
HAL Id: hal-01006807
https://hal.science/hal-01006807

Submitted on 2 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Eshelby-Kröner viscoelastic self-consistent model:
Multi-scale behavior of polymer composites under creep

loading
A. Yousfi, Sylvain Fréour, Frédéric Jacquemin

To cite this version:
A. Yousfi, Sylvain Fréour, Frédéric Jacquemin. Eshelby-Kröner viscoelastic self-consistent model:
Multi-scale behavior of polymer composites under creep loading. Advanced Materials Research, 2013,
682, pp.105-112. �10.4028/www.scientific.net/AMR.682.105�. �hal-01006807�

https://hal.science/hal-01006807
https://hal.archives-ouvertes.fr


Eshelby-Kröner viscoelastic self-consistent model: 
Multi-scale behavior of polymer composites under creep loading 

A. Yousfi1, a*, S. Fréour2,b and F. Jacquemin2,c

1Mechanical Laboratory, University Amar Télidji of Laghouat, Algeria 

2Institut de Recherche en Génie Civil et Mécanique (UMR CNRS 6183), 
LUNAM Université - Université de Nantes - Centrale Nantes 

CRTT, 37 Boulevard de l'Université, BP 406, 44602 Saint-Nazaire cedex, France 

a*youahm@yahoo.fr, bsylvain.freour@univ-nantes.fr, cfrederic.jacquemin@univ-nantes.fr 

Keywords: Multi-scale, polymer composites, creep, viscoelastic self-consistent model. 

Abstract 

The mechanical response of the composite structure in T650-35/PMR-15 aged at different 
temperatures was studied numerically. The time-dependent internal stresses in the composite ply 
and its constituents were computed during the creep process. In order to predict the effective 
properties of PMR-15/T650-35 composite ply in the temperature range [250-350°C], the time-
dependent mechanical properties of PMR-15 matrix determined experimentally [1], were 
considered. The mechanical properties of the fibers do not experience any change due to the aging 
process in such a temperature range [2, 3]. In order to achieve the computations, the visco-elastic 
Eshelby Kröner self-consistent model was used. 

1 Introduction 

The thermal aging of polymers is a slow process occurring mainly on structural elements designed 
to experience mechanical loading, while being subjected to high temperatures for long periods. In 
many cases, matrix creep can occur. As the role of the matrices is essentially to deform and support 
stresses primarily in shear, it becomes then important to consider this particularity within a 
phenomenological modeling framework [4]. This context corresponds to the case of graphite-
polyimide composites used in aerospace applications [1, 5]. According to, for instance, references 
[6, 7], below the glass transition temperature of its polymer matrix, composite materials exhibit a 
linear or at least a weakly nonlinear mechanical behavior until the damage threshold is attained. 
However, it is not the case anymore at high temperatures (relative to the glass transition temperature 
of the matrix). Indeed, recent experimental investigations performed at high temperatures on 
polyimide matrix composites, have shown very strong discrepancies from the linear elastic behavior 
[1, 2, 8]. These nonlinearities can be explained by two main mechanisms coupled together:  the 
visco-elastic behviour of the polyimide matrix subjected to long-term loading at high temperatures, 
on the one hand, and the effects related to thermal aging, on the other hand. 

2 Multi-scale Modeling of the Viscoelastic Behavior 

Viscoelasticity is the generalization of a dual behavior, simultaneously elastic and viscous. It is 
characteristic of creep, which reveals itself as the strain states evolves over time, whereas the 
mechanical load imposed on the structure is kept constant. The combination of a mechanical load 
and a relatively high temperature can yield such a visco-elastic behavior of polymer matrix 
reinforced composites. Indeed, a creep strain, generally increasing as a function of the time is added 
to the purely elastic strain. The resulting total strain ε does not only depend on the initial applied 
stress σ. It also becomes a function of time (t) and temperature (T): ( )Tt,,f σσσσεεεε = . Maxwell model
with three parameters (often called the standard viscoelastic model) is useful to describe the 
viscoelastic response of amorphous polymers or elastomers. This model allows highlighting every 
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feature observed in practice for these materials, at least qualitatively. Accordingly, in order to 
correctly reproduce the experimental data in the time space, one often uses the Maxwell viscoelastic 
model generalized to the order n, also called Wiechert model. The viscoelastic modulus then 
follows a Prony series: 
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2.1 Linear Viscoelasticity 

The thermodynamics of irreversible processes allows for expressing the constitutive laws for the 
behavior of linear viscoelastic materials. The theory developed in [9] leads to the most general 
forms, which are often summarized by the following convolution integrals: 

( ) ( ) ( )
∫ −=

−t
i

ii
dt

dt

txd
ttLtx

0

/
/

/
/

1 ,
,

σσσσ
εεεε .  (2) 

( ) ( ) ( )
∫ −=
t

ii
dt

dt

txd
ttLtx

0

/
/

/
/ ,, εεεεσσσσ  .  (3) 

Where σ is the stress tensor, ( )tL
i  the viscoelastic stiffness tensor of the constituent noted by the

superscript i, while ( )tL
i

1−
 is the viscoelastic compliance. Although each component constituting

the ply composite satisfies a differential Maxwell equation, the constitutive law providing the 
effective response of a composite ply is not Maxwellian because of the coupling existing between 
the elastic and inelastic part of the strain rate. This coupling comes from the mechanical interactions 
occurring between the plies constituents, which induce interface stresses. However, without loss of 
generality of the model, one can assume that the overall macroscopic response of a given ply, 
represented by the superscript I, also satisfies a viscoelastic constitutive law whose form is that of a 
Stieltjes convolution: 
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Where Iεεεε  and Iσσσσ  are the macroscopic stress and strain tensors, respectively.

( )tL
I 1−

 is the viscoelastic stiffness tensor of the composite ply. 

2.2 Self-Consistent viscoelastic Model 

The macroscopic visco-elastic stiffness tensor of the composite ply, appearing above in equation 
(4), is a priori unknown. In the present work, it will be calculated owing to a scale-transition 
homogenization model. As part of the calculation process, each constituent is considered as an 
inclusion immersed in the Homogeneous Equivalent Medium representing the effective behaviour 
of the composite ply. Eshelby-Kröner self-consistent model (see [10, 11] for a description in pure 
elasticity) will be extended in this study to the case of creep loads will be applied here.  

2



A traditional method used for modeling the viscoelastic behaviour of a material consists in 
transforming the integral equations associated to the problem by means of the Carson transform 
[12]. The Carson transform of a function or a tensor f (t) is defined as: 
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The application of the Carson transform (5) to the so-called “Hill’s average relations” [13] yields: 
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is the stress concentration tensor expressed in the Carson transform space. ( )sA I  is the viscoelastic
strain localization tensor expressed in the Carson transform space. This tensor relates the local 
pseudo-macroscopic strains experienced by a constituent to the corresponding macroscopic 
quantity:  

( ) ( )( ) ( )sEsEIsA
III :

1−
−= .  (7) 

( )sE
I is the transform of Eshelby’s tensor and can be calculated in the general case of an ellipsoidal 

inclusion embedded in an anisotropic medium from the classical integral forms, provided that one 
replaces the elastic stiffness I

eL  by the corresponding creep stiffness, i.e. ( )sL
I . 

The comparison of expression (6) with the generic behavior law of the composite ply leads to an 
implicit equation to be satisfied by the macroscopic viscoelastic tensor: 
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2.3 Viscoelastic Behaviour of the Polymer Matrix PMR-15 

The previously published contribution [1] reports the results of relaxation tests performed on 
samples made of pure PMR-15 polyimide resin. The relaxation tests were at four different 
temperatures: 275 °C, 300 °C, 325 °C, 350 °C, during 2 hours. The time-dependent Young's 
modulus Ym (t) was deduced from these series of measurements by means of an optimization
technique. The authors have found that the Young's modulus of PMR-15 matrix satisfies the 
following Prony series: 
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3 Homogenization 

As suggested by the previously published work in this field of research, the time-dependent 
behaviour of the material should be described through a “sufficiently large” number of discrete 
calculations. Accordingly, a number N = 500 of points uniformly distributed on a logarithmic time 
scale between the initial stage t = 1 s and the final time tmax has been chosen. The resulting time step 

tstep on the logarithmic scale would thus be given by the relation:
1N

t Logt max
step −

=

In order to achieve the identification of the numerous components of the stiffness tensor, the 

following series of exponentials was used:  ( ) ( ) ( )∑
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 of the PMR-15 matrix 
assumed to remain isotropic in the viscoelastic regime. This approach provides an analytical form 
for the Carson transform of the time-dependent evolution of each component. Thus, for example, 

one would easily write:  ( ) ( ) ( ) ( )
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The procedure is even more straightforward for the carbon fiber, assuming that the stiffness tensor 
of this constituent is independent of time. Accordingly the following relation holds: 

( ) ( )sLLtL
ff

e
f == . The properties considered for the T650-35 graphite fibers are summarized in 

Table 1 below: 

Table 1: Thermo-elastic properties of the fiber T650-35 from Rupnowski [2, 3]. 
 EfL [GPa]  EfT [GPa]     GfL [GPa]  GfT [GPa] νfL αfL [10-6/°C]      αfT [10-6/°C]
224 ± 3  15.4 ± 0.5     21.1 ± 1.1     5.8 ± 0.4  0.44 ± 0.02  1.2 ± 0.05  13.5 ± 0.8 

For each value of ( ) ( )nt
1ns = , an initial value of the macroscopic viscoelastic stiffness tensor

expressed in the Carson transform space is estimated, using the following simplified model 
historically established in pure elasticity [14]: 
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The initial macroscopic compliance tensor ( )sL
I
ini

1−
in the Carson transform space is primarily 

evaluated for each of the N=500 discrete s(n) values considered. Then the self-consistent approach 

is applied, in order to determine iteratively the effective macroscopic compliance tensor ( )sL
I

1−
 in 

Carson transform space. It is assumed that each component of the macroscopic stiffness tensor 
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expressed in the Carson transform space satisfies a Dirichlet finite series of 12 terms similar to that 
defined above for the components of the composite ply. As a consequence, it is necessary to use a 
numerical optimization method in order to find the 12 constant coefficients defining the evolution, 
in the Carson transform space for each of the six components of the macroscopic viscoelastic 
tensor. Then, the inverse Laplace transform is applied to the found Dirichlet series in order to obtain 
the time-dependent evolution of the macroscopic stiffness tensor.  
Following a similar method, one can determine the time-dependent evolution of the coefficients of 
thermal and/or hygroscopic expansion. In the first case, for example, the following homogenization 
relation should be applied instead of (8) in order to determine a discrete value of the coefficient of 
thermal expansion macroscopic αI in the Carson transform space:

( ) ( ) ( ) ( ) ( )( )[ ] ( ) ( ) Ts:sL:IsLsL:sE:sLs
iiIiIII ∆α+−=α

−− 11
 . 

The time-dependent evolution of the macroscopic coefficients of thermal expansion and/or their 
hygroscopic counterparts is determined through a method similar to the procedure described above 
for the macroscopic viscoelastic stiffness tensor. 

4 Results and Discussion 

Figure 1a shows the evolutions of the visco-elastic modulus Ym of the pure PMR-15 matrix as a
function of time and temperature. The elastic modulus of the studied polymer decreases during the 
creep process. Besides a strong evolution of Ym, as a function of the temperature, is observed. The
stiffness decreases from the value corresponding to the elastic behaviour at the initial stage but 
eventually reaches a constant, asymptotic value in the permanent regime. In between, a transient 
stage occurs where the visco-elastic modulus changes continuously.  
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The duration of this transient stage decreases as the applied temperature increases. The asymptotic 
creep modulus dramatically falls from its reference elastic counterpart as the temperature increases 
as shown on figure 1b. According to that curve, at T = 350 °C, the Young’s modulus is experiences 
a division by as much as 12, for instance.  
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Figures (2-6) show the effective hygro-thermo-mechanical properties for a unidirectional composite 
ply PMR-15/T650-35 containing 60 % fiber volume, submitted to creep conditions, calculated as a 
function of time using Eshelby-Kröner self-consistent model. The numerical predictions of the 

Fig 1: (a) Young's modulus of the 
matrix Ym PMR-15 as a function of
time. (b) The decrease factor of 
Young's modulus, for different creep 
temperatures. 

Fig 2: The effective longitudinal 
modulus (Y11) (a) and transverse (Y22) 
(b) predicted as a function of time for 
the composite ply PMR-15/T650-35, at 
different creep temperatures. 
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macroscopic longitudinal and transverse Young's moduli are shown in figures 2a and 2b 
respectively, whereas the longitudinal and transverse shear moduli are shown in figures 3a and 3b. 
The transverse Young's modulus Y22 and shear moduli G23 drop by a factor of two during the 
relaxation process for the creep temperature T = 350 °C.  
Conversely, the longitudinal Young's modulus of a macroscopic ply composite reinforced with 
parallel fibers is not significantly modified by the softening of the organic matrix. The keeping of 
such high properties in the longitudinal direction should ensure the durability of composite parts 
made of PMR-15/T650-35, intended to undergo this type of loading during their service life. As for 
the macroscopic shear plane modulus (G12), it is reduced when the material is placed under creep 
conditions, but the weakening observed for this module, while not negligible, is intermediate 
between what is observed for longitudinal and transverse Young's moduli. 
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Since both the thermal and hygroscopic properties of the matrix may vary under creep conditions. 
Consequently, the corresponding macroscopic thermal and hygroscopic properties will be affected, 
also. The macroscopic coefficients of expansion predicted by Eshelby-Kröner self-consistent model 
are shown on figures 4, 5 and 6. The macroscopic coefficient of thermal expansion was calculated 
from three independent sets of constituents properties fort the polymer matrix: its coefficients of 
thermal expansion were assumed (a) to be constant (see figures 4a-5a); (b) to follow the behavior 
law observed in practice by Rupnowski et al. [2] (see Figures 4b-5b) and (c) behavior law described 
by Benedikt et al. [15] (see figures 4c, 5c)). Figures 4c and 5c highlight the effect of viscoelasticity 
on the macroscopic coefficients of thermal expansion (α11 and α22), the latter decreasing during 
relaxation. From the time t = 4000 s the CTE reaches an asymptotic value corresponding to a fall of 
around 15 % in relative value. It is noticeable, however, that the effective macroscopic coefficient 
of thermal expansion in the direction parallel to the reinforcing fibers remains almost constant 
throughout the creep process. The magnitude of the variations calculated for α11 stay below 5.10-

7/K. This result should be attributed to the small influence of the properties of the polymer matrix 
on the effective behavior of the bulk material in this specific direction.  

Fig 4: The effective coefficients of thermal expansion (α11), as a function of time, the composite ply 
PMR-15/T650-35 for different temperatures creep. (a) the CTE of the matrix is constant, (b) the 
CTE of the matrix follows the law described by Rupnowski [2], (c) the CTE of the matrix follows 
the law described by Benedikt [15]. 

According to figure 5, the effective coefficients of thermal expansion predicted for the composite 
plies do strongly depend on the corresponding values taken from the literature for the PMR-15 

Fig 3: The effective shear moduli 
(G12) (a) and (G23) (b) predicted as a 
function of time for the composite 
ply PMR-15/T650-35, at different 
creep temperatures. 
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matrix (see [2, 15]). The differences between the curves displayed on figures 5a, 5b and 5c 
precisely come from the variability of experimental data sets available for the considered organic 
matrix. The magnitude of the effective properties remains similar, however.  
As a result, the overall shape of the 3D evolutions of the macroscopic transverse coefficient of 
thermal expansion, as a function of both the time and the temperature looks rather similar, whatever 
the organic matrix properties accounted for.     

Fig 5: The effective coefficients of thermal expansion (α22), as a function of time, the composite ply 
PMR-15/T650-35 for different temperatures creep. (a) the CTE of the matrix is constant, (b) the 
CTE of the matrix follows the law described by Rupnowski [2], (c) the CTE of the matrix follows 
the law described by Benedikt [15]. 

The predicted coefficients of moisture expansion are shown on figure 6. The effects induced by a 
creep load on the macroscopic Coefficients of Moisture Expansion (β11 and β22) are similar to those
described above in the case that the coefficients of thermal expansion were investigated. Both β11
and β22 decrease during the relaxation of the composite ply. In the studied creep conditions, the
model predicts a decrease over the time of the Coefficients of Moisture Expansion for around 1 
hour before an asymptotic value is reached. Relative changes of these coefficients are larger than 
those experienced by the coefficients of thermal expansion. For example, at T = 350 °C, the model 
predicts a relative variation that can attain as much as 40 % for the component β22. The variations
for the hygroscopic expansion coefficient parallel to the reinforcing fibers are not significant, in the 
sense that the absolute value of this quantity is always low (and close to zero) in the whole 
time/temperature range of the studied domain. 

Fig 6: The effective coefficients of hygroscopic expansion (β11) (a) and (β22) (b), as a function of
time, the composite ply PMR-15/T650-35 for different temperatures creep. 

5 Conclusion 

This study is devoted to the durability of organic matrix composites reinforced with unidirectional 
long fibers. The effect of thermal aging on the effective mechanical behavior of composite plies 
PMR-15/T650-35 subjected to creep conditions at high temperatures (T = 275 °C - 350 °C) was 
investigated. The macroscopic hygro-thermo-mechanical properties were evaluated numerically 
using the viscoelastic Eshelby-Kröner self-consistent scale transition model. In the longitudinal 
direction (parallel to the reinforcing fibers), the model predicts that the effective properties of the 
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studied material are not affected by the softening of the organic matrix that constitutes the 
composite plies. This should ensure the reliability of the structural parts submiotted to such thermo-
mechanical loads. In the transverse directions to the reinforcing fibers, the macroscopic properties 
(Young's modulus, as well as the coefficients of thermal expansion and hygroscopic expansion) 
undergo a significant reduction during the creep process. This decrease could modify the 
distribution of the multi-scale mechanical states within the components of the plies. As a result, the 
durability of the composite parts could be impaired. The results obtained in the present work will 
feed further investigations focused on the multi-scale mechanical states experienced by structures 
made from unidirectional composites plies PMR-15/T650-35 submitted to creep conditions. 
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