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Evaluation of Two Homogenization Techniques for Modeling
the Elastic Behavior of Granular Materials
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Abstract: This paper discusses the capabilities of two homogenization techniques to accurately represent the elastic behavior of granular
materials considered as assemblies of randomly distributed particles. The stress-strain relationship for the assembly is determined by
integrating the behavior of the interparticle contacts in all orientations, using two different homogenization methods, namely the kinematic
method and the static method. The numerical predictions obtained by these two homogenization techniques are compared to results
obtained during experimental studies on different granular materials. Relations between elastic constants of the assembly, interparticle
properties, and fabric parameters are discussed, as well as the capabilities of the models to take into account inherent and stress-induced
anisotropy for different stress conditions.
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Introduction

A granular material can be considered as a collection of particles
of different sizes and shapes. This discontinuous medium can be
represented by an equivalent continuous medium whose mechani-
cal properties should depend on geometric arrangement and con-
tact interactions between interacting particles.

The mechanical properties of a granular assembly can be re-
lated to the properties of the microstructure by using homogeni-
zation techniques. In this paper, we seek to evaluate how two
homogenization methods can be applied to the modeling of the
elastic behavior of randomly packed granular materials.

A first model was developed based on the so-called kinematic
hypothesis, which states that every particle displaces in accor-
dance with a uniform deformation field �Walton 1987; Chang
1988; Chang et al. 1989; Rothenburg and Bathurst 1989�. A sec-
ond model was developed using a static hypothesis �Cambou et
al. 1995; Chang and Gao 1996; Liao et al. 1997�, which relates
the average stress of the granular assembly to a mean field of
particle contact forces. Using a static hypothesis, the particle dis-
placements are considered to fluctuate around a mean displace-
ment field that represents the best fit for the actual displacements
�Liao et al. 1997�. This mean displacement field can be derived by
using the least-squares method, which leads to a more relaxed

kinematic condition in comparison to the kinematic hypothesis.
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The determination of the elastic parameters of the granular
assembly based on the characteristics of the particle contacts will
be discussed. The predictions of the two models under different
stress loading conditions will be compared to experimental results
obtained from different granular materials. Recent developments
in measuring techniques have allowed more accurate investiga-
tions for the behavior of particulate media at very small strains,
giving a more comprehensive insight into their elastic properties
along different stress paths.

Micromechanical Approach

In recent years, several studies have been devoted to the elastic
characteristics of granular materials within the micromechanical
framework �Walton 1987; Chang 1988; Rothenburg and Bathurst
1989; Jenkins 1988; Chang and Liao 1994; Cambou et al. 1995�.
All these studies fundamentally presume the following two
relationships.
1. Microscale contact law: This provides the relationship be-

tween force and displacement at an interparticle contact,
which describes the material behavior at a microscale.

2. Link between micro and macro variables: This provides
relationships between macroscale variables and micro-
scale variables. There are two hypotheses of micro-macro
relationships:

a. Static hypothesis provides a relationship between inter-
particle contact forces and the assembly stress, and

b. Kinematic hypothesis provides a relationship between in-
terparticle contact displacements and the assembly strain.

Interparticle Behavior

Let N be the total number of interparticle contact orientations in
the packing. The elastic contact stiffness of two particles at the

cth contact is defined by



�f i
c = kij

c �� j
c �1�

where kij
c =interparticle contact stiffness tensor. For two particles

in contact, a local coordinate system can be constructed for each
contact with three orthogonal base unit vectors: n is normal to the
contact plane; s and t are tangential to the contact plane as shown
in Fig. 1.

Let kn
c be the compressive contact stiffness in normal direction

and kt
c the shear contact stiffness. Assuming the shear contact

stiffness is the same in s and t directions and that there is no
coupling effect between normal and shear directions, the contact
stiffness tensor kij

c can then be expressed in terms of the unit
vectors n, s, and t, as

kij
c = kn

cni
cnj

c + ki
c�si

csj
c + ti

ctj
c� �2�

For each particle contact, the corresponding auxiliary local
coordinate system is related to the global coordinate system ac-
cording to �see Fig. 1�

n = �cos �,sin � cos �,sin � sin ��

s = �− sin �,cos � cos �,cos � sin ��

t = �0,− sin �,cos �� �3�

The vector s is located on the plane consisting of x and n. The
vector t is perpendicular to this plane and can be obtained by the
cross product of n�s. The rolling resistances between two par-
ticles are not discussed in this paper.

The value of the stiffness for two elastic spheres can be esti-
mated from a Hertz–Mindlin formulation �Mindlin and Der-
esiewicz 1953�. For sand grains, a revised form can be adopted
�Chang et al. 1989�, given by

kn = kn0� fn

Ggl
2�n

; kt = kt0� fn

Ggl
2�n

�4�

where Gg=elastic modulus for the grains; fn=contact force in
normal direction; l=branch length between the two particles; and
kn0, kt0, and n=material constants. For two spherical particles, the
branch length is twice that of particle radius l=2r. Let the expo-
nent n=1/3 and

kn0 = Ggr� �12

1 − �g
�2/3

�5�

the normal contact stiffness in Eq. �4� is equivalent to Hertz’s

Fig. 1. Local coordinate at interparticle contact
contact formulation.
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The stress-strain relationship for an assembly can be deter-
mined from integrating the behavior of interparticle contacts in all
orientations. In the integration process, a micro-macro relation-
ship is required.

Micro-Macro Relationship: Kinematic Hypothesis

Granular material is envisioned as a collection of particles. Under
deformation, particles in the material undergo translation and ro-
tation. In order to establish a link between the discrete particle
system and its equivalent continuum system, a continuum dis-
placement field ui�x� is constructed in such a way that the dis-
placement at the centroid of the nth particle, ui

n, coincides with
the displacement field, i.e.,

ui�xn� = ui
n �6�

where xn=location of the nth particle.
In classic continuum mechanics, a linear displacement field is

employed to describe the deformation of a representative volume
element. For a granular material, the size of a representative vol-
ume element is relatively large. Thus we approximate the dis-
placement field by

ui�x� = ui + ui,jxj �7�

where ui, ui,j=constants for the representative volume. The
second-rank tensor ui,j has nine components.

In the further derivation, for the sake of convenience, we de-
fine the branch vector li

c as the vector from the centroid of particle
“a” to that of particle “b” as shown in Fig. 2.

li
c = xi

b − xi
a �8�

Given the position vector of the contact point as xi
c, the following

may be written:

xi
a = xi

c − ri
ac; xi

b = xi
c − ri

bc �9�

Thus li
c=ri

ac−ri
bc.

Between the two individual convex-shaped particles, as shown
in Fig. 2, the interparticle compression �i

c at the contact point c
can be obtained as follows:

�i
c = �i

ab = ui�xb� − ui�xa� �10�

Using the polynomial expression in Eq. �7�, we can describe
the interparticle compression using the continuum field of dis-
placement.

�i
c = ui,jlj

c or ��i
c = �ui,jlj

c �11�

The representative volume V is subjected to forces on its

Fig. 2. Schematic plot of two particles in contact
boundary surface S. Neglecting the body force of particles, the



work done per unit volume of the discrete system can be ex-
pressed as a summation of the work done over all interparticle
contacts in the unit volume.

�W =
1

V�
V

fi
c��i

c = �iq�uq,i �12�

Then, by substituting the interparticle compression ��i
c with

Eq. �11�, it yields

�iq =
1

V�
V

fq
cli

c or ��iq =
1

V�
V

�fq
cli

c �13�

Micro-Macro Relationship: Static Hypothesis

From the static hypotheses proposed by Liao et al. �1997�, the
relation between the global strain and interparticle displacement
in an incremental form can be written as follows �the finite strain
condition is not considered�:

�uj,i = Aik
−1�

c=1

N

�� j
clk

c �14�

where the branch vector lk
c is defined as the vector joining the

centers of two particles, and the fabric tensor is defined as

Aik = �
c=1

N

li
clk

c �15�

Utilizing Eq. �12� and substituting Eq. �14�, the mean force on
the contact plane of each orientation can be obtained as

f j
c = �ijAik

−1lk
cV or �f j

c = ��ijAik
−1lk

cV �16�

Stress-Strain Relationship

For the case of kinematic hypothesis, the stress-strain relationship
can be derived using the interparticle contact law �Eq. �1��, the
stress definition �Eq. �13��, and the continuum expression of ��i

c

�Eq. �11��.

��iq = Ciqkl�uk,l where Ciqkl =
1

V�
c=1

N

li
cll

ckqk
c �17�

For the case of static hypothesis, the stress-strain relationship
can be derived using Eqs. �1�, �14�, and �16�, it yields

�ui,j = Cijmp
−1 ��mp where Cijmp

−1 = Aik
−1Amn

−1 V�
c

�kjp
c �−1lk

cln
c

�18�

In the case of random packing with sufficient number of par-
ticles, the discrete interparticle contact orientations can be ap-
proximated by a continuous function E�� ,��, where � and
�=two angles in the spherical coordinate system as shown in Fig.
1. Integration of E�� ,�� over the surface of unit sphere should
equal the total number of interparticle contacts, N �i.e., self-
consistency equation�.

N =��/2 �2�

E��,��sin �d�d� �19�

0 0
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For any arbitrary parameter hc, which is contact orientation
dependent, the summation of hc over all contacts can be approxi-
mated by an expression of integral, given by

�
c=1

N

hc =�
0

�/2 �
0

2�

E��,��h��,��sin �d�d� �20�

where N=total number of contact orientations;
E�� ,��=distribution function of interparticle contact orientations;
and h�� ,��=continuous expression of hc.

For an orthotropic material, the distribution of contact orien-
tations can be represented by a continuous spherical harmonic
expansion in three dimensions, the truncated form of the expan-
sion consisting of second-order terms, given by

E��,�� =
N

2�
�1 +

a0

4
�3 cos 2� + 1� + 3a22 sin2 � cos 2��

�21�

For a cross-anisotropic material, a22 becomes equal to zero and
Eq. �21� is reduced to

E��,�� =
N

2�
�1 +

a0

4
�3 cos 2� + 1�� �22�

and for an isotropic material,

E��,�� =
N

2�
�23�

In three dimensions, the inherent anisotropy can be repre-
sented by a distribution whose major axis often coincides with the
vertical direction. An example of distributions with different val-
ues of a0 is shown in Fig. 3. The anisotropy of the packing struc-
ture creates a mechanical behavior anisotropy whose directions
are identical to those of the geometric anisotropy.

It was found �see Chang and Misra �1990�� that the anisotropy
can be characterized by a fabric tensor that matches the coeffi-
cients of the spherical harmonic expansion, for example, in the
case of an orthotropic material

�Fij	 = 

1 + a0 0 0

0 1 −
a0

2
+ 3a22 0

0 0 1 −
a0

2
− 3a22

� �24�

In addition to the contact distribution, other parameters, which
are orientation dependent, can also be expressed by the same
manner. For example, the function h�� ,�� for a cross-anisotropic

Fig. 3. Distribution of contact orientations with different values of a0
material can be expressed as



h��,�� = hm�1 +
a0h

4
�3 cos 2� + 1�� �25�

Note that hm=mean value of h�� ,�� and the coefficient a0h

indicates the distribution of h�� ,��, which needs not to have the
same value as a0 in the contact distribution. Using the definition
of Eq. �20�, the following summation can be replaced by an inte-
gral form.

Aik = �
c=1

N

li
clk

c =
Nl2

2�
Āik

where Āik =�
0

�/2 �
0

2�

E��,��nink sin �d�d� �26�

For convenience, we define a packing density index �normal-
ized number of contacts per unit volume�, 	=Nl3 /V. Note that the
total number of contacts N per volume V is normalized by the
cube of the mean branch length l. The packing density index 	 is
unitless. The branch length is defined as the length between cen-
troids of two contact particles. For round particles, the mean
branch length is approximately equal to the mean particle size d.
The packing density index for an assembly of equal-sized spheres
can be related to the mean coordination number n̄ and the void
ratio e of the assembly �Chang et al. 1989�

	 =
Nl3

V
=

3n̄

��1 + e�
�27�

A relationship between n̄ and e obtained for a regular packing
of spheres is plotted in Fig. 4. Using the packing density index,
we can express the stiffness tensor for the kinematic method

Ciqkl =
	

d
�

0

�/2 �
0

2�

E��,��kqkninl sin �d�d� �28�

and flexibility tensor for the static method

Cijmp
−1 =

d

	
Āik

−1Āmn
−1�

0

�/2 �
0

2�

E��,��kjp
−1nknn sin �d�d� �29�

A numerical integration method can be used for the integrals
in Eqs. �28� and �29�. The integrals are computed based on a set
of integration points on the surface of a sphere. Each integration
point represents a contact orientation and has a weighting factor.
We found that the results are more accurate if the locations of
integration points on the surface of a sphere are symmetric about

Fig. 4. Relationship between void ratio and coordination number
the x-z plane and y-z plane �i.e., fully symmetric�. We studied the
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performance of this model using different numbers of integration
points and found that 74 integration points is adequate.

Isotropic Loading

Isotropic Fabric

We will at first assume an isotropic fabric for our particulate
material. Under this condition, the parameters of the proposed
model are the following:
• Packing density index �normalized number of contacts per unit

volume�: 	=Nl3 /V;
• Mean particle size, d; and
• Interparticle elastic constants: Gg, 
, and n, where the particle
modulus Gg and exponent n have been defined in Eq. �4�, and

=kt0 /kn0. For a representative volume consisting of a large num-
ber of round particles, in which the contact orientations are iso-
tropically distributed �Eq. �23��, an analytical form of the shear
modulus G and the Poisson’s ratio � of the granular assembly can
be computed based on static �Eq. �29�� or kinematic hypotheses
�Eq. �28��. With the static hypothesis, the following expressions
were obtained �see Liao et al. 2000�:

G =
5	kn


6d�3 + 2
�
�30�

� =
1 − 


2 + 3

�31�

where 	=packing density index. Using Eqs. �4� and �5�, under an
isotropic stress �c, the shear modulus G can be expressed as

G = Hg	
1−n��c

p0
�n

�32�

where p0=reference pressure �p0=1 MPa in the computation in
this paper�. Hg=function depending on elastic property of the
grain.

Hg =
5


2�6�3 + 2
�
Gg�3p0

Gg
�n

�33�

where Gg=particle modulus.
Based on the kinematic hypothesis, the shear modulus G and

the Poisson’s ratio � take the following expressions:

G =
	kn

30d
�2 + 3
� �34�

� =
1 − 


4 + 

�35�

An equation similar to Eq. �32� can be obtained for G

G = Hg�	
1−n��c

p0
�n

�36�

with the following expression for Hg�:

Hg� =
2 + 3


10�6
Gg�3p0

Gg
�n

�37�

Eqs. �31� and �35� show that Poisson’s ratios in both methods
depend only on the interparticle stiffness ratio 
. The expressions

of the shear modulus are similar in character and differ only by



the form of their dependency on 
. 
 is theoretically related to the
Poisson’s ratio of the particles �g, assuming a perfectly elastic
contact between the two spherical particles �Hertz’s law�:


 =
2�1 − �g�

2 − �g
�38�

For a given value of the stiffness ratio 
=kt0 /kn0 at the particle
level, the static hypothesis gives a lower value of the shear modu-
lus �and a larger value of Poisson’s ratio� of the assembly, com-
pared to the one obtained from the kinematic hypothesis �Fig. 5�.
It can be noticed in particular that the kinematic hypothesis will

Fig. 5. Shear modulus and Poisson’s ratio obtained from static
hypothesis compared to those obtained with the kinematic hypothesis

Fig. 6. Influence of grain size and distribu
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compute Poisson’s ratio values, which are always lower than
0.25. This can be a restriction upon the use of the model derived
from the kinematic hypothesis.

In fact, Eq. �38� leads to values of 
 in the range 0.8–0.95 for
values of 0.1��g�0.3. In these conditions, the computed values
of the Poisson’s ratio � of the assembly using Eqs. �31� and �35�
are in the range of 0.01–0.05, smaller than typical experimental
results obtained from diverse granular assemblies. In real granular
materials, such as natural sands, the particles have varied shapes
and roughness and do not behave like ideal elastic spheres. This
means that Eq. �38� from Hertz theory is not applicable in its
present form. A different procedure needs to be applied, based on
experimental results on granular materials. Knowing experimen-
tally the Poisson’s ratio � of the assembly, Eqs. �31� and �35� can
be used to determine, for each homogenization method, the
value of the ratio 
=kt0 /kn0. This means that 
 will have a dif-
ferent value in the two models, according to the following equa-
tions: 
= �1−2�� / �1+3�� for the static hypothesis, and

= �1−4�� / �1+�� for the kinematic hypothesis.

If we do so, it is interesting to notice that Eqs. �32� and �36�
for the shear modulus of the assembly, based on the two homog-
enization techniques, yield the same expression which is depen-
dent on the Poisson’s ratio � of the assembly

Hg = Hg� =
1 − 2�

2�6�1 + ��
�39�

Typical values for � are around 0.2 �Hicher 1996�, which lead
to values of 
 around 0.15 for the kinematic hypothesis and
around 0.45 for the static hypothesis.

The packing density index 	 can also be empirically deter-
mined from experimental results. The influences of void ratio and
confining stress on the Young modulus have been experimentally
studied for different granular materials �Hicher 2001�. The main
results are summarized in Fig. 6�a�. The following two conclu-
sions can be drawn: �1� for a given grain shape, no significant
influence of the grain size on elastic modulus can be detected, and
�2� the modulus is dependent on both void ratio and grain size
distribution; for a given void ratio, the Young modulus is higher
for soils with uniform gradation �i.e., smaller coefficient of uni-
formity Uc=d60/d10�. Thus the packing density index is no longer
a unique relationship with the void ratio e as it was shown in Fig.

n Young’s modulus �E and p are in Mpa�
tion o



4 for an assembly of equal-sized spheres. The grain size distribu-
tion should also be a factor influencing the packing density index.

Fig. 6�b� shows results obtained on different quartzic sands
�Hardin and Black 1966; Hardin and Drnevich 1972; Skoglund et
al. 1976; Iwasaki and Tatsuoka 1977; Belloti et al. 1996; Hoque
and Tatsuoka 1998�, including some studied in this paper. One
can see that the general trend is very similar to Fig. 6�a� and
confirms the conclusions stated above. If we assume that the grain
properties Gg and the Poisson ratio � are roughly the same for all
these quartzic sands, we can back-calculate, from the experimen-
tal results in Fig. 6, the packing densities and establish an empiri-
cal relationship between the packing density index 	 and the void
ratio e for various coefficients of uniformity Uc �Fig. 7�. The
mean particle size, d, is not an explicit parameter.

Thus the parameters of the proposed model are as follows:
• Packing density index 	 �obtained from void ratio e and coef-

ficients of uniformity Uc�, and
• Particle modulus Gg, stiffness ratio 
, and exponent n.

Therefore one can theoretically determine the shear modulus
of an assembly of particles, knowing the elastic properties of the
particles, the grain size distribution Uc, and the void ratio e. In the
subsequent study, the following phenomenological procedure was
adopted to determine the interparticle parameters of the models.
From test results, we can determine directly the stiffness ratio 

from the Poisson’s ratio of the assembly �Eqs. �31� and �35��. This
will lead to different values of 
 using either the static or the
kinematic hypothesis. The packing density index 	 can be deter-
mined from Fig. 7. The value of Gg and the exponent n can then
be determined by matching predicted and experimental values

Fig. 7. Empirical relationship for packing density as a function of
void ratio and of grain size distribution
��xy 0 0 0
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obtained for the material modulus �E or G�. The parameters
�	 ,Gg ,n� are identical for the two homogenization models. This
procedure will lead to identical numerical results for the elastic
constants of the granular assembly along isotropic loading under
either the kinematic or the static hypothesis.

Fig. 8 shows the comparison of experimental and numerical
results of the Young modulus as a function of void ratio and
isotropic stress for glass ballotini �d50=1 mm� and Hostun Sand
�Uc=1.8, d50=0.29 mm�. The measured values of Poisson’s ratio
�=0.21 for both glass ballotini and Hostun Sand �Biarez and
Hicher 1994; Hicher 1998� give a value of 
=0.36 for the static
hypothesis and 
=0.135 for the kinematic hypothesis. The value
of Gg=2 MN/mm2 and n=0.5 was determined for both glass bal-
lotini and Hostun Sand in order to match the experimental results.
By applying the chart in Fig. 7 for the packing density index 	,
the computed elastic moduli appear to agree very well with ex-
perimental results. Similar agreements were also found for the
predicted and measured elastic moduli for Toyoura Sand, Reid
Bedford Sand, Ottawa Sand, and Ticino Sand �the experimental
results shown in Fig. 6�. This demonstrated that elastic moduli
can be accurately predicted for granular materials under isotropic
loading using either static or kinematic homogenization tech-
niques. The two homogenization models will give identical re-
sults, provided that the ratio 
=kt0 /kn0 is determined for each
model from the experimental value of the Poisson’s ratio � of the
granular assembly.

Anisotropic Fabric

Recent experimental studies �Bellotti et al. 1996; Jiang et al.
1997; Hoque and Tatsuoka 1998� have demonstrated the influence
of inherent anisotropy on the mechanical response of granular
materials. When prepared in the gravitational field, granular ma-
terials may have an anisotropic packing structure even for spheri-
cal grains. Stress-strain behavior reflects the inherent anisotropic
fabric and therefore the elastic matrix will show cross-anisotropy
with the vertical and horizontal as principal axes

Fig. 8. Comparison between measured and predicted values of
Young’s modulus for glass ballotoni and Hostun Sand
�
��xx

��yy

��zz

��yz

��zx = 

1/Eh − �hh/Eh − �vh/Ev 0 0 0

− �hh/Eh 1/Eh − �vh/Ev 0 0 0

− �hv/Eh − �hv/Eh 1/Ev 0 0 0

0 0 0 1/Ghv 0 0

0 0 0 0 1/Gvh 0 ��
��xx

��yy

��zz

�yz

�zx  �40�
0 0 2�1 + �hh�/Eh �xy



The decomposition of the constitutive equations along a set of
planes allows us to formulate the dependency of the parameters
with respect to the orientation. We can thus obtain a response,
which depends on the loading orientation in relation to the direc-
tion of material anisotropy.

In order to demonstrate how the models are able to take into
account an inherent anisotropy, two examples were selected from
experimental results obtained by Hoque and Tatsuoka �1998� on
different granular materials. Fig. 9 presents experimental and
simulation results on Toyoura Sand �Uc=1.46, d50=0.16 mm� and
Hime Gravel �Uc=1.33, d50=1.73 mm�. The specimens were pre-
pared by air pluviation and tested under air-dried conditions.
Strains were measured by means of LDTs placed on the specimen
inside the triaxial cell. Measurements of Ev and �vh were obtained
by applying a small vertical stress increment ��v �=��zz� while
keeping the horizontal stress �h constant �i.e., ��xx=��yy=0�

Ev =
��v

��v
and �vh = −

��h

��v
�41�

Note that ��v=��zz and ��h=��xx=��yy. When applying a
small horizontal stress increment ��h �=��xx=��yy� while keep-
ing �v constant �i.e., ��zz=0�, the following relations can be
used:

Eh = �1 − �hh�
��h

��h
and

2�hv

1 − �hh
= −

��v

��h
�42�

One can observe that the two above equations for triaxial load-
ing are not sufficient to determine the three unknowns: Eh, �hv,
and �hh. The assumption made by Hoque and Tatsuoka �1998�
was �hh=�vh under isotropic stress states. Furthermore, due to the
limited accuracy of lateral strain measurements, the writers be-
lieved that the measured values of �hv were not reliable and thus
did not report them. This shows how difficult it is to measure with
sufficient accuracy all the elastic constants for an anisotropic
specimen.

Table 1. Elastic Parameters for Toyoura Sand �e=0.65�: Static
Hypothesis

	 a0 Gg 
 a0
 n

2.5 0.24 2,100,000 0.45 0 0.5

Fig. 9. Isotropic loading on anisotropic Toyoura Sand and Hime
Gravel
7

In this study, the same assumption is made with regard to �hh.
Although it may create some uncertainty concerning the exact
value of Eh, this assumption will not affect the discussion of the
model capabilities in reproducing the overall behavior of aniso-
tropic granular materials.

Toyoura Sand and Hime Gravel are both uniformly graded
materials with Uc�2. The values of the vertical moduli Ev �Fig.
9� are in very good accord with the moduli for Toyoura Sand and
Hime Gravel presented in Fig. 6, because the moduli presented in
Fig. 6 correspond to measurements of vertical stiffness. Fig. 9
shows that the values of the horizontal moduli Eh are invariably
smaller for Toyoura Sand and Hime Gravel, indicating the pack-
ing anisotropy. The anisotropy comes from many sources, such as
the particle shape, the packing arrangement, the curvature of in-
terparticle contact, etc. We have no detailed information on these
factors. In order for the models to capture this inherent aniso-
tropy, we lump all effects into the anisotropy in contact number,
which is assumed orientational dependent and has the same ma-
terial axis as the fabric. For Toyoura Sand, the static hypothesis
provided an anisotropy factor of the distribution of contact num-
ber a0=0.24 in order to match the ratio of Eh /Ev. In the case of
the kinematic hypothesis, the anisotropy factor was found to be
slightly different: a0=0.17. In both cases, the packing density
index 	=2.5.

A Poisson’s ratio �vh=0.17 was measured during isotropic
loading and the same value was assumed for �hh. Estimated from
Eqs. �31� and �35�, the corresponding value of 
=0.45 and an
overall isotropy �a0
=0� was determined for the static hypothesis
model, whereas a mean value of 
=0.3 and an anisotropy factor
a0
=0.27 was determined for the kinematic hypothesis model.
Tables 1 and 2 summarize the parameters for Toyoura Sand.

According to the void ratio value for Hime Gravel, the corre-
sponding value for 	 is 4. The measured ratio between the hori-
zontal and vertical moduli Eh /Ev=0.6. To match the Eh /Ev ratio,
the anisotropy for the contact distribution is a0=1.03 for the static
hypothesis and a0=0.72 for the kinematic hypothesis. The aniso-
tropy for 
 was also introduced in order to obtain Poisson’s ratio
values in accordance with the measured ones. �For Hime Gravel,
�hh=�vh=0.15.� Tables 3 and 4 summarize the model parameters
for the two models.

Comparisons between numerical and experimental results
show that the two models can accurately represent the influence
of the inherent anisotropy under isotropic loading and provide
identical results for two selected sets of parameters �Fig. 9�. The
set of parameters is different for each model and has to be deter-
mined according to the experimental results for each granular
material. Therefore there is no direct physical meaning for the
selected values of each parameter, in particular for those that

Table 2. Elastic Parameters for Toyoura Sand �e=0.65�: Kinematic
Hypothesis

	 a0 Gg 
 a0
 n

2.5 0.17 2,100,000 0.3 0.27 0.5

Table 3. Model Parameters for Hime Gravel: Static Hypothesis

Material 	 a0 Gg 
 a0
 n

Hime Gravel �e=0.5� 4 1.03 2,100,000 0.56 0.05 0.5



control the level of anisotropy. One can remark, however, that a
constant value of Gg could be assumed, identical for the two
models, and that the same empirical relationship between 	 and e
can be used, assuming either initial structural isotropy or aniso-
tropy. The results also demonstrate that the inherent anisotropy
does not change under the influence of isotropic loading. In par-
ticular, the ratio between the horizontal and the vertical moduli
remains constant. We will, in a second stage, study the evolution

of the elastic constants during anisotropic loading.
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Anisotropic Loading

Isotropic Fabric

When the applied state of stress is no longer isotropic, the model
will predict a stress-induced anisotropy due to the dependency of
contact forces on the stiffness of interparticle contacts. For an
orthotropic condition, one can then express the flexibility matrix

in the axes of anisotropy as follows:
�
��11

��22

��33

��12

��23

��31

 = 

1/E11 − �21/E22 − �31/E33 0 0 0

− �12/E11 1/E22 − �32/E33 0 0 0

− �13/E11 − �23/E22 1/E33 0 0 0

0 0 0 1/G12 0 0

0 0 0 0 1/G23 0

0 0 0 0 0 1/G31

��
��11

��22

��33

�12

�23

�31

 �43�
Here we will consider only the case of a simple loading path;
starting from an isotropic state of stress �0, the stress in direction
1 is increased, while the stresses in directions 2 and 3 are kept
constant. After numerical integration of the equations at the par-
ticle level �Eqs. �28� and �29��, the elastic constitutive matrix is
found to be cross-anisotropic.

For this example, we selected for each model a set of param-
eters, which adequately reproduces the behavior of an assembly
of glass ballotini under isotropic loading. The evolution of the
elastic constants is plotted in Fig. 10 as a function of the stress
ratio �11/�22. One can see that all the components of the elastic
matrix evolve with the stress ratio, albeit at different rates. There-
fore the material anisotropy, represented, for example, by the ratio
E11/E22, increases with stress anisotropy. From Fig. 10, one can
see that the evolution of the material anisotropy is more pro-
nounced for the kinematic homogenization than it is for the static
one. E11 �E22� computed with the kinematic hypothesis increases
at a higher �smaller� rate when �v increases, compared to the
values obtained with the static hypothesis. Therefore the ratio
E11/E22 increases at a faster rate. The same conclusions can be
drawn for the evolution of the shear moduli G12 and G23. The
evolution of the Poisson’s ratios shows a higher increase in the
value of �12 in the case of the kinematic hypothesis, while �21

decreases at a similar rate. �23 shows a slight decrease in the case
of the kinematic hypothesis and a slight increase in the case of the
static hypothesis.

This example shows that the two models, even if they give
identical results along an isotropic stress path, produce signifi-
cantly different results along more general stress paths, in particu-
lar those with a change in the principal stress ratio. In the follow-
ing sections, we will compare the results of the numerical

Table 4. Model Parameters for Hime Gravel: Kinematic Hypothesis

Material 	 a0 Gg 
 a0
 n

Hime Gravel �e=0.5� 4 0.72 2,100,000 0.42 0.85 0.5
simulations obtained by the two homogenization techniques with
selected experimental results on sands with inherent anisotropic
fabric subjected to various stress paths.

Anisotropic Fabric

Toyoura Sand and Hime Gravel were also submitted to different
stress paths leading to various values of the ratio �v /�h �Hoque
and Tatsuoka 1998�. Numerical simulations were undertaken with
the two models, using the same sets of parameters as the ones
determined in the previous section �Tables 1–3�. The experimen-
tal results showing the evolution of the elastic properties with the
state of stress are given in Fig. 11 along with the results of the
numerical simulations. The experimental results suggest that the
Young moduli Ev and Eh are mainly dependent on the vertical and
horizontal stress �v and �h, respectively. Other experimental stud-
ies �see, for example, Bellotti et al. �1996� and Kuwano and Jar-
dine �2002�� reached the same conclusions. However, one can see
in Fig. 11 that the evolution of Ev and Eh with �v and �h are also
influenced by the value of the stress in the perpendicular direction
�i.e., �h for Ev and �v for Eh�. The numerical simulations show
the same pattern and demonstrate the capability of the models to
reproduce the observed behavior along anisotropic stress paths.

Fig. 10. Stress induced anisotropy



One notices, however, that the model derived from the static hy-
pothesis gives a more pronounced influence of the transverse
stress on vertical and horizontal Young moduli, compared to the
model derived from the kinematic hypothesis. As a consequence,
stress induced anisotropy, which can be expressed by the influ-
ence of the �v /�h ratio on the Ev /Eh ratio, is less marked in the
results obtained by the static model �Fig. 12�a��. The kinematic
model gives an evolution of the Ev /Eh ratio, which appears to be
in better agreement with the experimental evidence. The evolu-
tion of the Poisson’s ratio �vh with the stress ratio also shows an
influence of the stress state, which is well captured by the models,
although with less amplitude than the measured one in the case of
the static model �Fig. 12�b��.

The kinematic hypothesis appears therefore to be more suit-
able for modeling the evolution of the elastic constants of granu-
lar materials along anisotropic stress paths. In the following sec-
tion, we will apply this approach to stress paths with rotation of
the principal directions.

Rotation of Principal Stress Axes

A recent study by Geoffroy et al. �2003� sheds new light on the

Fig. 11. �a� Vertical modulus versus vertical stress for Toyoura Sand
and Hime Gravel. For a given vertical stress, the measured and
predicted range are obtained for �h /Pa=1.0–2.0. �b� Horizontal
modulus versus horizontal stress for Toyoura Sand and Hime Gravel.
For a given horizontal stress, the measured and predicted range are
obtained for �v /Pa=1.0–2.0.
evolution of the elastic constants along rotational paths by means
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of a new apparatus, a torsion hollow cylinder device. Measure-
ments of local strains by LVDT permit us to determine the fol-
lowing strain tensor expressed in the axes of initial anisotropy
�vertical z and horizontal r, ��.

��	 = 
�rr 0 0

0 ��� ��z/2

0 �z�/2 �zz
� = 
�r 0 0

0 �� �/2

0 �/2 �z
� �44�

Different loading conditions can be applied, with and without
stress rotation, by controlling axial, horizontal, and torsion shear
stresses

��	 = 
�rr 0 0

0 ��� �z

0 z� �zz
� = 
�r 0 0

0 �� 

0  �z
� �45�

Therefore 16 terms of the flexibility matrix can be determined
as follows:

�
��r

���

��z

��/�2
 = 


Mrr Mr� Mrz Mr�

M�r M�� M�z M��

Mzr Mz� Mzz Mz�

M�r M�� M�z M��

��
��r

���

��z

�2�
 �46�

In their paper, Geoffroy et al. �2003� present experimental val-
ues only for the two last columns of the elastic matrix. Measure-
ments of wave propagation velocities by bender and extender
elements were used for this purpose in addition to LVDT mea-
surements. The tests were performed on Hostun Sand prepared by
air-pluviation. Two types of stress paths were applied on the
specimens: a triaxial compression loading �type C� and a torsion
after axial loading corresponding to a ratio �v /�h=0.5 �type K�.
The writers did not provide any data concerning the inherent an-
isotropy due to the mode of deposition and assumed that the
specimens were close to initial isotropy. We will make the same
assumption for the purpose of this study, even if the results pre-
sented in the previous section have demonstrated that the material
is mainly cross-anisotropic in the case of air-pluviation prepara-
tion. Under these conditions, the parameters for Hostun Sand pre-
viously determined can be adopted.

Comparisons between experimental results and simulations
using the two homogenization techniques are presented in Fig. 13.
During triaxial loading �case T� the terms Mr�, M��, M�z, and Mz�

should start null and stay null all along the loading. Despite some
discrepancy in the measurements, the experimental data remain
close to a mean value equal to zero in accordance with the models

Fig. 12. Stress-induced anisotropy in Toyoura Sand and Hime Gravel
prediction. During a torsion shear test, these four terms will



evolve with changes in the principal stress directions. Compari-
sons with experimental data show that the two models are capable
of capturing reasonably well the evolution of these four param-
eters during torsion, considering the dispersion of experimental
data.

The evolutions of the terms Mrz and M�z during triaxial and
torsion tests are also presented in Fig. 13. These two terms are
always equal in the models and one can see, even though there is
also here dispersion in the experimental data, that the two models
give identical results and can predict correctly their evolution
during triaxial tests, whereas their values remain practically con-
stant during torsion shear tests.

Fig. 13 shows also the evolution of the terms Mzz and M��. It
can be seen that the two models can capture the decrease of these
two terms during triaxial loading, which corresponds to an in-
crease in Young and shear moduli with stress ratio. The amplitude
of the evolution is higher in the case of the kinematic hypothesis
in accordance with the conclusion of “Anisotropic Loading.” Dur-
ing shearing, these two terms slightly increase with the shear
amplitude, corresponding to a decrease in Young and shear
moduli. Here also, this tendency can be predicted by the two
models.

In conclusion, the models are able to take into account with
reasonable accuracy the evolution of the elastic matrix due to
stress induced anisotropy as a function of both stress amplitude
and the rotation of principal stress axes. The influence of the
stress ratio is more marked with the kinematic hypothesis com-
pared to the results obtained with the static hypothesis.

Summary and Conclusion

Elastic models for granular materials were developed by using
homogenization techniques applicable to assemblies of randomly
packed particles. The stress-strain relationship for the assembly
can be determined from integrating the behavior of interparticle

Fig. 13. Stress-induced anisotropy during loading tests with and witho
contacts in all orientations by using either a static hypothesis
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which relates the average stress of the granular assembly to a
mean field of particle contact forces, or a kinematic hypothesis
which estimates the interparticle displacements by assuming a
linear displacement field.

It has been demonstrated that these two theories, assuming an
interparticle law of the Herzian type, can provide an approximate
range of the true behavior. The elastic coefficients at the level of
the assembly depend on the parameters used to define the contact
law at the level of the particles. These parameters comprise the
contact law itself, i.e., the normal stiffness, kn0, and the shear
stiffness as a function of the normal stiffness, kt0=
kn0, as well as
the packing density index 	 �normalized number of contact per
unit volume� along a given plane orientation. The dependency of
the normal stiffness on the normal force gives a pressure-
dependent behavior for the assembly, while the interparticle stiff-
ness ratio 
 determines the value of the Poisson’s ratio. The in-
fluence of the void ratio of the assembly on the elastic properties
is taken into account through the packing density index 	. An
empirical relationship was proposed in order to link values of 	 to
the void ratio. This relationship was based on results obtained for
different granular materials with different grain size distributions.

Inherent anisotropy due to the mode of deposition can be mod-
eled by taking into account the orientation dependency of param-
eters. In the analysis, we assumed a fabric anisotropy by consid-
ering that the number of interparticle contacts is a function of the
orientation of the contact plane. In some cases, we assume the
parameter 
 is orientation dependent in order to predict the be-
havior of Poisson’s ratio.

Comparisons between numerical and experimental results
showed that the two homogenization models can represent accu-
rately the elastic behavior of different granular materials under
isotropic loading and give identical results for two selected sets of
parameters. The set of parameters is different for each model and
has to be phenomenologically determined according to the experi-
mental results for each granular material. Following this proce-
dure, the models are capable of a very systematic account of the

ss rotation �evolution of Mzr, M�r, Mz�, M�z, Mrz, M�z, Mzz, and Mrr�
ut stre
influence of the inherent anisotropy.



The stress-induced anisotropy along the different stress paths
is also considered and the numerical simulations demonstrate the
capability of the models to reproduce the observed behavior along
anisotropic stress paths. The kinematic model gives an evolution
of the stiffness ratio with the stress ratio, which appears to be in
better agreement with the experimental evidence. The two models
allow the transverse stresses to have a more pronounced influence
on Young and shear moduli, a consequence for the way the local
equations are integrated. This influence becomes less marked if
we consider the kinematic hypothesis. It must be pointed out,
however, that this discrepancy becomes noticeable only for el-
evated stress ratios ��1 /�2�2�.
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