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Electronic diodes, which enable the rectification of an electrical energy flux, have played a crucial role in
the development of current microelectronics after the invention of semiconductor p-n junctions. Analogously,
signal rectification at specific target wavelengths has recently become a key goal in optical communication and
signal processing. Here we propose a genuinely quantum device with the essential rectifying features being
demonstrated in a general model of a nonlinear-linear junction of coupled resonators. It is shown that such
a surprisingly simple structure is a versatile valve and may be alternatively tuned to behave as: a photonic
diode, a single or two-photon rectified source turning a classical input into a quantum output depending on the
input frequency, or a quantum photonic splitter. Given the relevance of non-reciprocal operations in integrated
circuits, the nonlinear-linear junction realises a crucial building component in prospective quantum photonic
applications.

The electrical diode in a semiconductor p-n junction is the
prototype of a rectifying device that allows non-reciprocal
electronic transport, which is key to information processing in
integrated circuits [1]; a number of applications currently re-
quire the realization of devices enabling unidirectional energy
transport, from thermal [2–4] and acoustic [5, 6] rectifiers, to
all-optical diodes [7, 8]. The latter have now been attained
in different configurations on-chip [9–11], although always at
the level of classical (i.e. many photons) signal transmission.
A quantum optical rectifier may be generally defined as a two
terminal, spatially nonreciprocal device that allows unidirec-
tional propagation of single- or few energy quanta at a fixed
signal frequency and amplitude. This conceptual extension of
the classical diode operation can be foreseen to be important
in the context of future applications in, e.g., integrated quan-
tum photonics [12], where novel quantum devices as single-
photon transistors [13] and interferometers [14] have already
been proposed, and where tunable rectification of quantum
states is likely to play a role analogous to electrical diodes
in current microchips. However, proposals for quantum op-
tical rectification have been quite limited in the literature, to
date. A device relying on non reciprocity induced by an exter-
nal magnetic field in a doubly polarized waveguide has been
proposed as a single-photon diode [15], where only condi-
tional non-reciprocity depending on the specific polarization
of the input state was shown. Unconditional quantum optical
diodes and transistors have also been introduced in the context
of atomtronic circuits [16], where an analogy between one-
dimensional optical lattices with cold atoms and electronic
circuits was exploited to suggest equivalent atom-based cir-
cuits over many sites.

In this letter we go beyond previous works, and describe
a general scheme for a quantum optical device that works as
an unconditional rectifier, elaborating on the simple analogy
between the traditional p-n junction in semiconductor physics
and a single nonlinear-linear (n-l) junction of two coupled res-

onators, as the building block of an elementary quantum opti-
cal valve. In particular, we show that this valve can be tuned
to control energy transport at the quantum level with direct ap-
plicability to current quantum technologies. Under a continu-
ous monotonic pump the junction behaves as a rectified single
or two photon source, depending on the input frequency, thus
turning a classical input into a quantum output. At difference
with previous investigations, we will use second-order photon
correlation as a probe of the quantum behavior of the device:
a single-photon rectified source will be characterized by sub-
Poissonian counting statistics in the transmitted signal, while
a two-photon rectified source by its super-Poissonian one. We
also show that the junction behaves as a diode for fully quan-
tum two-photon Fock states, such that one photon activates
the nonlinearity while the second photon is rectified. Finally,
at high coupling between the resonators the junction splits the
initial Fock state sending the two photons in opposite direc-
tions, thus acting as a quantum state splitter.

The model— We start from the concept of generic wave
diodes in a nonlinear chain of resonators [17]: a transmitted
intensity at fixed incident amplitude and at the same frequency
should be sensibly different in the two opposite propagation
directions. To transfer these concepts to the quantum regime,
we assume a chain of tunnel-coupled nonlinear sites, which
can be generally described by the Bose-Hubbard model with
single-particle interactions of the Kerr-type. We will specify
our treatment to a minimal two-site Bose-Hubbard Hamilto-
nian (~ = 1)

Hn-l = ∆La
†
LaL+∆Ra

†
RaR+

U

2
a†La

†
LaLaL+J(a†LaR+aLa

†
R) ,

(1)
such that the operator ai is the annihilation operator for the
quanta in the i-th site, U is the left site inter-particle interac-
tion, and J is the coupling strength between the two sites (usu-
ally determined by evanescent tunnel-coupling), which de-
scribes a two-site (left L, and rightR) n-l junction as schemat-
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FIG. 1. Nonlinear-linear resonators junction (a) Pictorial repre-
sentation of a right-rectifying “black box” being pumped from left
to right and then from right to left, with the transmission being sig-
nificantly higher to the right. (b) Representation of light confining
coupled resonators, one of which embedded in a nonlinear medium.
(c) The representation of the frequencies and detunings of the driving
laser and the resonators.

ically shown in Fig. (1). We notice that the generality of
such a model has been established by effectively describing
a wide variety of physical systems, from cold atoms in opti-
cal lattices [18, 19], to strongly interacting photonic systems
made with atoms coupled to optical resonators [20, 21] or
optical fibres [22], spin chains [23], arrays of superconduct-
ing circuits [24]. or in open photonic devices, such as cou-
pled arrays of nonlinear solid-state cavities [25]. In the lat-
ter case, the on-site inter-particle interaction can be given by
strong radiation-matter coupling of a single qubit-cavity sys-
tem [26], by enhanced Coulomb interaction of electron-hole
pairs in semiconductor elementary excitations [27, 28], or by
enhanced native nonlinearity of the bulk material thanks to
the strong field confinement [29]. In the case of weak nonlin-
earities, quantum interference between coupled modes can be
exploited to reduce the final modeling of the system to an ef-
fective Hubbard model in Eq. 1, as proposed in Refs. 30 and
31. In the latter case, applications would imply fully passive
quantum photonic devices compatible with standard materials
employed in optoelectronics [32].

Owing to its out-of-equilibrium nature, the system dynam-
ics is necessarily described by a balance between driven-
dissipative terms, as it is typical of quantum optical sys-
tems [14, 16, 26]. Either the left or right site of the junction
can be coherently pumped, which is described by the Hamil-
tonian Hp = Fia

†
i +F ∗i ai, with Fi being the driving strength,

where Hn-l +Hp is written in a reference frame rotating with
the pumping frequency, ωlaser, with ∆i = ωi − ωlaser such
that ωi is the ith site characteristic frequency. The level con-
figuration is schematically shown in Fig. (1-c).

We assume that the cavities (or sites) incoherently dissipate
energy at a rate γ determined by the openness of each site into
the output channels (e.g., one-dimensional waveguides), and
we define the output currents as number of quanta emitted per
unit time from each site, i.e. qi(t) = γ〈a†iai〉(t). Formally, the
average number of quanta emitted from the ith cavity during
a time interval ∆t = t2 − t1, which is ideally the number
of “clicks” registered as a photo-current in a single-photon
detector, can be expressed as [33, 34]

Qi(t2, t1) =

∫ t2

t1

qi(t)dt , (2)

and the time-dependent quantum state of the two-site sys-
tem is determined by the Liouville-von Neumann equation in
Lindblad form [33–35]

ρ̇ = L(ρ) = −i[Hp +Hn-l, ρ] + LL(ρ) + LR(ρ) , (3)

with

Li(ρ) = −γ
2

[a†iaiρ+ ρa†iai − 2aiρa
†
i ], (4)

describing the energy dissipation from each site. Note that
Eq.(3) faithfully describes any physical implementation of
this model in the standard Markovian open system formal-
ism [33, 34]. If, for experimental or practical reasons, the out-
put channels of the system are waveguides, the model properly
describes the physical scenario in which these waveguides are
independent and broadband.

With the dynamics and measurement processes specified,
we define the rectifying factor as the normalized difference
between the output currents when the chain is pumped through
the left and right resonator (indicated by the wave vectors k
and −k, respectively)

R =
QR[k]−QL[−k]

QR[k] +QL[−k]
, (5)

such that the R factor measures the absolute rectification of
the system: R = −1 indicates maximal rectification with en-
hanced transport to the left (left rectification),R = 0 indicates
no rectification, while R = +1 indicates maximal rectifica-
tion with transport to the right (right rectification). We also
define the transport efficiency which is the amount of light
that is transported to the desired direction. The transport effi-
ciency to the right is given by

TR =
QR[k]

QR[k] +QL[k]
. (6)

Left efficiency TL is given analogously by interchanging R
withL and k with−k. We notice that the photo-detection time
interval, ∆t, can be taken as arbitrarily small in continuous-
wave pumping and steady state regime, but it should be taken
large enough in case of pulsed excitation in order to fully in-
tegrate the emitted pulses.
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FIG. 2. Non-equilibrium rectification under continuous-wave
pumping, and the corresponding equilibrium excitations of the
low-lying eigenstates probed by tuning the laser frequency. We
show the rectification factor R (top panel), the second-order coher-
ence function g(2) of the output light in both directions (middle), and
the number of excitations in the left resonator, NL = 〈a†LaL〉, for
the ground and first excited states of the bare hamiltonian (1) (bot-
tom). Parameters are: U = γ, J = 0.1γ, and F = 0.5γ. We assume
∆RL = 20γ with ∆L = ∆RL/2 + ωg and ∆R = −∆RL/2 + ωg .

As an effective probe of quantum nonlinear features of this
device, we calculate the photon counting statistics of the emit-
ted light. This is defined by the second order correlation
function at zero time-delay, which is an experimentally rele-
vant quantity and can be measured in a Hanbury Brown-Twiss
(HBT) set-up with two single-photon detectors and a beam
splitter [36], theoretically given by

g
(2)
i (±k) =

〈a†ia†iaiai〉(±k)
〈a†iai〉2(±k)

. (7)

This function gives values below unity for antibunched and
above unity for bunched photons, respectively [35]. Anti-
bunching corresponds to a reduced probability that two pho-
tons are detected in coincidence at a given time, while it is the
opposite for bunching.

Results— Let us initially focus on Fig. (2), where we show
the low U/γ regime of the system under continuous pump,
for which we probe the n-l junction by scanning the laser fre-
quency for a fixed ∆RL. First, we turn our analysis to the
full equilibrium quantum picture of the low lying eigenstates
of the Hamiltonian 1, more specifically focussing on the non-
linear cavity. This is justified for two reasons: at this point
we will address the regime of low tunnelling between cavi-
ties and low pump intensities. Therefore, only the low photon
states can be probed and only if they are close to resonance
with the laser, and due to the low tunnelling the nonlinear ef-
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FIG. 3. Rectification and the corresponding transport efficiencies
with frequency optimization. (Top Left) Parametric plot of the opti-
mized rectification and transport efficiency to the left and (Top right)
their corresponding product as a function of the resonators coupling
with ∆RL = 20γ. (Bottom Left) Parametric plot of the optimized
rectification and transport efficiency to the left and (bottom right) the
corresponding product as a function of the resonators coupling with
∆RL = 0.

fects can be directly associated to the states of the nonlinear
resonator. In Fig. (2-a) a maximum of left rectification corre-
sponds to the condition ωg − ωlaser = −10γ, which simulta-
neously shows anti-bunched emission of the left site occurring
exactly at the left cavity bare resonance (higher nonlinearities
lead to stronger anti-bunching) in (2-b). At the same time, in
the equilibrium picture the population of the left resonator in
the global ground state, NL = 〈a†LaL〉, switches from zero
to one [see Fig. (2-c)] while the population of first excited
state switches from one to zero (|0〉 ↔ |1〉), thus showing that
this process is predominantly a single photon process (as fur-
ther confirmed by the anti-bunching statistics). In this case the
junction turns the classical input into a quantum output, work-
ing as a rectified single photon source. On the other hand, the
right rectifying process (bunched light) is predominantly a two
photon process (with resonance condition ∆L+U ≈ 0, where
the nonlinearity compensates for the detuning), as it can be
observed in the low eigenstates excitations, where there is a
switching from one-photon to two-photons state (|1〉 ↔ |2〉).
With this low lying states analysis we can fully connect the
equilibrium properties of the system with its non-equilibrium
response as a driven-dissipative quantum diode for one and
two photons.

The analysis is further completed by addressing the trans-
port efficiency and its relation to the rectification factor. In
Fig. (3) we show the figures of merit given by the products
RTL(R), which characterize the total diode efficiency while
optimizing over the input frequency. As expected, we can see
that the rectification is small for small nonlinearity in the left
site. For nonlinearities comparable to the dissipation rate, the
system presents a left rectification factor of about 0.3, and the
corresponding transport efficiency increases with the tunnel
coupling, J , until the system becomes generically a good con-
ductor and the rectification factor tends to decrease. There-
fore, there is a minimum of the product RTL, corresponding
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to the highest rectification at highest transport efficiency. In-
creasing the nonlinearity leads to products of about 0.5, which
is ultimately limited by the rectification factor. As shown in
Fig. (3), this device may achieve almost perfect transport to-
gether with a 0.5 rectification factor. As expected from the
previous analysis, the best diode efficiency is reached when
the input frequency is resonant with the nonlinear (left) res-
onator. Analogously, we show in Fig. (3) the optimization
of the right diode efficiency, RTR. In this case the rectifica-
tion approaches unity with increasingU/γ, however the corre-
sponding transport is typically smaller than 0.2. This amounts
to lower, however significant, diode efficiency of the order of
0.15. in this case the maximum efficiency is obtained when
the laser frequency approximately matches the detuning in-
duced by the nonlinearity ∆L ≈ U/2. It is interesting that
there is a trade-off between transport efficiency and rectifica-
tion, and in a sense this is the price paid by the versatility of
the junction.

Now we address the behavior of the junction when it re-
ceives a quantum state as an input, instead of a coherent field.
In practice, this can be achieved by designing an incoming
pulse that prepares a pure Fock state in one of the resonators
with high fidelity. Since the Kerr nonlinearity is only acti-
vated by two quanta (or higher) Fock states, the n-l junction
is reciprocal for a single photon Fock state as an input. Thus,
we study the case of the |n = 2〉 state, such that one photon
activates the nonlinearity while the other can be rectified. In
Fig. (4) we show the rectification and transport efficiency as
functions of the resonators detuning, for different values of the
resonators tunnel coupling. Similarly to the continuous wave
pumping scenario, we find regimes of left and right rectifica-
tion. Maximum left rectification is found when the resonators
are very close to resonance, while maximum right rectifica-
tion is found when the detuning is compensated by the non-
linearity U − ∆RL ≈ 0. Once again we observe a trade-off
between rectification and transport efficiency as we increase
the resonators coupling, with a maximum diode efficiency in
the interval 100 < J < 101. This trade-off yields an interest-
ing effect in regimes of strong coupling. In fact, at large J the
junction splits the initial 2-photon Fock state into two distinct
wave packets that travel in opposite directions, irrespective of
the direction of the incoming pump pulse, which is indicated
by the 0.5 transport efficiency in both directions.

The main challenges to any feasible implementation of the
present proposal rely on the system parameters that can be
realistically achieved in order to observe quantum diode op-
eration, and the detectability of the second-order correlation
signals. For the first, we refer to the ratio U/γ as the relevant
figure of merit, where γ is directly related to the resonators
quality factors through the obvious relation Q = ω/γ. We
point out two different architectures that could be used for
the implementation, where highly nonlinear and high qual-
ity resonators can be fabricated: Superconducting microwave
circuits with microstrip (or coplanar) transmission line cavi-
ties coupled to superconducting qubits [37], also referred to as
circuit quantum electrodynamics, and semiconducting optical
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FIG. 4. Transport of Fock state |2〉. A fast time-dependent pulse
can be designed to prepare the Fock state, then the system is allowed
to evolve and relax while the output currents are time-integrated,
defining the rectification factor (top panel), the transport efficiency
to the right (middle), and the transport efficiency to the left (bottom),
with U = 10γ and for different values of the tunnel coupling be-
tween resonators. As the coupling is increased the junction slowly
switches from a rectifier to a splitter.

circuits, such as photonic crystal circuits in thin semiconduc-
tor slabs [38].

Superconducting microwave circuits. Recently, tremen-
dous progress has been made in the field of mi-
crowave photonic circuits employing superconducting almost-
dissipationless elements, such as microstrip transmission line
cavities and superconducting qubits [37], also referred to as
circuit quantum electrodynamics. In the regime of strong
light-matter coupling between a single qubit and a single
mode of the superconducting resonator, the system nonlinear-
ity is effectively described by a single-mode Bose-Hubbard
model with an effective nonlinearity U ∼ 1 MHz [39]. With
state-of-the art capabilities, the regime of quantum optical
diode operation can be achieved in standard coplanar super-
conducting resonators with quality-factors on the order of
Q ' 105, i.e. γ ∼ 100 kHz at microwave frequencies (10
GHz) [39], which is enough to reach the condition U/γ ∼ 10.
Moreover, the superconducting microstrip platform naturally
realizes the excitation scheme that we have been schemat-
ically considering: input/output channels can be defined as
broad-band transmission lines of microwave photons directly
pumping the n-l junction at left/right ends. Finally, detection
of the second-order correlation signal at zero-time delay is
now possible also in the microwave domain through quadra-
ture detection schemes [40], which makes it possible for an
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experimental replication of our theoretical results.
Semiconducting optical circuits. On a parallel route, a

quantum optical diode operation can be realized in integrated
photonic circuits at optical or near-infrared wavelengths (λ ∼
1 µm). In this case, a preferred platform would be represented
by photonic crystal circuits in thin semiconductor slabs [38].
Strong optical nonlinearities of the Kerr-type, which would be
the route to effectively realizing the model, have been shown
for polaritonic excitations in pillar micro cavities to be on the
order of Unl ∼ 9 µeV·µm2 [41]. Diffraction-limited light
confinement provided by photonic crystal cavities, i.e. an ef-
fective mode area of (λ/n)2, would allow to achieve single-
photon nonlinearities in the range U ∼ 10 − 100 µeV. Con-
sidering optical/near-infrared operation, i.e. in the eV range,
a quality factor on the order of 105 − 106 would be sufficient
to reach the quantum optical diode operation U/γ ∼ 10. We
notice that such values have been already demonstrated in typ-
ical semiconductor photonic crystal chips [42], although no
conclusive signature of single-photon nonlinear behavior has
been reported to date for polaritons confined in photonic crys-
tal cavities. On the other hand, such photonic crystal plat-
forms naturally allow to engineer waveguide-coupled cavity
schemes, which are straightforwardly described by the theo-
retical modeling analyzed in the present work. It should also
be noted that efficient measurement of second-order correla-
tion signals at zero-time delay is achieved through fast single-
photon counting at near-infrared wavelengths, where the main
limiting factor might be related to the photon lifetime in the
resonators, τ ∼ 1/γ. For Q > 105 such lifetime is certainly
above the typical resolution timescale of photodetectors (in
the pico-second range [43]), thereby allowing to identify the
single- or two-photon rectification regimes in HBT measure-
ments.

Summary— We have addressed non-reciprocal propagation
of energy pumped into a generic system of tunnel-coupled
nonlinear-linear resonators. The model considered has been
shown to describe several physical systems. In particular, we
have carefully verified that our results could be observed in
state-of-the art experiments, and we pointed out two main ar-
chitectures in which this goal could be pursued. From a theo-
retical point of view, we have addressed the quantum nonlin-
ear regime of the proposed device, and we have shown it can
work as a rectified quantum source. The ultimate goal in this
research field would be to achieve complete control over quan-
tum optical transport, which includes perfect quantum state
transfer and rectification. Taking initial steps in this direction,
we have also shown how quantum states at the input may be
rectified through the junction, which opens up the possibility
to work towards fully quantum state rectification, a goal that
has never been achieved so far. Finally, we have shown that
the junction also works as a photonic splitter, which shows the
versatility of this elementary system as a valve for quantum
optical transport. In this respect, a fascinating venue for future
research would be the rectification of many-body or meso-
scopic quantum states, which would allow for the controlled
transport of large amounts of quantum data encoded in com-

plex quantum systems. In fact, we believe this novel quantum
device might become a key element in prospective quantum
photonic circuits, where unwanted feedback caused by reflec-
tions between different system components might have a dele-
terious effects on the quantum operations to be performed in
complex optical networks.
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