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Experimental applications of the methodology developed for spherical indentation are proposed in this
paper. Two quasi-spherical indenters with different shapes were used in order to evaluate the stress–strain
curve of five steels. Although the shape of the indenter was not perfectly spherical, it was shown that
models developed for spherical indentation can be used with an adequate correction. The results are in
good agreement with those obtained by tensile tests. Moreover, the case of the austenitic alloy (AISI 316L)
revealed the importance of sample preparation for the experimental results.
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. Introduction

The indentation test was developed several decades ago in order
o determine certain mechanical properties. The determination of
he elastic properties is based on equations deduced from the Hertz
heory [1–9]. An overview of the elastic theories applied to indenta-
ion is proposed in the paper of Borodich and Keer [10]. Concerning
he determination of plastic behaviour, most of the proposed meth-
ds are commonly called reverse analysis. In such an approach,
he determination of the mechanical properties is based on the
nversion of models deduced from numerical studies of the inden-
ation test. Most of these methods are based on Tabor’s theory
11], which introduced the representative strain [12–15]. We can
owever quote other methods which are not based on the Tabor
heory; Kucharski and Mróz [16] use several partial unloadings in
rder to determine the plastic part of the indentation depth. The
etermination of the yield stress and the hardening parameters can
e calculated from this plastic part. Nayebi et al. [17] propose to
etermine the yield stress and the work hardening exponent from
ndentation loading. However, this method can only be applied to
teels with a Young’s modulus of 210 GPa and a Poisson ratio of
.3. Another way of determining mechanical properties by inden-
ation is by the inverse analysis approach [18,19]. In this approach,
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n adequate algorithm is used in order to minimize the difference
etween experimental and simulated observable variables.

An interpretation of spherical indentation experiments and the
etermination of hardening law parameters was the challenge of
revious papers by Collin et al. [20,21]. The first paper concerned
he determination of the contact radius by using equations deduced
rom the Hertz theory [1]. A methodology was then proposed to
educe both the indenter deformation and the contact radius from
he knowledge of indenter and sample elastic properties. The dif-
erence ı between the measured displacement and the desired one
Fig. 1) (linked to indenter deformation) is quantified by the follow-
ng formula which can be applied to spherical indenters:
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In Eq. (1), R is the indenter radius, P is the indenta-

ion load, a is the contact radius and coefficients A–F are
iven by A = −1.6817.10−5; B = 3.6242; C = 0.2003; D = −7784.7622;
= −15.3689 and F = 649.4548. Eq. (1) is different to the one pro-
osed in [20] in order to take into account the indenter Poisson
atio value.
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Fig. 2. Microstructure of AISI 1035.
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crystal structure. The last sample is the well-known austenitic steel,
AISI 316L (Fig. 4) with a face-centred cubic crystal structure.

Figs. 2–4 show the indentation imprint obtained for a load of
200 N. At this applied load, the number of metallic grains which
ig. 1. Difference between measured displacement hP0 and wanted displacement
P1.

The polynomial equation which links the contact radius a and
he elastic properties of both the indenter (denoted Ei and �i) and
he sample (denoted Es and �s) can be written as

E2
s + ˇEs + � = 0, (2)
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S.

In these equations, S is the unloading slope given by S = dP/dh.
qs. (1) and (2) only depend on the elastic properties of both the
ndenter and the sample. However, these equations can be applied
n the presence of plastic deformations of the sample. Indeed, the
ontact radius a or the unloading slope S depend on the plastic
roperties of the sample. Thus, Eqs. (1) and (2) are indirectly linked
o the plastic properties of the sample by the appearance of the
ontact radius or the unloading slope.

The second paper concerned the study of the uniqueness of the
olution in the case of spherical indentation. Several models were
roposed in order to describe the changes of four pieces of inden-
ation data for power hardening law parameters. It was then shown
hat it is possible to deduce a quite good evaluation of the power
aw parameters by inversion of models. It was shown in [20,21] that
sotropic hardening behaviour was not sufficient to describe the

hole unloading part of the indentation curve. Then the data which
an be used in the reverse analysis are the total energy Wt and the
ndentation load P. Our numerical analysis showed that P/E*R2 and

t/E*R3 are well described by a power equation (E* is the reduced
oung modulus). As an example, the indentation loading curve is
iven by Eq. (3):

P
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(

h

R

)A

exp(−B) (3)

In Eq. (3) coefficients A and B depend on the plastic properties of
he sample. The reader can refer to [21] in order to find more details
bout A and B. As an example, of the Hollomon law parameters (�y

nd n) and for the P(h) curve, A and B are given by the following
ormulas using �∗

y = �y/E∗:

∗ ∗2 2
A = 0.8946 + 227.6553�y − 10699.6670�y + 3.6171n + 0.0717n + 1.

1 + 143.5716�∗
y − 6922.8572�∗2

y − 26221.0330�∗3
y + 2.5028

B = 5.3303 + 22.8952�∗
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1 + 309.8288�∗
y − 0.7235n − 4693.6406�∗2

y − 1.9085n2 − 303.34
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Fig. 3. Microstructure of AISI 1100.

In this paper, we propose the application of the methodology
eveloped in [20,21] on five steels which present different kinds
f microstructures. Moreover, it is shown that spherical indenta-
ion theories can be used even if the indenter has not a perfectly
pherical shape.

. Materials

In this study, five different steels were considered. Among them,
our are low carbon steels: AISI 1035, 1080, 1100 and 35CrMo4.
n these steels, two are composed of pearlite and ferrite phases
1035 and 35CrMo4) (Fig. 2) and two have been treated in order
o transform the pearlite phase into cementite globules and ferrite
1080 and 1100) (Fig. 3). These four steels have a body-centred cubic
3472n

n

632�∗
yn

40�∗
yn

(4)
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imentally determined and the simulated ones for the two studied
indenters. In Fig. 7, which concerns AISI1080, we can see that,
for the non-spherical indenter, a difference occurs between the
experimental and the numerical contact radius at the end of the
indentation test. Experimental displacement is higher than that of
Fig. 4. Microstructure of AISI 316L.

re affected by the indentation is sufficient for considering the
ested domain as representative.

The elastic properties of these samples were measured by an
ltra-sound method and are close to E = 210 GPa and � = 0.29 for
035, 1080, 1100 and 35CrMo4. Concerning 316L, the measured
alues are E = 195 GPa and � = 0.28. Tensile tests, realized on normal-
zed samples issued from the same rod as the indentation samples,
ed to the stress–strain curve of the five steels.

. Indenters

Indentation tests were realized on the five samples with two
ifferent indenters made of Tungsten Carbide. The first one, was
reviously presented in [21], and does not have a perfectly spher-

cal shape. Thus, its profile was measured in order to simulate
ts behaviour. The second indenter has a sphere shape of radius
= 1.25 mm. The elastic properties of these two indenters were
easured by ultra-sound. The Young modulus was Ei = 590 GPa and

he Poisson ration was �i = 0.22.
We realized indentation tests with these two indenters at 200 N

nd 10 loading, unloading and reloading cycles. In order to apply the
pherical indentation theories to the first indenter, an equivalent
adius function was determined. An indentation test was simu-
ated with the true profile of this indenter on a fictive sample (with
xed Hollomon’s law parameters). From the simulated P(h) curve,
he model (Eq. (3)) and the mechanical properties of the simulated
ample, it was possible to determine which equivalent radius can
ive the same P(h) curve as the simulated one. In other words, Eq. (3)
as inversed with R considered as an unknown function. This led to

n equivalent radius function (quoted Req) which is determined as
function of the contact radius a. This procedure can be applied to
ther indenters which are not perfectly spherical in order to apply
pherical indentation theories. In this case, the indenter radius R
as to be replaced by the Req function.

. Experimental evaluation of the stress–strain curve by
ontinuous indentation

It was observed that depending on the points which are consid-

red for minimization, we can obtain a minimum with a low yield
tress and a very high work hardening exponent. This phenomenon
ccurs if only the first points of the P(h) curve are considered. It can
e explained by the low deformation level at this stage which is not
ufficient to describe the material’s behaviour well. Fig. 5 presents F

3

ig. 5. Comparison between experimental and numerical indentation curves for
ISI 1080.

he comparison between experimental and numerical P(hP0) curves
hich correspond to the measured indentation curves before cor-

ection. This figure shows that the simulated P(h) curve with this
inimum is not close to the experimental one. We can say that,

lthough several minima can be found, this is not a problem of
on-uniqueness of the solution. This is the reason why we suggest
imulating the found minimum in order to compare the experimen-
al and numerical curves. If the two curves are close, the minimum
an be considered as correct.

The procedure described in [20] has been applied to the exper-
mental indentation curves in order to remove the displacement
ue to the indenter’s deformations. It enabled the P(hP1) curve (see
ig. 1) to be obtained from the P(hP0) measured curve together with
nowledge of the elastic properties of both the indenter and the
ample. This procedure also allowed the contact radius changes
uring the indentation test to be determined. From the P(hP0)
urves, it was possible to determine the indentation data Wt(h),

e(h) and Wp/Wt(h). As explained in [21], We(h) and Wp/Wt(h)
annot be used in the minimization procedure as a consequence of
he kinematic hardening influence. We observed that minimization
ith Wt(h) or P(h) gave almost the same results. Then, the presented

esults are obtained after minimization on the P(h) curve.
The identification procedure was applied on the five steels

nd the solutions found were simulated. Figs. 6–9 present the
omparison between the contact radius changes which were exper-
ig. 6. Comparison between experimental and numerical a(h) curves for AISI 1035.



Fig. 7. Comparison between experimental and numerical a(h) curves for AISI 1080.
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Fig. 10. Determination of stress–strain curve for AISI 1035.
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this method is limited and it is not possible to remove a great depth
without damaging the surface, particularly the planarity.

Fig. 16 shows the application of our methodology on 316L steel
ig. 8. Comparison between experimental and numerical a(h) curves for AISI 1100.

he simulated one and the experimental contact radius is less than
hat of the simulated one. This is in concordance with Fig. 5 where
e can observe a difference between the experimental and numer-

cal unloading part. This difference can be explained by a variation
f the elastic properties of the sample with plastic deformation.
owever, this aspect cannot be taken into account in the present
ork. Figs. 10–13 present the comparison between the identi-
ed stress–strain curves and the experimental ones for AISI1035,
ISI1080, AISI1100 and 35CrMo4. In these figures, the identified
arameters were obtained after minimization on the whole P(h)
urve. It is then shown that, for these four samples, we obtained
quite good evaluation of the stress–strain curve by continuous

ndentation. Moreover, the use of a non-spherical indenter with the
dequate correction also gave a good evaluation of the stress–strain
urve.

Concerning the austenitic steel 316L, Fig. 14 shows that this steel
s very sensitive to the way the surface was polished. If this was only
anually polished, the indentation displacement was much lower
han if the surface was prepared with electrolytic polishing. Among
he five studied samples, only 316L presents this phenomenon. This
an be explained by several aspects. First of all, as this steel is not
agnetic, it is impossible to rectify the indentation sample before

ig. 9. Comparison between experimental and numerical a(h) curves for 35CrMo4.

w

4

Fig. 11. Determination of stress–strain curve for AISI 1080.

olishing in order to remove the deformed coat induced by the sam-
le machining. Moreover, Fig. 15 shows that the stress increased
ery quickly at the beginning of the stress–strain curve. Then, on
he one hand, if we consider the yield stress as the end of the elas-
ic area (area 1 in Fig. 15) of the curve, we obtain approximately
00 MPa. On the other hand, if we consider the commonly used
ield stress at a plastic strain equal to 0.2% (area 2 in Fig. 15), we
btain approximately 400 MPa. This is the reason why electrolytic
olishing was realized on the 316L indentation samples. However,
ith manual and electrolytic polishing. We can see that the results

Fig. 12. Determination of stress–strain curve for AISI 1100.



Fig. 13. Determination of stress–strain curve for 35CrMo4.
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Fig. 16. Determination of stress–strain curve for AISI 316L.
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Fig. 14. Influence of polishing on the indentation curve for AISI 316L.

btained from the sample which was manually polished are higher
han the experimental stress–strain curve. Concerning the elec-
rolytic polished sample, we can observe that the results are nearer
o the experimental stress–strain curve. However, electrolytic pol-
shing seemed not to have removed the entire deformed coat on the

urface of the sample. This example, which does not work as well
s the four other samples, shows the importance of the preparation
f the indentation sample.

Fig. 15. Beginning of the stress–strain curve of AISI 316L.
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ig. 17. Comparison between experimental and numerical indentation curve for the
teel AISI 316L.

As a conclusion, the investigation on the five studied materials
hows that the indentation test can provide a quite good evalua-
ion of the stress–strain curve. The results are in good agreement
ith the tensile tests for low carbon steels which can be rectified

nd do not present a high hardening level for low deformations.
oncerning the 316L steel, the results obtained by indentation can-
ot be considered as incorrect. Indeed, the simulation is in good
greement with the experimental indentation curve (Fig. 17 for the
pherical indenter). In this case, the indentation test shows that
he surface of the sample is not representative of the tensile test
ample.

Thus, if the aim of the indentation test is to have a good assess-
ent of the strain–stress curve, an adequate preparation of the

urface is required. However, if the aim of the test is to characterize
he material’s properties at a localized area, Figs. 14 and 16 show
hat different indentation curves lead to a different stress–strain
urve. A comparison with the stress–strain curve obtained by a
ensile test can determine how much the surface was hardened.

. Conclusion

An experimental evaluation of the spherical indentation theo-
ies developed in [20,21] was performed on five different steels.

t is shown that these theories can be applied in order to obtain

good evaluation of the stress–strain curve even if the indenter
oes not have a perfectly spherical shape. We then propose the
ethodology in order to correct the indentation curve obtained
ith non-spherical indenters. This procedure is not restricted to
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ur indenter, as it can be applied to other indenters. However, it
equired a good knowledge of the indenter profile. Moreover, the
esults presented in this paper are not restricted to our models.
ethods cited in the first paragraph can be applied with non-

pherical indenters with the adequate correction function.
It is also shown that, for some cases, the preparation of the sam-

le surface has a great influence on the results. For samples which
an be polished manually after machining quite accurate results can
e obtained. However, for the steel AISI 316L, electrolytic polishing
ives better results.
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