (cf. equation (2)):

"ðhkl, ’, Þ ¼ f"L33g
hkl
’, ¼

R 2�
0 "L33ðhkl, �, ’, Þf

�ðhkl, �, ’, Þ d�R 2�
0 f �ðhkl, �, ’, Þ d�

: ð3Þ

The ’,  and hkl-dependent diffraction (X-ray) stress factors, Fijð , ’, hklÞ,
relate the lattice strain to mechanical stress expressed in the specimen frame of

reference [4]:

"ðhkl, ’, Þ ¼ Fijð , ’, hklÞh�
S
ij i: ð4Þ

2.1.4. Grain-shape/morphological texture. For the calculation of mechanical and
diffraction elastic constants of polycrystals with a grain-shape texture employing the

Eshelby–Kröner model, the treatment will be restricted to polycrystals consisting of

ellipsoidal grains.y It will be assumed that the ellipsoidal grains exhibit identical

orientations of their principal shape axes in the specimen frame of reference, i.e. an

ideal grain-shape texture occurs. An ideal grain-shape texture is considered in the

following as, only in this case, unique mechanical elastic constants and X-ray stress

factors can be calculated employing the Eshelby–Kröner model (for a more detailed

discussion of the effect of a non-ideal grain-shape texture, see [17]).
Note that the principal axes of a grain are only related to the external

(geometrical) shape of the grain. Thereby, nothing is prescribed regarding

the crystallographic orientation of the grain (crystallite). In general, the

(ellipsoidal) grains constituting the specimen will have different crystallographic

orientations.
The shape of the grains will be described by a shape parameter �, which is

defined as the ratio of the principal axis of the ellipsoid in the z-direction (a3) of

the specimen frame of reference to the principal axes of the ellipsoid in

the x-direction (a1) and the y-direction (a2) in the specimen frame of reference,

respectively:

� ¼
a3
a1

¼
a3
a2
: ð5Þ

Thus, the considered ellipsoidal grains present rotational symmetry with respect to

the surface normal of the specimen.

yOf course, a real polycrystal cannot consist of ellipsoidal grains (only). The ellipsoidal shape
is an idealized shape, which is adopted to represent grains with (average) aspect ratios different
from 1, whereas a spherical shape is adopted for grains with an (average) aspect ratio of 1.
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3. Generalization of the Vook–Witt and inverse Vook–Witt models to any elastic

loading state

3.1. Vook–Witt model: generalized grain-interaction assumptions

Traditionally, an, at least, transversely, elastically isotropic specimen and a planar,

rotationally symmetric mechanical state of stress are considered for the Vook–Witt

(VW) model:

heSi ¼

"Sk 0 0

0 "Sk 0

0 0 "S?

0
B@

1
CA, ð6Þ

hrsi ¼

�sk 0 0
0 �sk 0
0 0 0

0
@

1
A: ð7Þ

The following grain-interaction assumptions are adopted: (i) the strain is rotationally

symmetric in the plane of the film and (ii) equal for all crystallites, and (iii) the

stresses perpendicular to the layer are zero for all crystallites, i.e. the crystallites can

deform freely in this direction. Recognizing the symmetry of the stress and strain

tensors, these assumptions fix parts of the stress and strain tensor for all crystallites

(on the mesoscopic scale; cf. section 2.1) [12, 13]:

es ¼

"Sk 0 }

0 "Sk }

} } }

0
B@

1
CA, ð8Þ

rs ¼

} } 0

} } 0

0 0 0

0
B@

1
CA: ð9Þ

The tensor components marked by } are not explicitly specified for every crystallite,

but these components can be calculated from Hooke’s law for every crystallite:

"Sij ¼ sSijkl�
S
kl: ð10Þ

The sSijkl are the single crystal elastic compliances expressed in the specimen frame of

reference. Equation (10) represents a system of nine equations for 18 unknowns, but,

as the strain and stress tensors are symmetric (i.e. "ij ¼ "ji and �ij ¼ �ji), equation (10)

is a short notation for six independent equations for 12 independent unknowns. If six

components of the 12 unknowns are known, as a consequence, the other components

can be calculated by solving the system of equation (10).
A generalization of the Vook–Witt model to arbitrary loading states can be

achieved by adopting the following grain-interaction assumptions:

eS ¼

h"S11i h"S12i }

h"S12i h"S22i }

} } }

0
B@

1
CA, ð11Þ
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rS ¼

} } h�S13i

} } h�S23i

h�S13i h�S23i h�S33i

0
B@

1
CA: ð12Þ

Note that the h i brackets indicate that a tensor component is taken equal to the
tensor component of the corresponding mechanical stress or strain tensor. The
tensor components marked by } are not explicitly specified for every crystallite, but
these components can be calculated from Hooke’s law for every crystallite
(equation (10); for details, see Appendix A).

The above formulated grain-interaction assumptions (equations (11) and (12))
imply that the polycrystal is (at least) transversely, elastically isotropic in the absence
of crystallographic texture, as the same grain interaction assumptions (equality of
strains) are adopted for all directions parallel to the surface.

3.2. Inverse Vook–Witt model: generalized grain-interaction assumptions

In the inverse Vook–Witt (iVW) model, the traditionally adopted grain-interaction
assumptions for a transversely isotropic specimen subjected to a plane, rotationally
symmetric state of stress (cf. equation (7)) are as follows: (i) the in-plane stress is
rotationally symmetric and (ii) equal for all crystallites, and (iii) the strain
perpendicular to the film surface is equal for all crystallites [14, 15]. As in the
(regular) VW model, recognizing the symmetry of the stress and strain tensors, these
assumptions fix certain strain and stress tensor components for all crystallites (on the
mesoscopic scale; cf. section 2.1) [14, 15]:

eS ¼

} } 0

} } 0

0 0 "S?

0
B@

1
CA, ð13Þ

rS ¼

�Sk 0 }

0 �Sk }

} } }

0
B@

1
CA: ð14Þ

The missing strain and stress tensor components for each crystallite, marked by },
can, analogous to the VW model, be calculated from Hooke’s law (cf. discussion
in section 3.1).

A generalization of the iVW model to arbitrary loading states can be achieved by
adopting the following grain-interaction assumptions:

eS ¼

} } h"S13i

} } h"S23i

h"S13i h"S23i h"S33i

0
B@

1
CA, ð15Þ

rS ¼

h�S11i h�S12i }

h�S12i h�S22i }

} } }

0
@

1
A: ð16Þ
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Note that the h i brackets indicate that a tensor component is taken equal to the
tensor component of the corresponding mechanical stress or strain tensor,
respectively. The tensor components marked by } are not explicitly specified for
every crystallite, but these components can be calculated from Hooke’s law for every
crystallite (equation (10); for details, see Appendix A).

Note that the above formulated grain-interaction assumptions (equations (15)
and (16)) imply that the polycrystal is (at least) transversely, elastically
isotropic in the absence of crystallographic texture as the same grain interaction
assumptions (equality of stresses) are adopted for all directions parallel to
the surface.

3.3. Calculation of the mechanical elastic constants

Under the condition of a plane, rotationally symmetric state of mechanical stress,
frequently met in thin films, (cf. equations (6) and (7)), two mechanical elastic
constants A and B suffice, as only three independent non-zero stress and strain
tensor components occur:

"Sk ¼ A�Sk , ð17Þ

"S? ¼ B�Sk : ð18Þ

Only these two mechanical elastic constants A and B were accessible, so far,
employing the VW and iVW models. Using the generalization of the grain-
interaction assumptions adopted in the present work (cf. equations (11) and (12) for
case of the VW model and equations (15) and (16) for the case of the iVW model),
calculation of the full mechanical stiffness tensor is now possible by considering a set
of hypothetical mechanical loading states. The procedure outlined below pre-
supposes that the polycrystal is (at least) mechanically, transversely elastically
isotropic. This is the case if the polycrystal is untextured or fibre-textured, with the
fibre axis coinciding with the z-axis of the specimen frame of reference
(cf. sections 3.1 and 3.2). For the case of crystallographic texture with a lower
symmetry, more than five independent components of the mechanical stiffness (and
compliance) tensor can occur. Then, more than three loading states have to be
considered for the calculation of all independent stiffness tensor components
(see Appendix B, for an example).

The following mechanical loading states will be considered: (i) uniaxial strain
along the S1-axis, (ii) uniaxial strain along the S3-axis and (iii) pure shear-strain
loading:

(i) Uniaxial strain along the S1-axis:

heSi ¼

h"S11i 0 0

0 0 0

0 0 0

0
B@

1
CA, ð19Þ
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hrSi ¼

h�S11i 0 0
0 h�S22i 0
0 0 h�S33i

0
@

1
A: ð20Þ

For the VW model, the grain-interaction assumptions read (cf. equations

(11) and (12)):

eS ¼

h"S11i 0 }

0 0 }

} } }

0
@

1
A, ð21Þ

rs ¼

} } 0
} } 0
0 0 h�S33i

0
@

1
A: ð22Þ

For a given strain h"S11i, a certain value has to be assigned to h�S33i to realize a

uniaxial strain state, i.e. to ensure that heS33i ¼ 0. Thus, the following

procedure can be followed: starting from arbitrary values for the strain h"S11i
and h�S33i, the mechanical averages of the strain and stress tensors can be

calculated. In general, the strain perpendicular to the surface, h"S33i, will not
be zero. However, by changing the mechanical stress perpendicular to the

surface h�S33i (keeping h"S11i fixed), h"
S
33i can be made zero, so that a uniaxial

strain state is achieved. Thus, the above described calculation has to be

repeated for another value of h�S33i. As h"S33i is linearly related to h�S33i,

h"S33i ¼ m � h�S33i þ c: ð23Þ

The stress making h"S33i equal to zero can be determined from equation (23)

once the constants m and c have been calculated from the two (arbitrary)

values of the stress h�S33i1, h�
S
33i2 and the corresponding stresses perpendi-

cular to the film surface h"S33i1 and h"S33i2. Alternatively, h�S33i could be kept

fixed and an appropriate value for h"S11i, for which heS33i ¼ 0, could be

determined following a procedure analogous to the above scheme.
For the iVW model, the grain-interaction assumptions read

(cf. equations (15) and (16)):

es ¼

} } 0

} } 0

0 0 0

0
B@

1
CA, ð24Þ

rs ¼

h�S11i 0 }

0 h�S22i }

} } }

0
B@

1
CA: ð25Þ

For a given stress h�S11i, a certain value has to be assigned to h�S22i (or

vice versa) to realize a uniaxial strain state. To ensure that h"S22i ¼ 0, a

procedure analogous to the procedure described below equations (21) and

(22) can be followed to find an appropriate value for h�S22i.
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Once a mechanical loading state, according to equations (19) and (20), has

been achieved (recognizing the mechanical transverse isotropy), three
components of the mechanical stiffness tensor C (in Voigt two-index

notation) can be calculated from:

CS
11 ¼

h�s11i

h"s11i
, ð26Þ

CS
12 ¼

h�s22i

h"s11i
, ð27Þ

CS
13 ¼

h�s33i

h"s11i
: ð28Þ

(ii) Uniaxial strain along the S3-axis:

heSi ¼

0 0 0
0 0 0
0 0 h"S33i

0
@

1
A, ð29Þ

hrSi ¼

h�S11i 0 0
0 h�S11i 0
0 0 h�S33i

0
@

1
A: ð30Þ

Note that the equality of the components h�S11i and h�S22i is a direct
consequence of the macroscopic elastic transverse isotropy.

For the VW model, the grain-interaction assumptions read (cf.

equations (11) and (12)),

eS ¼

0 0 }

0 0 }

} } }

0
@

1
A, ð31Þ

rS ¼

} } 0
} } 0
0 0 h�S33i

0
@

1
A: ð32Þ

where as for the iVW model, the grain-interaction assumptions read
(cf. equations (15) and (16)):

eS ¼

} } 0
} } 0
0 0 h"S33i

0
@

1
A, ð33Þ

rS ¼

h�S11i 0 }

0 h�S11i }

} } }

0
@

1
A: ð34Þ

For the iVW model, to ensure that h"S11i ¼ h"S22i ¼ 0, a procedure analogous

to the procedure described below equations (21) and (22) can be followed to
find an appropriate value for h�S11i (note that no such procedure is required

10



for the VW model for the loading state considered). Once a mechanical

loading state specified in equations (29) and (30) has been achieved, two

components of the mechanical stiffness tensor C can be calculated from:

CS
13 ¼

h�S11i

h"S33i
, ð35Þ

CS
33 ¼

h�S33i

h"S33i
: ð36Þ

(iii) Pure shear-strain loading:

heSi ¼

0 h"S12i 0

h"S12i 0 h"S23i

0 h"S23i 0

0
BB@

1
CCA, ð37Þ

hrSi ¼

0 h�S12i 0

h�S12i 0 h�S23i

0 h�S23i 0

0
BB@

1
CCA: ð38Þ

For the VWmodel, the grain-interaction assumptions read (cf. equations (11)

and (12)),

eS ¼

0 h"S12i }

h"S12i 0 }

} } }

0
B@

1
CA, ð39Þ

rS ¼

} } 0

} } h�S23i

0 h�S23i 0

0
B@

1
CA: ð40Þ

For the iVW model, the grain-interaction assumptions read (cf.

equations (15) and (16)):

eS ¼

} } 0

} } h"S23i

0 h"S23i 0

0
BB@

1
CCA, ð41Þ

rS ¼

0 h�S12i }

h�S12i 0 }

} } }

0
BB@

1
CCA: ð42Þ
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Recognizing the mechanical transverse isotropy, two independent
components of the mechanical stiffness tensor C can be calculated from:

CS
44 ¼ CS

55 ¼
h�S23i

ð2h"S23iÞ
, ð43Þ

CS
66 ¼

h�S12i

ð2h"S12iÞ
: ð44Þ

Thus, from equations (26)–(28) (or, alternatively (35)), (36), (43) and (44),
the five independent components of the mechanical stiffness tensor can be
calculated. Note that other sets of hypothetical loading states can
be conceived, which also allow the evaluation of the full stiffness tensor.

3.4. Calculation of lattice strains and diffraction stress factors

In the following, a procedure will be outlined for calculating lattice strains for a given
mechanical state of stress hrSi. The procedure runs as follows:

(i) The mechanical elastic constants, i.e. the full stiffness tensor C and its
inverse, the mechanical compliance tensor S, have to be calculated first,
following the procedure outlined in section 3.3.

(ii) From the mechanical stress tensor hrSi, the mechanical strain tensor heSi

can be calculated from Hooke’s law:

heSi ¼ SShrSi ð45Þ

with

SS ¼ ðCS
Þ
�1: ð46Þ

(iii) Employing the grain-interaction assumptions (cf. equations (11) and (12) for
the VW model and equations (15) and (16) for the iVW model), the strain
tensor eSðgÞ and, thus, the lattice strain " hkl, ’, ð Þ can be calculated
(cf. equation (3)).

(iv) The diffraction stress factors can be obtained by imposing mechanical stress
states with only one non-zero stress tensor component:

Fijð , ’, hklÞ ¼
"ðhkl, ’, Þ

h�Sij i
: ð47Þ

4. Results and discussion

Mechanical and diffraction elastic constants of polycrystals consisting of tungsten,
copper and iron are presented in the following. Single-crystal elastic data have been
listed in table 1. For cubic crystallites, an anisotropy factor Ai can be defined as:

Ai ¼ 2
ðsC11 � sC12Þ

sC44
: ð48Þ
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Values for Ai have also been reported in table 1. Ai¼ 1 is the case of intrinsic elastic
isotropy. Ai51 indicates that the hhhhi direction is softer than the h00li direction,
whereas Ai41 indicates that the hhhhi direction is stiffer than the h00li direction (this
is the case for copper and iron).

4.1. Mechanical elastic constants

4.1.1. Tungsten. The components of the mechanical stiffness tensor of a tungsten
polycrystal, as calculated according to the VW model, the iVW model and the
EK model involving two extreme grain morphologies (flat-disc shaped grains,
�¼ 0.1, and needle-shaped grains, �¼ 10) have been gathered in table 2.

Tungsten is an intrinsically (practically) elastically isotropic material, since its
anisotropy factor Ai is equal to 1. As a consequence, the mechanical elastic properties
are insensitive to the grain interaction. Hence, the same isotropic mechanical stiffness
tensor is obtained for all types of grain-interaction.

4.1.2. Copper and iron. The components of the mechanical stiffness tensor of
copper and iron polycrystals, as calculated according to the VW model, the iVW
model and the Eshelby–Kröner (EK) model involving two extreme grain

Table 1. Single crystal elastic stiffnesses of cubic materials used in this work [21].

s11 (TPa
–1) s12 (TPa

–1) s44 (TPa
–1) Ai

W (bcc) 2.57 �0.73 6.60 1.00
Cu (fcc)* 14.995 �6.2822 13.263 3.21
Fe (bcc) 7.62 �2.79 8.58 2.43

*Calculated from stiffness tensor components.

Table 2. Stiffness tensor components of a tungsten polycrystal calculated according
to different grain-interaction models. The same results are obtained for all grain-

interaction models.

W CS
11 (GPa) CS

33 (GPa) CS
44 (GPa) CS

12 (GPa) CS
13 (GPa)

All models 502.32 502.32 151.51 199.29 199.29

Table 3. Stiffness tensor components of a copper polycrystal calculated according to
different grain-interaction models.

Cu CS
11 (GPa) CS

33 (GPa) CS
44 (GPa) CS

12 (GPa) CS
13 (GPa)

VW 202.39 198.88 47.16 102.65 106.16
EK (disc) 202.16 199.43 47.41 103.15 105.89
EK (sphere) 201.30 201.30 48.17 104.95 104.95
EK (needle) 200.84 202.15 48.49 105.84 104.52
iVW 200.80 204.08 49.56 106.84 103.56
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morphologies (flat-disc shaped grains, �¼ 0.1, and needle-shaped grains, �¼ 10)

have been gathered in tables 3 and 4.
Copper and iron exhibit pronounced single-crystal elastic anisotropy and, as

a consequence, the components of the mechanical stiffness tensor are also sensitive to

grain interaction. For the Eshelby–Kröner model with a spherical grain shape

(�¼ 1), an obviously isotropic stiffness tensor, with only two independent

components (CS
11,C

S
12), is obtained. It holds that:

CS
44 ¼ CS

55 ¼ CS
66 ¼

1

2
CS

11 � CS
12

� �
ð49Þ

thus, as expected, CS
44 is not an independent component in this case.

For the VW and iVW models, transverse elastic isotropy occurs and, in this case,

the macroscopic stiffness tensor consists of five independent components

(CS
11,C

S
12,C

S
13,C

S
33,C

S
44); equation (49) remaining true only for CS

66. The transverse

isotropy reflects the rotational symmetry of the grain-interaction assumptions

(cf. equations (11) and (12) for the VW model and equations (15) and (16) for the

iVW model).
Transverse elastic isotropy also occurs for non-spherical grain shapes

(� 6¼ 1). The transverse isotropy reflects the rotational symmetry of the grain-

shape texture with respect to the surface normal of the specimen. Hence, an

isotropic grain interaction occurs for the case of spherical inclusions, but an

anisotropic (i.e. direction-dependent) grain interaction occurs if a grain-shape texture

is present.
For copper, the calculated components of the mechanical stiffness tensor are

shown in figure 2 as a function of the crystallite aspect ratio �. The values obtained
employing the VW and iVW models have also been indicated. As the grain shape

approaches the limit of flat-disc shaped grains ð�! 0Þ, the components of the

stiffness tensor tend to the corresponding VW values. On the other hand, in the limit

of needle-shaped grains ð�! 1Þ, the components tend towards the corresponding

iVW values, but much less obviously, as for the VW values for �! 0. These findings

can be summarized as follows:

lim
�!0

ðCS
ÞEK � ðCS

ÞVW, ð50Þ

lim
�!1

ðCS
ÞEK ! ðCS

ÞiVW: ð51Þ

Table 4. Stiffness tensor components of an iron polycrystal calculated according to different
grain-interaction models.

Fe CS
11 (GPa) CS

33 (GPa) CS
44 (GPa) CS

12 (GPa) CS
13 (GPa)

VW 274.30 270.54 81.24 106.06 109.83
EK (disc) 274.06 271.12 81.49 106.60 109.54
EK (sphere) 273.12 273.12 82.29 108.54 108.54
EK (needle) 272.62 274.08 82.64 109.52 108.06
iVW 272.77 276.32 83.91 110.50 106.94
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Subscripts have been attached to the stiffness tensor to specify the grain-

interaction model. The symbol � (approximately equal) is used, instead of ¼, to

express, that, within the investigated range of grain shapes for the case �! 0, within

numerical accuracy, the values are equal to the values obtained using the VW model

for the same material. The symbol ! has been used for the case �! 1 to express

that the values approach the values obtained using the iVW model for the same

material, but still differ significantly.
Similar findings have been obtained in an earlier work. A physical interpretation

and mathematical explanation of these similarities is given in [5].

4.2. Diffraction (X-ray) stress factors

The effect of the grain interaction on the diffraction (X-ray) stress factors will be

demonstrated in the following using plots of "ðhkl, ’, Þ versus sin2 (so-called
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Figure 2. Components of the mechanical stiffness tensor of an untextured copper
polycrystal as a function of the grain-aspect ratio, calculated employing the Eshelby–
Kröner model for an ideal grain shape texture. Note that the stiffness tensor presents
transverse elastic isotropy (i.e. rotational symmetry with respect to the z-axis) for � 6¼ 1 and
isotropy for �¼ 1. For comparison, the corresponding values calculated with the Vook–Witt
model (dotted line, for �� 1) and the inverse Vook–Witt model (dashed line, for �� 1) are
also shown.
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‘sin2 -plots’), assuming that the polycrystal considered is subjected to a uniaxial
state of stress:

hrSi ¼

h�S11i 0 0

0 0 0

0 0 0

0
B@

1
CA ð52Þ

with h�S11i ¼ 100MPa. In this case, equation (4) can be simplified to:

"ðhkl, ’, Þ ¼ ðF11ð’, , hklÞÞh�
S
11i: ð53Þ

The lattice strain "ðhkl, ’, Þ will be plotted for ’ ¼ 0 in the following.

4.2.1. Tungsten. A sin2 -plot for a tungsten polycrystal subjected to a uniaxial
state of stress (100MPa) is shown in figure 3.

The same straight line obtained in the sin2 -plot is independent of the type of
grain interaction or hkl reflection chosen. This is a consequence of the intrinsic elastic
isotropy, which makes the diffraction stress factors (as well as the mechanical elastic
constants; cf. section 4.1) insensitive to grain interaction.

4.2.2. Copper and iron. In figures 4 and 5, sin2 -plots calculated according to the
VW, iVW and EK (for the case of spherical grains, �¼ 1, and for grain-shape
textures with �¼ 0.1 and �¼ 10, cf. section 2) models for crystallographically
untextured copper and iron polycrystals subjected to uniaxial states of stress
(100 MPa) are shown.

For spherical grain shape, linear sin2 -plots are obtained for all
reflections, indicating the occurrence of macroscopic/mechanical isotropy.
However, for the VW model, iVW model and a grain-shape texture, distinct

0.0 0.2 0.4 0.6 0.8 1.0
−0.1

0.0

0.1

0.2

0.3

e y
*  1

03

sin2y

Figure 3. Sin2 plot for a tungsten polycrystal subjected to a uniaxial tensile stress
calculated according to different grain-interaction models: Vook–Witt, inverse Vook–Witt
and Eshelby–Kröner (with �¼ 0.1 (discs), �¼ 1 (spheres), �¼ 10 (needles)). The same result is
obtained for all models and all reflections.
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curvature occurs in the sin2 -plots, most pronouncedly for the 200
reflections. Figures 4 and 5 also demonstrate that the effect of the grain-interaction
on the diffraction elastic constants can be stronger than the effect on the mechanical
elastic constants (cf. section 4.1).

The occurrence of non-linear sin2 -plots corresponds to the occurrence of
macroscopic elastic anisotropy. This is well known in the context of the diffraction
stress analysis of crystallographically textured specimens, where the occurrence of
crystallographic texture leads to mechanical anisotropy and non-linear sin2 -plots.
It was shown very recently that non-linear sin2 -plots could occur in general for
macroscopically, elastically anisotropic specimens, independent of the occurrence
of crystallographic texture [4].

Striking similarities among the sin2 -plots, calculated with the different grain-
interaction models, can be observed. The VW model results in similar sin2 -plots as
the EK model for flat-disc shaped grains (�¼ 0.1), whereas the sin2 -plots obtained
from the iVW model exhibit similarities (but much less obviously) with the
corresponding plots obtained from the EK model for needle-shaped inclusions
(�¼ 10). These findings correspond to the results obtained for the mechanical elastic
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Figure 4. Sin2 plots for a copper polycrystal subjected to a uniaxial tensile stress
calculated according to different grain-interaction models: Vook–Witt, inverse Vook–Witt
and Eshelby–Kröner model (with �¼ 0.1 (discs), �¼ 1 (spheres), �¼ 10 (needles)).
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constants in section 4.1. Similar findings have been obtained in an earlier work. Also,
a physical interpretation and mathematical explanation of these similarities have
been given recently. The physical interpretation also makes the much less
pronounced agreement of the iVW and EK model for needle-shaped inclusions,
compared to the agreement between the VW model and the EK model for flat-disc
shaped grains, plausible [5].

5. Summary

. Generalizations of the elastic grain-interaction assumptions of the Vook–Witt
and inverse Vook–Witt models allow the calculation of the full mechanical
stiffness (and compliance) tensors and of all diffraction stress factors, whereas
previously only two mechanical elastic constants and only the sum of two
diffraction (X-ray) stress factors could have been calculated.

. The direction-dependent grain-interaction assumptions, employed in the
Vook–Witt and inverse Vook–Witt models, are reflected by the occurrence

0.0 0.2 0.4 0.6 0.8 1.0
−0.3

0.0

0.3

0.6 EK, sphere
VW
EK, disc
IVW
EK, needle

0.0 0.2 0.4 0.6 0.8 1.0
−0.3

0.0

0.3

0.6

0.0 0.2 0.4 0.6 0.8 1.0
−0.3

0.0

0.3

0.6

sin2y sin2y

sin2ysin2y

0.0 0.2 0.4 0.6 0.8 1.0
−0.3

0.0

0.3

0.6

e y
h0

0 
* 

10
3

e y
22

2 
* 

10
3

e y
31

0 
* 

10
3

e y
hh

0 
* 

10
3

Figure 5. Sin2 plots for a iron polycrystal subjected to a uniaxial tensile stress
calculated according to different grain-interaction models: Vook–Witt, inverse Vook–Witt
and Eshelby–Kröner (with �¼ 0.1 (discs), �¼ 1 (spheres), �¼ 10 (needles)).
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of macroscopic elastic anisotropy (transverse isotropy) for the mechanical
compliance tensor, i.e. five independent components occur. The effect of the
elastic grain interaction on the mechanical elastic constants is generally weak.

. The direction-dependent grain-interaction assumptions employed in the
Vook–Witt and inverse Vook–Witt models are also reflected by the occurrence
of non-linear sin2 -plots. The effect of elastic grain interaction
on the diffraction stress factors can be large: distinct curvature can occur in
sin2 -plots, as has been demonstrated for the case of a uniaxial stress state.
Diffraction stress analysis is, therefore, a sensitive tool to investigate elastic
grain interaction.

. The mechanical elastic constants and diffraction stress factors (represented in
the form of sin2 -plots) have been compared with corresponding values
calculated employing the Eshelby–Kröner model, considering ideal morpho-
logical (grain-shape) textures. Similarities between the Vook–Witt and the
Eshelby-Kröner model occur where a polycrystal, consisting of flat disc-
shaped grains with their principal shape axis aligned with the specimen surface
normal, is considered for the Eshelby–Kröner model. These similarities
concern the diffraction and mechanical elastic constants. Such similarities
among the inverse Vook–Witt and the Eshelby–Kröner model also occur (but
much less obviously, on a more qualitative level) where a polycrystal,
consisting of needle-shaped grains with their principal shape (needle) axis
aligned with the specimen surface normal, is considered for the Eshelby–
Kröner model. These findings are in line with previous results [5].

. Hence, even though the Vook–Witt and inverse Vook–Witt models have been
developed to express, in particular, the effect of elastic surface anisotropy of
bulk polycrystals and thin films, they are capable of modelling the effect of
special, limiting morphological (grain-shape) textures on the elastic grain
interaction. Thus, time-consuming numerical calculations, as required in the
application of the Eshelby–Kröner model, can be replaced by less elaborate
calculations, according to the Vook–Witt (for flat-disc shaped grain
morphology) or inverse Vook–Witt (for needle-shaped grain morphology)
models (for the latter, with a qualitative agreement only; see above). This can
greatly simplify numerical algorithms for the calculation of elastic and,
possibly, plastic grain interaction.
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Appendix A: Calculation of stress and strain tensor components not defined directly

by the grain-interaction assumptions

A.1. Vook–Witt model

From the stress and strain tensor components equal to the mechanical averages

(cf. equations (11) and (12)), the unknown components can be calculated as follows:
After defining the vector x of which the components are the unknown

components of the stress tensor rS:

x ¼

�S11
�S12
�S22

0
B@

1
CA ðA1Þ

the unknown stress tensor components (�S11, �
S
12, �

S
22) can be obtained from:

x ¼ A�1b ðA2Þ

with:

A11 ¼ 1� cS1133s
S
3311 � 2cS1113s

S
1311 � 2cS1123s

S
2311 ðA3Þ

A12 ¼ �2cS1133s
S
3312 � 4cS1113s

S
1312 � 4cS1123s

S
2312 ðA4Þ
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A13 ¼ �cS1133s
S
3322 � 2cS1113s

S
1322 � 2cS1123s

S
2322 ðA5Þ

A21 ¼ �cS1233s
S
3311 � 2cS1213s

S
1311 � 2cS1223s

S
2311 ðA6Þ

A22 ¼ 1� 2cS1233s
S
3312 � 4cS1213s

S
1312 � 4cS1223s

S
2312 ðA7Þ

A23 ¼ �cS1233s
S
3322 � 2cS1213s

S
1322 � 2cS1223s

S
2322 ðA8Þ

A31 ¼ �cS2233s
S
3311 � 2cS2213s

S
1311 � 2cS2223s

S
2311 ðA9Þ

A32 ¼ �2cS2233s
S
3312 � 4cS2213s

S
1312 � 4cS2223s

S
2312 ðA10Þ

A33 ¼ 1� cS2233s
S
3322 � 2cS2213s

S
1322 � 2cS2223s

S
2322 ðA11Þ

and

b ¼

cS1111 "
S
11

� �
þ cS1122 "

S
22

� �
þ 2cS1112 "

S
12

� �
þ cS1133�1 þ 2cS1113�2 þ 2cS1312�3

cS1211 "
S
11

� �
þ cS1222 "

S
22

� �
þ 2cS1212 "

S
12

� �
þ cS1233�1 þ 2cS1213�2 þ 2cS2312�3

cS2211 "
S
11

� �
þ cS2222 "

S
22

� �
þ 2cS2212 "

S
12

� �
þ cS2233�1 þ 2cS2213�2 þ 2cS3312�3

0
BB@

1
CCA ðA12Þ

with:

�1 ¼ sS3333 �
S
33

� �
þ 2sS3313 �

S
13

� �
þ sS3323 �

S
23

� �
, ðA13Þ

�2 ¼ sS1333 �
S
33

� �
þ 2sS1313 �

S
13

� �
þ sS1323 �

S
23

� �
, ðA14Þ

�3 ¼ sS2333 �
S
33

� �
þ 2sS2313 �

S
13

� �
þ sS2323 �

S
23

� �
: ðA15Þ

Then, the unknown strain tensor components can be obtained employing Hooke’s
law (equation (10)).

A.2. Inverse Vook–Witt model

From the stress and strain tensor components equal to the mechanical averages
(cf. equations (15) and (16)), the unknown components can be calculated as follows:

After defining the vector x of which the components are the unknown
components of the stress tensor rS:

x ¼

�S13
�S23
�S33

0
B@

1
CA ðA16Þ

the unknown stress tensor components (�S13, �
S
23, �

S
33) can be obtained from:

x ¼ A�1b ðA17Þ

with:

A11 ¼ 1� 2cS1311s
S
1113 � 2cS1322s

S
2213 � 4cS1312s

S
1213 ðA18Þ

A12 ¼ �2cS1311s
S
1123 � 2cS1322s

S
2223 � 4cS1312s

S
1223 ðA19Þ
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A13 ¼ �cS1311s
S
1133 � cS1322s

S
2233 � 2cS1312s

S
1233 ðA20Þ

A21 ¼ �2cS2311s
S
1113 � 2cS2322s

S
2213 � 4cS2312s

S
1213 ðA21Þ

A22 ¼ 1� 2cS2311s
S
1123 � 2cS2322s

S
2223 � 4cS2312s

S
1223 ðA22Þ

A23 ¼ �cS2311s
S
1133 � cS2322s

S
2233 � 2cS2312s

S
1233 ðA23Þ

A31 ¼ �2cS3311s
S
1113 � 2cS3322s

S
2213 � 4cS3312s

S
1213 ðA24Þ

A32 ¼ �2cS3311s
S
1123 � 2cS3322s

S
2223 � 4cS3312s

S
1233 ðA25Þ

A33 ¼ 1� cS3311s
S
1133 � cS3322s

S
2223 � 2cS3312s

S
1233 ðA26Þ

and

b ¼

cS1333h"
S
33i þ 2cS1313h"

S
13i þ 2cS1323h"

S
23i þ cS1311�1 þ cS1322�2 þ 2cS1312�3

cS2333h"
S
33i þ 2cS2313h"

S
13i þ 2cS2323h"

S
23i þ cS3211�1 þ cS2322�2 þ 2cS2312�3

cS3333h"
S
33i þ 2cS3313h"

S
13i þ 2cS3323h"

S
23i þ cS3311�1 þ cS3322�2 þ 2cS3312�3

0
BBBB@

1
CCCCA ðA27Þ

with:

�1 ¼ sS1111h�
S
11i þ sS1122h�

S
22i þ 2sS1112h�

S
12i, ðA28Þ

�2 ¼ sS2211h�
S
11i þ sS2222h�

S
22i þ 2sS2212h�

S
12i, ðA29Þ

�3 ¼ sS1211h�
S
11i þ sS1222h�

S
22i þ 2sS1212h�

S
12i: ðA30Þ

Then, the unknown strain tensor components can be obtained employing Hooke’s

law (equation (10)).

Appendix B: Loading states for the case of orthorhombic texture symmetry

For crystallographic texture, more than five independent components of the

mechanical stiffness (and compliance) tensor can occur. For orthorhombic texture

symmetry, for example, nine independent components of the mechanical stiffness

(and compliance) tensor occur and, then, the following four loading states are

sufficient for a calculation of these nine tensor components:

h"Si ¼

h"S11i 0 0

0 0 0

0 0 0

0
B@

1
CA, ðB1Þ
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h"Si ¼

0 0 0

0 h"S22i 0

0 0 0

0
B@

1
CA, ðB2Þ

h"Si ¼

0 0 0

0 0 0

0 0 h"S33i

0
B@

1
CA, ðB3Þ

h"Si ¼

0 h"S12i h"S13i

h"S12i 0 h"S23i

h"S13i h"S23i 0

0
B@

1
CA: ðB4Þ

Note that other sets of hypothetical loading states can be conceived, which also allow

the evaluation of the full stiffness tensor.
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