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Extended �nite element method for
three-dimensional crack modelling

N. Sukumar‡, N. Mo�es§, B. Moran¶ and T. Belytschko∗;†;‖

Department of Civil and Mechanical Engineering; Northwestern University; 2145 Sheridan Road;
Evanston; IL 60208; U.S.A.

An extended �nite element method (X-FEM) for three-dimensional crack modelling is described. A discontin-
uous function and the two-dimensional asymptotic crack-tip displacement �elds are added to the �nite element
approximation to account for the crack using the notion of partition of unity. This enables the domain to be
modelled by �nite elements with no explicit meshing of the crack surfaces. Computational geometry issues
associated with the representation of the crack and the enrichment of the �nite element approximation are
discussed. Stress intensity factors (SIFs) for planar three-dimensional cracks are presented, which are found
to be in good agreement with benchmark solutions. 

KEY WORDS: extended �nite element method; partition of unity; local enrichment; elastostatics; planar three-
dimensional cracks

1. INTRODUCTION

The accurate modelling of three-dimensional cracks in �nite bodies remains a challenging prob-

lem in computational mechanics. The relevance and importance of the computation of fracture

parameters and the simulation of three-dimensional crack growth stems from the widespread use

of numerical fracture mechanics in fatigue life predictions of safety-critical components such as

aircraft fuselages, pressure vessels, automobile components, and castings. Fatigue failure usually

∗Correspondence to: T. Belytschko, Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road,
Evanston, IL 60208, U.S.A.

†E-Mail: t-belytschko@nwu.edu
‡Post-Doctoral Research Fellow, Theoretical and Applied Mechanics
§Research Associate, Department of Mechanical Engineering
¶Associate Professor of Civil Engineering
‖Walter P. Murphy, Professor of Computational Mechanics

Contract=grant sponsor: National Science Foundation; contract=grant number: CMS-9732319
Contract=grant sponsor: Georgia Institute of Technology ONR; contract=grant number: N0014-95-1-0539
Contract=grant sponsor: Federal Aviation Administration; contract=grant number: DTFA03-98-F-IA025
Contract=grant sponsor: O�ce of Naval Research

1



occurs due to the initiation and propagation of surface or near-surface cracks, which are often

assumed to be elliptical or semi-elliptical in shape for numerical modelling. Closed-form solutions

for the stress intensity factors (SIFs) are available for simple crack geometries in three dimensions;

however, for arbitrary-shaped cracks in �nite specimens, numerical methods are the only recourse

to modelling three-dimensional fatigue crack growth.

Currently, �nite element methods based on non-singular as well as singular elements are widely

used in linear elastic fracture analysis. Methods based on singular elements [1–3] are able to pro-

vide accurate stress intensity factors. Enriched element methods which incorporate the asymptotic

crack-tip �elds in the trial functions [4; 5] provide stress intensity factors directly as part of the

solution. In spite of the successes using �nite elements in computational fracture, mesh generation

in three dimensions is time consuming and especially burdensome for multiple crack con�gurations

and crack growth simulations. It is di�cult to explicitly model the crack topology as part of the

�nite element since accuracy considerations require signi�cant re�nement in the vicinity of the

crack front.

The modelling of growing cracks using �nite elements and boundary elements with re-meshing

has been pursued by many researchers [6–8]. The �nite element alternating method which is based

on the Schwartz–Neumann alternating method has been applied to the modelling of arbitrary crack

con�gurations in three dimensions [9; 10]. Numerical techniques such as the boundary integral

equation method [11], body force method [12], and the self-similar crack expansion method [13]

also enable the accurate computation of stress intensity factors for three-dimensional cracks. The

requirement of a Green’s function imposes restriction on the scope of application of the boundary

integral equation based methods. These methods are not readily extendable to non-linear problems

nor to the study of cracks in anisotropic materials. The modelling of cracks as a continuous distri-

bution of in�nitesimal dislocation loops has also gained prominence. In the dislocation distribution

approach, the crack surface in three dimensions is assumed to be made up of a continuous dis-

tribution of in�nitesimal dislocation loops with the Burger’s vector corresponding to the jump in

displacement across the crack surface; a hypersingular integral equation is obtained on the crack

surface which is solved in the Hadamard �nite-part sense [14; 15]. More recently, the element-free

Galerkin (EFG) method, a mesh-free method, has been successful in modelling static and dynamic

fracture in two dimensions [16; 17] and three dimensions [18; 19].

The extended �nite element method (X-FEM) alleviates shortcomings associated with meshing

of the crack surfaces in existing methods. The �nite element method is used as the building block

in the extended �nite element method, and hence much of the theoretical and numerical devel-

opments in �nite elements can be readily extended and applied. In this paper, the �nite element

approximation is enriched by additional functions through the notion of partition of unity [20].

Strouboulis et al. [21] used local enrichment functions within the partition of unity framework

for modelling re-entrant corners in two dimensions, and in Reference [22], enrichment functions

for holes are proposed. In X-FEM, the additional functions are used to model the presence of

cracks, voids or inhomogeneities, and also to improve accuracy in problems where some aspects

of the functional behaviour of the solution �eld is known a priori. For crack modelling, a dis-

continuous function and the two-dimensional asymptotic crack-tip displacement �elds are added

to the displacement-based �nite element approximation. Partition of unity enrichment methods for

discontinuities and near-tip crack �elds were introduced by Belytschko and Black [23]. Mo�es

et al. [24] proposed the generalized Heaviside function as a means to model the crack away from

the crack tip, and developed simple rules for the introduction of the discontinuous and crack-tip

enrichments. The numerical results presented in this paper demonstrate that for three-dimensional
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cracked bodies, the accuracy and performance of X-FEM is excellent. This opens up many exciting

possibilities for its further development and advancement.

The outline of this paper follows. In the following section, we introduce the extended �nite

element method, and in Section 3, we describe crack modelling in R2 and R3. In Section 4, the

computational methodology adopted in X-FEM and the numerical issues involved are discussed.

The strong and weak forms of the Galerkin method for elastostatics, along with the discrete

equations for X-FEM are given in Section 5. In Section 6, a brief description of three-dimensional

domain integral computations is presented, which is followed by numerical results for several

problems in three-dimensional linear elastic fracture mechanics. The numerical SIF results are

compared to available reference solutions from the literature. Some �nal remarks and conclusions

are made in Section 7.

2. EXTENDED FINITE ELEMENT METHOD

In �nite element methods, a partition of a domain into sub-domains (elements) forms the basis of

mesh generation. The presence of 
aws or inhomogeneities such as cracks, voids, and inclusions

must be taken into account in mesh generation—the mesh must conform to these geometric enti-

ties. In unstructured mesh generation, a Delaunay tessellation of the domain results in triangular

elements in R2 and tetrahedral elements in R3. Alternatively, algorithms for the construction of

quadrilateral (in two dimensions) or hexahedral meshes (in three dimensions) are also available.

In computational fracture, quadrilateral or hexahedral elements are preferred to triangular or tetra-

hedral elements due to the higher-order approximation in the former. However, in comparison

to unstructured mesh generation, hexahedral mesh generation has not reached a mature stage of

development, and hence mesh generation in three dimensions for computational fracture applica-

tions continues to present many challenges.

The extended �nite element method alleviates much of the burden associated with mesh gener-

ation by not requiring the �nite element mesh to conform to cracks, and in addition, provides a

seamless means to use higher-order elements or special �nite elements without signi�cant changes

in the formulation. The essence of X-FEM lies in sub-dividing a model problem into two distinct

parts: mesh generation for the geometric domain (cracks not included), and enriching the �nite

element approximation by additional functions that model the 
aw(s) and other geometric entities.

The enrichment of the �nite element approximation is described as follows. Consider a point

x of Rd (d = 1–3) that lies inside a �nite element e. Denote the nodal set N = {n1; n2; : : : ; nm},
where m is the number of nodes of element e. (m = 2 for a linear one dimensional �nite element,

m = 3 for a constant-strain triangle, m = 8 for a trilinear hexahedral element, etc.) The enriched

displacement approximation for a vector-valued function u(x) :Rd →R
d assumes the form

u
h(x) =

∑

I

nI∈N

�I (x)uI +
∑

J

nJ∈N
g

�J (x) (x)aJ ; (uI ; aJ ∈ Rd) (1)

where the nodal set Ng is de�ned as

N
g= {nJ : nJ ∈N; !J ∩
g �= ∅} (2)

In the above equation, !J =supp(nJ ) is the support of the nodal shape function �J (x), which

consists of the union of all elements with nJ as one of its vertices; and 
g is the domain associated
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Figure 1. Co-ordinate con�guration for crack front enrich-
ment functions.

Figure 2. Partitioning algorithm for a crack in
two dimensions.

with a geometric entity such as a hole, crack surface, or crack front. In general, the choice of the

function  (x) depends on the geometric entity.

3. CRACK MODELLING

The crack is modelled by enriching the nodes whose nodal shape function support intersects the

interior of the crack by a discontinuous function, and enriching the nodes whose nodal shape

function support intersects the crack front (crack-tip in R2) by the two-dimensional asymptotic

crack-tip �elds.

3.1. Enrichment

We restrict the decription of the implementation to planar cracks in three dimensions. The

enrichments concepts that follow are easily extended to non-planar cracks but the implementa-

tion is more di�cult.

Consider a single crack in three dimensions, and let �c be the crack surface and �c the crack

front. Note that for an internal crack, the crack front corresponds to the boundary of the crack:

�c= @�c whereas for an edge crack, the crack front is only part of the boundary: �c⊂ @�c. The

interior of a planar crack is modelled by the enrichment function H (x), which we refer to as a

generalized Heaviside function. The function H (x) takes on the value +1 above the crack and −1
below the crack. More precisely, let x∗ be the closest point to x on the crack �c, and n be the
normal to the crack plane (Figure 1). The H (x) function is then given by +1 if (x − x∗) · n¿0
and −1 otherwise, i.e.

H (x)=

{

1 if (x− x∗) · n¿0
−1 otherwise

(3)

To model the crack front and also to improve the representation of crack-tip �elds in three-

dimensional computations, crack-tip enrichment functions are used in elements which contain the

crack front. In the neighbourhood of the crack front, the asymptotic �elds are two-dimensional in
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nature. The crack front enrichment consists of functions which incorporate the radial and angular

behaviour of the two-dimensional asymptotic crack-tip displacement �eld:

	(x)≡{ 1;  2;  3;  4}=
[√

r cos
�

2
;
√
r sin

�

2
;
√
r sin � sin

�

2
;
√
r sin � cos

�

2

]

(4)

where r and � are polar co-ordinates in the x1̂–x2̂ plane (Figure. 1). Note that the second function

in the above equation is discontinuous on the crack plane.

If a three-dimensional planar crack coincides with element boundaries, an equivalence exists

between the �nite element space with the crack explicitly modelled by the mesh and the X-FEM

space with H (x) used as the enrichment function. This correspondence for two-dimensional cracks

was shown in References [24; 25], which readily extends to three dimensions.

4. COMPUTATIONAL METHODOLOGY

Computational geometry issues associated with the representation of the crack and the enrichment

of the �nite element approximation are discussed. The X-FEM implementation is performed in

C++: the object-oriented features of C++ provide for better data management, encapsulation, code

re-usability, 
exibility, and maintenance. In the following sub-section, we describe some of the im-

portant computational geometry issues, with an aim towards an accurate and robust implementation.

4.1. Mesh–geometry interactions

The �nite element mesh consists of tetrahedral, prismatic, and hexahedral elements. In two dimen-

sions, cracks are represented by line segments and the crack front is a point. In three dimensions,

a crack is represented by a polygon partition into triangles, and the crack front consists of line

segments as in Reference [19].

The notion of geometric predicates which is widely used in computational geometry, is also

an integral part of the X-FEM mesh–geometric computations. In the following sub-section, we

brie
y touch upon the concept of geometric predicates. In crack modelling, di�erent functions are

used to enrich the displacement approximation in the interior of the crack and on the crack front.

Therefore, one of the �rst tasks is to determine the �nite elements that intersect the crack. These

�nite elements are then partitioned into simplices so that numerical integration of the weak form

accounts for the discontinuities on either side of the crack surface. These sub-tetrahedrons are also

used to determine whether a node is to be enriched (see Section 4.1.4).

4.1.1. Geometric predicates. Since data is stored and computations performed using �nite-precision

arithmetic, it is essential that the robustness of algorithms is maintained even for small perturba-

tions in the data. E�orts have been made to develop robust geometric predicates [26], which are

especially important in the development of algorithms for the Delaunay tessellation and Voronoi

diagram of a point set.

The incircle and orientation tests are widely used in computational geometry. The orientation

test determines whether a point lies to the left of, to the right of, or on a line or plane de�ned

by other points. The incircle test determines whether a point lies inside, outside, or on a circle

(sphere) de�ned by other points. Each of these tests is performed by evaluating the sign of a
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determinant. Instead of explicitly computing intersections, geometric predicates provide an easier

and robust means to evaluate queries.

In X-FEM, the orientation test is used to determine the nodal enrichment for a query point x and

in the algorithm for the partitioning of the �nite elements into tetrahedrons in three dimensions.

In the evaluation of the predicates associated with a planar crack and for generality to both two

and three dimensions, we assume the crack plane (crack segment in two dimensions) is de�ned

by a point x0 that lies on it and a unit normal m. In two dimensions, if e1 and e2 are unit vectors

in the plane, then t×m is a vector along e3, where t is the tangent vector to the crack segment,

and in three dimensions m is the unit normal to the plane of the crack. The equation of the crack

segment in R2 or the crack plane in R3 can be written as

f(x)= (x− x0) ·m=0 (5)

For a query point x, the ternary predicates ABOVE (f(x)¿�), BELOW (f(x)¡−�), and ON

(−�6f(x)6�) are used, where �=10−6 is used as the tolerance for a �nite element mesh

with element edge length of O(1).

4.1.2. Crack–mesh intersection. A na��ve approach to �nding all �nite elements that intersect the

crack is to test for intersection with each element in the mesh. Clearly, this is of O(N ) complexity,

where N is the number of elements in the mesh, and hence is not a computationally attractive

choice. A more appealing alternative that is computationally feasible is adopted. Since determining

the elements that intersect with the crack is non-trivial, we �rst �nd a candidate set that is possibly

larger than the desired set. We use a bounding box (BB) of cell dimensions 10×10×10 that
encompasses the entire �nite element mesh. The cell dimensions of the BB-mesh is used as a

compromise between computational costs and storage requirements. For a given query point x that

is contained in a BB-element b, all the associated �nite elements tb that intersect b are obtained. In

three dimensions we use a map of the vertices of a triangle from x→ [�; �], where (0; 0); (1; 0),

and (0; 1) are the vertex co-ordinates of the reference right-angled triangle. The starting search

path for a triangle [xa; xb; xc] is (�; �)= (0; 0); (�; �)= (1; 0), and (�; �)= (0; 1), In order to �nd

the set of all intersected elements (may be larger than the exact set), a recursive algorithm is

implemented. The stopping criterion is

1. if all points are in the same �nite element; or

2. if the element sets for all adjacent points have at least one element in common; or

3. if the distance between all points in the reference co-ordinate is less than a prescribed tol-

erance. In three dimensions, |�1 − �2|¡10−5=
√
V and |�1 − �2|¡10−5=

√
V , where V is the

area of the triangle (simplex partition of the crack).

4.1.3. Partitioning of �nite elements. The algorithm to compute the intersected �nite elements is

outlined in Section 4.1.2. Here we describe the algorithm to partition a given three-dimensional

�nite element into tetrahedrons. The partitioning is carried out for all the elements that are selected

on the basis of the algorithm presented in Section 4.1.2; as mentioned earlier, this set of elements

can be larger than the exact set of elements that intersect the crack domain. In Section 4.1.4, an

additional criterion is invoked so that the nodal enrichment is precise.

We �rst illustrate the procedure in two dimensions. Each crack segment is de�ned by a point

x0 on it and the unit normal vector m that is de�ned in the previous sub-section. The face and

element connectivity of each �nite element are also known, with counterclockwise orientation of
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the nodes assumed in the connectivity. Standard Template Library (STL) containers in C++ are

used to create maps for node-to-co-ordinates, node-to-orientation, and edge-to-connectivity for the

�nite element. The orientation (ABOVE= + 1; BELOW= − 1; ON=0) of the nodes of the �nite

element are set and stored in the node-to-orientation map.

The element is partitioned if and only if there exists two nodes in the connectivity with orien-

tation +1 and −1. A loop over the edges of the �nite element is carried out, and if there is an

intersection for an edge, the point of intersection is computed and added to the node-to-co-ordinate

and edge-to-connectivity maps. The orientation of the point of intersection is set to +10 if the

orientation of the �rst point of the edge is +1, and −10 if the orientation of the �rst point is −1.
This updates the edge map for the �nite element. Now, using the edge map of the �nite element,

two new edge maps for the domains above and below the crack are created. The two edges (upper

and lower) that correspond to the crack segment are also created such that counterclockwise orien-

tation of the nodes is preserved. The centroid of the two domains is evaluated with the orientation

for the node that belongs to the surface above the crack set to +100, and the orientation set to

−100 for the node that belongs to the surface below the crack. A loop over the two edge maps is
carried out and on using the centroid for each surface, the partitioned elements are obtained. The

partitioned elements for a sample crack are illustrated in Figure 2.

The partitioning of three-dimensional polyhedrons is more involved than the two-dimensional

case. Even for the simpli�ed case of partitioning a three-dimensional �nite element that is cut

by a plane, no public-domain package that can readily interface to a C++ program is currently

available. An algorithm was hence developed and implemented for the partitioning of a three-

dimensional �nite element (such as tetrahedron, prism, or hexahedron) by a single crack plane.

The crack is de�ned by a point x0 that lies on it and the unit normal vector m that is de�ned in the

previous sub-section. The nodal connectivities of the �nite element are stored in counterclockwise

orientation, and the face connectivities are stored such that an edge that is common to two faces

is traversed in opposite directions. The nodal and face connectivity of a tetrahedron are such that

if the nodes on a face are traversed in a certain sense, then the thumb, using the right-hand rule,

points in the direction of the fourth node. Standard Template Library (STL) containers are used

to create maps for node-to-co-ordinates, node-to-orientation, and face-to-connectivity for the �nite

element. The orientation (ABOVE = +1; BELOW = −1, ON =0) of the nodes of the �nite element
are set and stored in the node-to-orientation map.

The element is partitioned if there exists two nodes in the connectivity with orientation +1 and

−1. A loop over the faces of the �nite element is carried out, and if the crack plane intersects

an edge, the point of intersection is computed and added to the node-to-co-ordinate and face-to-

connectivity maps. The orientation of the point of intersection is set to +10 if the orientation of

the �rst point on the edge is +1, and −10 if the orientation of the �rst point is −1. This updates
the face-to-connectivity map for the �nite element.

Next, using the face map of the �nite element, two new maps for the domains above and

below the crack plane are created. The two faces (upper and lower) that correspond to the crack

plane are also created so that the orientation of the nodes in the face meet the requirement—

counterclockwise for nodes in the above surface and clockwise orientation for the nodes in the

below surface preserve the correct orientation of the partitioned tetrahedrons. The centroid of the

nodes in the face maps is evaluated and the orientation of the new point (node) that belong to the

above face map is set to +100, and −100 for the point (node) below the face map. The centroid
of the two volumes is evaluated with orientation +1000 for the node that belongs to the volume

above the crack and orientation set to −1000 for the node that belongs to the volume below the
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Figure 3. Partitioning algorithm for an edge
crack in three dimensions.

Figure 4. Elastostatic boundary value problem.

crack. A loop over the two face maps is carried out and using the centroid for each face and the

centroid of the two volumes, the partitioned elements are obtained. The partitioned elements for

an edge crack in a 4× 4× 4 hexahedral mesh are shown in Figure 3.

4.1.4. Nodal enrichment. We next describe the enrichment for crack modelling. The enriched

�nite element approximation is

u
h(x)=

∑

I

nI∈N

�I (x)uI +
∑

J

nJ∈N
c

�J (x)H (x)aJ +
∑

K

nK∈N
f

�K (x)

(

4
∑

l=1

 l(x)b
l
K

)

(6)

The second and third terms on the right-hand side of the above equation are the discontinuity and

front enrichments, respectively. The set Nf consists of those nodes for which the closure of the

nodal shape function support intersects the crack front. The set Nc is the set of nodes whose nodal

shape function support is intersected by the crack and which do not belong to Nf :

N
f = {nK : nK ∈N; �!K ∩�c �= ∅} (7)

N
c = {nJ : nJ ∈N; !J ∩�c �= ∅; nJ =∈Nf} (8)

Note that for any node in Nc, the support of the nodal shape function is fully cut into two

disjoint pieces by the crack. If for a certain node nI , one of the two pieces is very small compared

to the other, then the generalized Heaviside function used for the enrichment is almost a constant

over the support, leading to an ill-conditioned sti�ness matrix. Therefore, in this case, node nI is

removed from the set Nc. The criterion for nodal inclusion in Nc is as follows: the volume above

the crack is Vabove, and the volume below the crack is V below! :V!=V above! +V below! . If either of the
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two ratios, V above! =V! or V below! =V! is below a prescribed tolerance, the node is removed from the

set N c. We use a tolerance �=10−4.

5. GOVERNING EQUATIONS

5.1. Strong form

Consider a body 
⊂R3, with boundary �. The boundary � consists of the sets �u, �t, and �
i
c , such

that �=�u ∪�t ∪m
i=1 �

i
c . All the internal surfaces �

i
c are assumed to be traction-free. The boundary

value problem of elastostatics solves for the displacement u(x) of a body 
 which is �xed on

�u and subjected to surface forces (tractions) along �t (Figure 4). We now consider the boundary

value problem for small displacement elastostatics. The �eld equations of elastostatics are

∇ · � + b= 0 in 
 (9a)

�=C : U (9b)

U=∇su (9c)

where ∇s is the symmetric gradient operator and C is the tensor of elastic moduli for a homoge-

neous isotropic material.

The essential and natural boundary conditions are

u= �u on �u (10a)

� · n= �t on �t (10b)

� · n= 0 on �i
c (i=1; 2; : : : ; m) (10c)

where n is the unit outward normal to 
, �u and �t are prescribed displacements and tractions,

respectively, and m is the number of internal surfaces. Note that Equation (10c) imposes the

condition that the internal surfaces �i
c be traction-free.

5.2. Weak form and discrete system

We consider the weak form for the equilibrium equation of elasticity with the associated boundary

conditions. For the discrete system, the weak form (principle of virtual work) is

Find uh ∈Vh such that

∫


h

�(uh):U(vh)=

∫


h

b · v d
 +
∫

�h
t

�t · v d� ∀vh ∈Vh
0 (11)

where uh(x)∈Vh and vh(x)∈Vh
0 are the approximating trial and test functions used in X-FEM.

Since we are not concerned with convergence proofs, we restrict the discussion to those spaces

used in the construction of the discrete approximation. The space Vh is the enriched �nite element

space that satisfy the Dirichlet boundary conditions, and which include basis functions that are
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discontinuous across the crack surfaces. The space Vh
0 is the corresponding space with homogeneous

Dirichlet boundary conditions.

In a Bubnov–Galerkin procedure, the trial functions uh as well as the test functions vh are

represented as linear combinations of the same shape functions. The trial and test functions, which

are based on Equation (6) are

u
h(x) =

∑

I

nI∈N

�I (x)uI +
∑

J

nJ∈N
c

�J (x)H (x)aJ +
∑

K

nK∈N
f

�K (x)

(

4
∑

l=1

 l(x)b
l
K

)

(12)

v
h(x) =

∑

I

nI∈N

�I (x)vI +
∑

J

nJ∈N
c

�J (x)H (x)cJ +
∑

K

nK∈N
f

�K (x)

(

4
∑

l=1

 l(x)e
l
K

)

(13)

where �I (x) are the �nite element shape functions, and  j(x) (j=1–4) are the enriched functions

for the crack front, which are given in Equation (4).

On substituting the trial and test functions from Equation (12) into Equation (11), and using

the arbitrariness of nodal variations, the following discrete system of linear equations is obtained:

Kd= f (14)

where d is the vector of unknowns at the nodes, and the sti�ness matrix K is

KI J =

⎡

⎢

⎣

K
uu
I J K

ua
I J K

ub
I J

K
au
I J K

aa
I J K

ab
I J

K
bu
I J K

ba
I J K

bb
I J

⎤

⎥

⎦
(15a)

K
��
I J =

∫


h

(B�
I )
T
CB

�
J d
 (�; �= u; a; b) (15b)

In Equation (14), the external force vector f is de�ned as

fI = {fuI ; faI ; fbI1; fbI2; fbI3; fbI4} (16a)

f
u
I =

∫

�h
t

�I �t d� +

∫


h

�Ib d
 (16b)

f
a
I =

∫

�h
t

�IH �t d� +

∫


h

�IHb d
 (16c)

f
b
Ij =

∫

�h
t

�I j�t d� +

∫


h

�I jb d
 (j=1–4) (16d)

The discrete equations have three degrees of freedom for unenriched nodes. Nodes in the set

N
c have each three degrees of freedom, and nodes in the set Nf have each twelve degrees of

freedom—see Section 4.1.4 for details on the nodal sets Nc and Nf .
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In Equation (15), C is the constitutive matrix for an isotropic linear elastic material, and Bu
I ,

B
a
I , and B

b
Ij are the matrix of shape function derivatives which are given by

B
u
I =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�I; x 0 0

0 �I;y 0

0 0 �I; z

0 �I; z �I;y

�I; z 0 �I; x

�I;y �I; x 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(17a)

B
a
I =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(�IH); x 0 0

0 (�IH);y 0

0 0 (�IH); z

0 (�IH); z (�IH);y

(�IH); z 0 (�IH); x

(�IH);y (�IH); x 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(17b)

B
b
I = [B

b
I1 B

b
I2 B

b
I3 B

b
I4] (17c)

B
b
Ij =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(�I j); x 0 0

0 (�I j);y 0

0 0 (�I j); z

0 (�I j); z (�I j);y

(�I j); z 0 (�I j); x

(�I j);y (�I j); x 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(j=1–4) (17d)

6. NUMERICAL RESULTS

Several problems are presented to illustrate the accuracy and versatility of the extended �nite

element method in three-dimensional elastostatics. We �rst solve some benchmark crack problems,

and then examine the performance of X-FEM for cracks in �nite specimens. Finite element mesh

generation is carried out by gmsh [27], which is available in the public-domain. In all problems,

numerical integration is carried out using Gauss–Legendre quadrature. In hexahedral elements

associated with only the �nite element shape functions, 2×2×2 quadrature is used, and in elements
that also have enriched degrees of freedom, 6 × 6 × 6 quadrature is used. In all problems, the
generalized Heaviside function H (x) and the two-dimensional asymptotic crack-tip displacement

functions (see Section 3) are used to model the crack. A conjugate gradient sparse iterative solver

IML++ [28] is used with the convergence tolerance � set to 10−8. The elastic constants used in the

computations are: Young’s modulus E=105 psi and Poisson’s ratio �=0:3. The implementation

of the domain form of the contour J -integral and the parameters used in the computations are

described in the following section.
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6.1. Computation of stress intensity factors

Domain integral methods [29–31] are used to evaluate stress intensity factors along the three-

dimensional crack front. For the mode I crack problems considered here, the stress intensity factor

at a point s on the crack front is given by

KI (s)=

√

J (s)E

1− �2
(18)

With the normal to the crack front (and in the crack plane) oriented along the x̂1-axis of a local

co-ordinate system, the pointwise J -integral is given by

J (s)= lim
�→0

∫

�(s)

H1̂�n� d� (�= 1̂; 2̂) (19)

where

H1̂j =W�1̂j − �ijui;1̂ (i; j= 1̂; 2̂; 3̂) (20)

Domain integral representations of the crack-tip contour integral provide a convenient and accurate

method for evaluating stress intensity factors in two- or three-dimensional fracture. For linear

elastostatics, in the absence of body forces and material inhomogeneities, and assuming traction-

free crack surfaces, the volume form of the domain integral is given by [29]

J (s)= −

∫

V

(Hkjqk; j + Hkj; jqk) dV

∫

Lc

lknk ds

(21)

where V is a volume enclosing the crack front, nk(s) are components of the in-plane unit outward

normal at s, lk(s) are components of an arbitrary unit vector at s lying in the plane of the crack

and Lc is the perturbed segment (virtual extension) along the crack front (Figure 5). The vector

�eld qk is de�ned in V as

qk =

⎧

⎪

⎨

⎪

⎩

lk on St

0 on S0

arbitrary otherwise

(22)

6.1.1. Implementation in X-FEM. The mode I stress intensity factors are computed by the domain

form of the contour J -integral. Consider a point s on the crack front where the stress intensity

factor is to be computed. In order to evaluate Equation (21), a virtual extension domain is required

around the point s on the crack front [20]. Typically, in fracture analysis with �nite elements, the

mesh is constructed so that the virtual extension domain is the union of �nite elements in the

vicinity of the point s. Since the crack is not modelled as part of the �nite element mesh in

X-FEM, this is not a natural choice. In the two-dimensional implementation of X-FEM [24],

elements that were within a characteristic distance of the crack-tip were included in the virtual

extension domain, which does not readily generalize to an easy-to-implement algorithm in three

dimensions. An alternative approach is to use an independent grid of hexahedral cells around the

point s to de�ne the virtual extension domain. This approach is used in EFG for fracture problems,

and we adopt the same approach in the three-dimensional implementation of X-FEM.
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Figure 5. Volume representation for J -integral
evaluation.

Figure 6. Local crack front co-ordinate axes for
virtual extension domain.

We describe the virtual extension domain for the elastostatic problems presented in Section 6. Let

the perturbed segment (Lc) along the crack front be parameterized by the curvilinear

co-ordinate s :R3→ [0; Lc]. Consider the evaluation of the domain integral at a point s on the

crack front. The dimensions of the virtual extension domain are: L1̂; L2̂ and L3̂ along the x1̂- ; x2̂-,

and x3̂-co-ordinate directions, respectively. The point s is located at the origin of the local orth-

ogonal x1̂x2̂x3̂-co-ordinate system (Figure 6). The x2̂-axis is contained in the plane of the crack

and is tangential to the crack front at s. The J -domain is sub-divided into 6× 2× 6 hexahedral
cells, and 6× 6× 6 quadrature rule is used in each integration cell. In three-dimensional fracture,
the denominator in Equation (21) is well approximated by the formula (L+

2̂
+ L−

2̂
)=2 [32], where

L+
2̂
and L−

2̂
are the element lengths on either side of s in the x̂2-direction. On using the same

approximation, we obtain
∫

Lc

lknk ds ≈
L2̂
2

(23)

which is used in the X-FEM domain integral computations. We de�ne the vector function qk in

the local crack-front co-ordinate system. The function q1̂ is chosen to be a trilinear function which

vanishes on the boundary of the virtual extension domain and is unity at the point s. In the local

crack-front co-ordinate system,

q1̂(x1̂; x2̂; x3̂)=

(

1− 2|x1̂|
L1̂

)(

1− 2|x2̂|
L2̂

)(

1− 2|x3̂|
L3̂

)

; q2̂=0; q3̂=0 (24)

with the aid of the above formulas for various terms that appear in Equation (21), we evaluate

the domain form of the J -integral.

6.2. Benchmark problems

For an in�nite domain, two well known and widely used benchmarks are the penny crack and the

elliptical crack under pure mode I loading conditions. The problem of an edge crack in a �nite-

thickness plate under tension [33] is also used to study the accuracy of new numerical techniques

in three-dimensional SIF computations. We compare the numerical stress intensity factors to the

SIF solutions for the above problems.
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Figure 7. Mesh (surface) for the penny crack problem.

6.2.1. Planar penny crack in an in�nite domain. Let a be the radius of a penny crack with x3 the

co-ordinate axis normal to the plane of the crack. The closed-form solution for the stress intensity

factor along the crack front of a penny crack in an in�nite domain under uniaxial tension is given

by [34; 35]

KEI =2�
0
33

√

a

�
(25)

Consider a penny crack of radius a=0:1 inside a bi-unit cube. The specimen is subjected to the

stress �033=1 in the x3-direction. Since the e�ects of the �nite size of the model are minimal, we

use the exact solution given in Equation (25). Two di�erent meshes are used: (a) Mesh 1 consists

of 24× 24× 24 hexahedral elements, and (b) Mesh 2 has 24× 24× 25 hexahedral elements. In
the former, the crack lies on element faces, whereas in the latter, the crack is located in the centre

of the elements (no intersection with any element faces). Both meshes have graded re�nement

towards the centre of the cube and in the plane of the crack (Figure 7). The nodes normal to the

crack surface are equi-spaced with length h.

In Figure 8, a contour plot of the crack plane (x3=0) nodal enrichment for the 24× 24× 24
mesh is shown. The domain of enrichment extends an element length (h) above and below the

crack plane: identical contour plots to that shown appear on x3=± h. In Figure 8(a), the nodes

enriched on the crack plane by the generalized Heaviside function are indicated, and in Figure 8(b),

the nodes enriched by the crack-tip functions are shown. In both the contour plots, colour codes

are assigned a number between 0 and 4, where the number indicates the number of nodes on the

face of the element that are enriched. As one can observe, the mesh is fairly coarse in the vicinity

of the crack front. In Table I, the parameters for the system equations are indicated.

The dimensions of the virtual extension domain are: L1̂=2a; L2̂= a=2; L3̂=2a, and L1̂= L2̂=

a=2; L3̂=2:5a for meshes 1 and 2, respectively. The SIF results have four-fold symmetry; hence

results for only 0◦6�690◦ are presented. In Table II, the numerical SIF results are presented as

a function of �, and in Figure 9, the normalized SIF is shown as a function of �. The X-FEM
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Figure 8. Nodal enrichment on the crack plane for the penny crack problem:
(a) generalized Heaviside function; and (b) crack-tip functions.
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Table I. System parameters for the penny crack problem.

Number of Non-zero Sparsity
Mesh unknowns entries (%)

24× 24× 24 48 948 4 212 194 0.17
24× 24× 25 42 678 3 531 390 0.19

Table II. Stress intensity factors for the penny crack problem.

� KI KI

(deg) KE
I [24× 24× 24] [24× 24× 25]

0 0.3568 0.3508 0.3617
10 0.3568 0.3583 0.3503
20 0.3568 0.3592 0.3559
30 0.3568 0.3467 0.3595
40 0.3568 0.3535 0.3383
50 0.3568 0.3535 0.3383
60 0.3568 0.3467 0.3595
70 0.3568 0.3592 0.3559
80 0.3568 0.3583 0.3503
90 0.3568 0.3508 0.3617

Figure 9. Normalized stress intensity factors for
the penny crack problem.

Figure 10. Geometric de�nitions for an
elliptical crack.

results are observed to be in good agreement with the exact solution: the errors in the SIFs are

between 0.4–2.9 per cent for mesh 1 and 0.3–5.2 per cent for mesh 2.

6.2.2. Planar elliptical crack in an in�nite domain. We consider an elliptical crack with semi-

major axis a=0:1 and semi-minor axis b=0:05 inside a bi-unit cube. The body is subjected to unit

tractions �033=1 on x3=± 1. The co-ordinate x3-axis is normal to the plane of the crack. Since the
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Table III. Stress intensity factors for the elliptical
crack problem.

�

(deg) KE
I KI

0 0.2314 0.2358
10 0.2365 0.2378
20 0.2495 0.2459
30 0.2662 0.2564
40 0.2830 0.2776
50 0.2983 0.2965
60 0.3107 0.3089
70 0.3198 0.3163
80 0.3253 0.3194
90 0.3273 0.3202

crack dimensions are small compared to the specimen, we use the in�nite domain solution as the

reference solution. The exact SIF solution for a planar elliptical crack in an in�nite domain is [35]

KEI =
�033

√
�b

E(k)

{

sin2 �+
b2

a2
cos2 �

}1=4

(26)

where � is the elliptic angle (Figure 10), �033 is the far-�eld applied stress in the x3-direction, and

E(k) which is the elliptic integral of the second kind is given by

E(k)=

∫ �=2

0

√

1− k2sin2 � d�; k2=
a2 − b2

a2
(27)

The �nite element mesh consists of 24× 24× 24 hexahedral elements. The number of unknowns
in the matrix system is 48 324, with 3 993 602 non-zero entries in the sti�ness matrix–matrix spar-

sity is 0.17 per cent. The dimensions of the virtual extension domain are: L1̂=2b; L2̂= b; L3̂=4b.

The SIF results have four-fold symmetry; hence results for only 0◦6�690◦ are presented. For

the chosen values of a and b, the value of the elliptic integral E(k)= 1:211096 [36]. In Table III,

the SIF results are presented as a function of the elliptic angle �, and in Figure 11, the normalized

SIF is plotted versus �. The agreement between the exact solution and the numerical results is

good for the entire range of �. The minimum (�=10◦) and maximum (�=30◦) errors in the

stress intensity factors are 0.6 and 3.7 per cent, respectively.

6.2.3. Single edge-crack tension specimen. A single edge-crack tension specimen (Figure 12)

subjected to unit tractions in the x3-direction is analysed. The dimensions of the specimen are:

h=w=1:75; a=w=1:0, and t=w=3:0. This benchmark problem was studied by Raju and Newman

[33] using singular �nite elements, and by Li et al. [37], who used a symmetric weak-form

boundary integral equation method. Two di�erent �nite element meshes are considered in the X-

FEM model: (a) Mesh 1 consists of 20× 20× 20 hexahedral elements, with each element a cuboid
of dimensions h1 × h2 × h3 (h1=0:5, h2=0:75, h3=0:875); and (b) Mesh 2 has 40 × 40 × 40
hexahedral elements, with each element a cuboid of dimensions h1×h2×h3 (h1=0:25, h2=0:375,

h3=0:4375). Unit tractions �033=1 are imposed on the top and bottom surfaces. The solution
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Figure 11. Stress intensity factors for the elliptical
crack problem

Figure 12. Single edge-crack tension specimen.

Table IV. System parameters for the
single edge-crack problem.

Number of Non-zero Sparsity
Mesh unknowns entries (%)

20× 20× 20 30 612 2 941 268 0.30
40× 40× 40 213 522 17 955 158 0.04

parameters for the di�erent meshes are indicated in Table IV. The dimensions of the virtual

extension domain are: L1̂=6h1, L2̂=2h2, and L3̂=6h2.

The SIF results for the hexahedral meshes are presented in Table V, and in Figure 13, com-

parisons with the results obtained by Raju and Newman [33] and Li et al. [37] are shown. The

arc length co-ordinate s is measured along the crack front, from its centre (s=0) to the point

where it meets the free surface
(

s= t=2
)

. The stress state at the centre of the specimen is under

near plane strain conditions and the numerical SIF approaches the two-dimensional plane strain

result. Good agreement between the X-FEM results and the reference solutions are obtained in

the interior, away from the free surface. The SIF results due to Li et al. [37] are greater than the

other numerical results towards the centre of the crack front.

The stress state at the intersection of a crack with a free surface has been the subject of many

studies. The order of the singularity at the intersection of a crack and a free surface is r−
 (
¡ 1
2
),

where 
 is dependent on the Poisson’s ratio [38]. Bazant and Estenssoro [39] investigated the stress

singularity index by a special �nite element method for mode I–III cracks. Tan and Fenner [40]

used boundary integral equations to study the nature of the singularity at the intersection between

a crack and a free surface and showed numerically that the stresses (strains) near the free surface

are less singular than the inverse square root form, and the e�ect becomes more pronounced with

increasing Poisson’s ratio. The trend towards a diminishing KI as the free surface is approached

is observed in the X-FEM as well as other reference solution results.
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Table V. Stress intensity factors for the single edge-crack
under uniaxial tension problem.

KI

�033
√
�a

KI

�033
√
�a

s

t
[20× 20× 20] [40× 40× 40]

0.00 2.8470 2.7873
0.05 2.8481 2.7869
0.10 2.84703 2.7858
0.15 2.8449 2.7836
0.20 2.8412 2.7799
0.25 2.8350 2.7736
0.30 2.8244 2.7629
0.35 2.8056 2.7441
0.40 2.7702 2.7084
0.45 2.6796 2.6283

Figure 13. Comparison of stress intensity factors for the single edge-crack problem.

Table VI. System parameters for the penny crack in a
�nite cube problem.

Number of Non-zero Sparsity
Mesh unknowns entries (%)

20× 20× 20 50 568 4 770 050 0.19
40× 40× 40 213 252 18 115 070 0.04

6.3. Planar penny crack in a �nite cube

As an example of an embedded crack in a �nite domain, we consider the problem of a penny 

crack of radius a located at the centre of a bi-unit cube. We choose a =0 :5, and compare the 
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Table VII. Stress intensity factors for the penny crack in a
�nite cube problem.

� KI KI

(deg) [24× 24× 24] [40× 40× 40]

0 0.8641 0.8685
10 0.8706 0.8792
20 0.8848 0.8933
30 0.8702 0.8863
40 0.8754 0.8920
50 0.8754 0.8920
60 0.8704 0.8864
70 0.8853 0.8935
80 0.8709 0.8799
90 0.8644 0.8689

numerical results to those obtained by Li et al. [37] who used a symmetric weak-form boundary

integral equation formulation. As a reference solution, a re�ned mesh solution was adopted in

Reference [37] for the stress intensity factor at �=0◦:

K refI =
2:213�033

�

√
�a; (�=0◦) (28)

where �033 is the applied stress in the x3-direction. Two di�erent �nite element meshes are con-

sidered: (a) Mesh 1 consists of 24 × 24 × 24 hexahedral elements, with each element a cube of
edge length h= 1

12
; and (b) Mesh 2 has 40 × 40 × 40 hexahedral elements, with each element

a cube of edge length h=0:05. Unit tractions �033=1 are imposed on the surfaces x3= ± 1. In
Table VI, the solution parameters are indicated. The dimensions of the virtual extension domain

are: L1̂=2h, L2̂=2h, L3̂=2h. In Table VII, the SIF results are presented as a function of �. With

re�nement, improved SIFs are obtained for all �, which indicates the correct trend towards con-

vergence. Comparing the numerical solution at �=0◦ to the reference solution given in Equation

(28), we observe that the di�erence between the numerical result and the reference solution for

meshes 1 and 2 are about 2.0 per cent and 1.6 per cent, respectively.

7. CONCLUSIONS

The formulation and implementation of the extended �nite element method (X-FEM) for three-

dimensional crack modelling was described. In X-FEM, the �nite element space is enriched by

adding special functions to the approximation using the notion of partition of unity. For three-

dimensional crack modelling, a discontinuous function was used to model the interior of the crack

surface, and functions from the two-dimensional asymptotic crack-tip displacement �elds were

used for the crack front enrichment. These enrichment functions were added to the �nite element

approximation within the context of a displacement-based Galerkin formulation.

Issues pertaining to accurate and robust geometric computations in X-FEM were addressed, and

some of the algorithms were described. The performance of the extended �nite element method for

three-dimensional static cracks was studied. Benchmark mode I problems of penny and elliptical
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cracks in an in�nite domain were solved. The numerical stress intensity factors (SIFs) were found

to be in good agreement with the exact solution for these problems.

The SIFs obtained using X-FEM for a single edge-crack in a �nite-thickness specimen

approached the plane strain results towards the centre of the specimen and showed a signi�-

cant decrease as the free surface was approached, which corresponded well to other reference

solutions. The SIF results at �=0◦ for an embedded penny crack in a �nite cube also showed

good agreement with the solution due to Li et al. [37].

This study demonstrates the accuracy of the extended �nite element method in three-dimensional

SIF computations. The method provides a robust and versatile numerical tool to solve crack prob-

lems in complex structural components without the need to explicitly align the mesh with the

crack. By eliminating the need to include the crack surfaces in the model, mesh generation is

greatly simpli�ed. Furthermore, it facilitates the modelling of crack growth for fatigue studies,

since a single mesh su�ces.
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