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Scale-transition models, such as Eshelby-Kröner self-consistent framework, which are often used for 
predicting the effec-tive behavior of heterogeneous materials or estimating the distribution of local states 
from the knowledge of the corre-sponding macroscopic quantities, require the extensive use of set 
averages. The present paper is devoted to the comparison of the numerical results provided in pure 
elasticity by Eshelby-Kröner model depending on the average type chosen for achieving set average 
operations: either the traditional arithmetic mean or the geometric average. Various numerical appli-
cations of the model to the case of predicting either the effective stiffness or the lattice strains of single-
phase polycrystals will be provided. The particular case when an extreme grain-shape occurs will also be 
investigated.

1 Introduction

An enhanced interpretation of the mechanical behaviour observed during experiments performed on polycrystalline samples
can be achieved using scale transition models based on the description of interactions among the grains constituting the
material and the polycrystal itself. Thus, these scale transition models were also recently called “grain-interaction models”
[1].

Generally, sets averages are involved in any grain interaction model and required in order to determine the effective
properties of the polycrystal from the properties of the differently oriented grains. The scale transition relations existing
between the single grain/crystal properties and those of the polycrystals vary from one model to another. Historically,
however arithmetic averages only were proposed and used to perform such calculations [2–8]. More recently, the idea
of replacing arithmetic averages by geometric averages was proposed by Morawiec [9]. This new solution, introduced in
particular cases by Aleksandrov and Aisenberg [10], is based on the condition of commutation of inversion and averaging
operations that is one fundamental property observed in practice in materials sciences. One new scale transition model, the
Bulk Path Geo (BPG) was recently built upon this constitutive assumption [11,12]. Numerical computations of the effective
elastic behaviour of possibly textured polycrystals were achieved. It was shown by the authors that Young’s modulus
predicted by the BPG approximation was very close to the numerical values provided by Neerfeld-Hill or Eshelby-Kröner
model using arithmetic averages.

Nevertheless, the Bulk Path Geo remains independent from any other model. Thus the closeness of its predictions with
those of others models does not prove that geometric averages could be considered as a reliable alternative to the classical
arithmetic averages in the field of computational materials science. This is of importance when experimental results have to
be interpreted using micro-mechanical models in order to deduce mechanical constants like Single-crystal Elastic Constants
(SEC). Until now, only the type of assumed grain-interactions was considered to play a role in such studies. But recently,
SEC were determined using either geometric [13] or arithmetic averages, and the importance of the choice of such a set
averaging method on the final result has to be investigated.

In the present work, Eshelby-Kröner self-consistent scale transition models involving either arithmetic averages or ge-
ometric averages will be used to predict the mechanical properties of various single-phase polycrystals in pure elasticity
regime. The present paper derives from the recently published theoretical investigation of a product-based, “geometric”, de-
viation of the mechanical states experienced by a single crystallite from the corresponding macroscopic quantities, achieved
in [14]. Moreover, the influence of a morphologic texture will be considered through the introduction of extreme grain
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shapes in the computations. Besides, another section of the present paper is devoted to investigating the mechanical states
experienced by the diffracting volume of polycrystals, depending on the chosen set average method: either the arithmetic
or the geometric mean. The obtained results will be compared and discussed in order to conclude about the equivalence or
not of the two, considered in this work, grain average types.

2 Short summary of the theoretical framework

2.1 Definition of the different scales of the representation

In the following, it is useful to distinguish three types of averages of a tensor A (as for example the strain tensor ε), that
correspond to the three considered scales of the representation.

(i) Averages of a tensor over all grains with a particular crystallographic orientation in the volume considered: this average
will be denoted by the symbol AII(Ω), where Ω represents a vector in the three-dimensional crystallographic orienta-
tion (Euler) space and defines the crystallographic orientation (for details, see, for example, [15]. Ω = (α, β, γ), where
α, β, and γ are three Euler angles. The convention of Roe [16] for the definition of the Euler angles will be adopted
(see also [15]). This average defines the behaviour of the material at the so-called “mesoscopic scale”, denoted by the
superscript II. Since the properties and mechanical states are identical for a given crystallographic orientation, there is
no numerical operation to perform, in practice, in order to achieve the determination of any mesoscopic quantity.

(ii) Averages over diffracting grains: in polycrystalline materials, diffraction methods usually provide information probed
from numerous grains. As a result, the gathered peak positions are average values [17–19]. However, since diffraction
can occur only when the normal of these grains bisect the incident and diffracted beams in the classical case that
monochromatic radiation is employed, the averaging does not occur over all of the grains in the irradiated volume, but
over the particular subset of the crystallites for which the diffracting planes are perpendicular to the chosen measure-
ment direction, instead. For a hkl diffraction line, the group of diffracting crystallites is selected by specifying the hkl
of the reflection considered and the orientation of the diffraction vector with respect to the specimen reference frame,
which can be identified by the angles ϕ, ψ as defined on Fig. 1. For details, see also [20]. This type of average over the
diffracting volume will be denoted by ADV = 〈A (Ω)〉DV where the superscript DV indicates the diffracting volume.

(iii) Averages over all crystallographically differently oriented grains in the polycrystal: this average will be denoted by
angular brackets AI = 〈A (Ω)〉I. This notation will be used to define the properties and mechanical states at the
so-called I superscripted “macroscopic scale”.

Fig. 1 (online colour at: www.zamm-journal.org) Definition of
the angles φ and ψ and orientation of the laboratory system L
with respect to the sample system S. LD, TD, and ND, respec-
tively, stands for Longitudinal, Transverse, and Normal Direc-
tions in the reference frame of the sample.

Two numerical methods dedicated to the determination of tensors averages over the polycrystal or the diffracting grains
(respectively 〈A (Ω)〉I and 〈A (Ω)〉DV ) will be described in Subsect. 2.2 below.

2.2 Performing geometric and arithmetic averages

Averages over sets of differently oriented grains can be performed using either the classical arithmetic approximation, or
the recently proposed geometric approximation. Let us consider a subset of N grains. Each i-subscripted grain (i varying
from 1 to N ) has a specific orientation Ωi = (αi, βi, γi). That crystallographic subset actually corresponds to a particular
volume fraction fi which is returned by the Orientation Distribution Function obtained through texture analysis.

The arithmetic approximation assumes that tensor averages correspond to the sum of the mesoscopic quantities, multi-
plied by the volume fraction fi of each grain, over the considered volume (polycrystal in the case of the macroscopic scale),
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and divided by the total volume fraction of the considered subset of grains:

AA
〈
AI
〉

= AA

〈
AII
i (Ωi)

〉
i=1,2,...,n,...,N

= α

(
N∑
i=1

AII
i (Ωi) fi

)
, (1)

where the subscript AA obviously stands for Arithmetic Average and α =

(
N∑
i=1

fi

)−1

.

In the case that the diffracting volume is concerned, only the grains contributing to the diffraction peak have to be taken
into account in the summation.

The geometric mean of a set of weighted positive data is defined as the f th power of the product of all the members of
the set:

GA

〈
AI
〉

= GA

〈
AII
i (Ωi)

〉
i=1,2,...,n,...,N

=

(
N∏
i=1

[
AII
i (Ωi)

]fi

)α
. (2)

In the case that the diffracting volume is concerned, only the grains to the diffraction peak have to be taken into account in
the product.

The practical realization of such a geometric average on even rank tensor was detailed in [9, 21, 22].
In Sect. 3, Eshelby-Kröner self-consistent elastic model featuring one or the other averaging type, will be studied.

Numerical computations performed according to the geometric or the arithmetic approximations will be compared and
discussed.

2.3 Grain-shape/morphological texture

For the calculation of mechanical and diffraction elastic constants of polycrystals with a grain-shape texture, the treatment
will be restricted to polycrystals consisting of ellipsoidal grains. It will be assumed that the ellipsoidal grains exhibit
identical orientations of their principal axes in the specimen frame of reference, i.e. the ellipsoidal grains are aligned along
common axes (an ideal grain-shape texture occurs). Only an ideal grain-shape texture is considered in the following, as only
in this case unique mechanical elastic constants and X-ray stress factors can be calculated employing the Eshelby-Kröner
model (for a more detailed discussion of the effect of a non-ideal morphological texture, see [23]).

Note that the principal axes of a grain are only related to the external (geometrical) shape of the grain. Thereby nothing is
prescribed regarding the crystallographic orientation of the grain (crystallite). In general, the (ellipsoidal) grains constituting
the specimen will have different crystallographic orientations.

The shape of the grains will be described by a shape parameter η, which is defined as the ratio of the principal axis of the
ellipsoid in the z-direction (a3) of the specimen frame of reference to the principal axes of the ellipsoid in the x-direction
(a1) and the y-direction (a2) in the specimen frame of reference, respectively:

η =
a3

a1
=
a2

a1
. (3)

Thus, the considered ellipsoidal grains present rotational symmetry with respect to the surface normal of the specimen.

3 Modelling the elastic behaviour of polycrystals according to Eshelby-Kröner
self-consistent model – comparison between geometric and arithmetic averaging

3.1 Eshelby-Kröner self-consistent elastic model

3.1.1 Determination of the macroscopic elastic stiffness according to Eshelby-Kröner hypotheses

In order to calculate the elastic constants of a polycrystal from single-crystal elastic data, the crystallites surrounding an
individual grain in a polycrystal are conceived as an elastically homogenous matrix with the elastic properties of the entire
polycrystal in the Eshelby-Kröner grain-interaction model [6, 7]. Following this reasoning, the calculation of the elastic
constants of a polycrystal requires the calculation of the elastic interactions existing between an inclusion (a grain) and the
embedding homogeneous matrix (the polycrystal). Traditionally, a spherical shape of the inclusion is considered [7]. It goes
without saying that the Eshelby-Kröner model based on a spherical inclusion will only work for polycrystals consisting of
(on average) spherical, equi-axed grains.

The effect of a grain-shape (morphological) texture on mechanical and diffraction elastic constants can be considered in
the traditional Eshelby-Kröner model by considering ellipsoidal inclusions with their principal axes aligned along common
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directions in the specimen frame of reference. While Eshelby-Kröner model can handle a single grain-morphology, shared
by every inclusion constituting the Representative Equivalent Volume (REV) of the material, this theoretical approach
fails to represent a morphologic texture featuring various grain shapes and/or a relative disorientation of the morphologies
coexisting among the same REV. It was actually numerically shown by [24], that in such a situation, the classical EKSC
model does not simultaneously fulfil both the so-called “Hill’s average relations over the mechanical states”, historically
established in [25], anymore. An enhanced version of the classical Eshelby-Kröner self-sonsistent model, the so-called
“Generalized Self-Consistent” (GSC) model, is required in order to properly deal with a real morphologic microstructure.
As an example, the structure of Ti-17 polycrystal often consists of acicular α (needle-shaped crystallites) mixed to slightly
equiaxed prior β grains. The morphologic microstructure exhibited by Ti-17 α-phase cannot be properly taken into account
through the traditional EKSC model. A recent investigation taking advantage of the GSC model, however, was specifically
built in order to model such a material [26].

Nevertheless, the present study is based on a demonstration, provided by [14], established within the classical Eshelby-
Kröner model domain of application. As a consequence, this paper will only deal with polycrystals made of ellipsoidal
inclusions with their principal axes aligned along common directions in the specimen frame of reference. To characterise
the grain-shape texture, the convention introduced in Subsect. 2.3 (Grain-shape / morphological texture) will be adopted.
The effect of a grain-shape texture on the mechanical elastic constants has been considered by [23, 27, 28].

Within Eshelby-Kröner model, the macroscopic stiffness CI is calculated iteratively through an averaging procedure
over every crystallite as follows:

CI =
〈

CII (Ω) :
[
EI :

(
CII (Ω) − CI

)
+ I
]−1
〉
. (4)

Where CII (Ω) stands for the single-crystal elastic stiffness, I is the 4th-order Identity tensor, whereas EI is Morris tensor,
which can be written from the Eshelby tensor SI

esh thanks to the following relation:

EI = SI
eshCI−1

. (5)

Morris tensor is written as an integral that must be numerically computed, except for a few simplified cases. The interested
reader can refer to [28–30], where expressions of Morris tensor as well as a detailed presentation of Eshelby-Kröner model,
are provided. Because of the complex expression of the integrand featured within Morris tensor, one cannot generally give
an analytical expression of EI, except for some specific configurations (fibers, discs and spheres in particular). The case
of macroscopically transversely isotropic materials made of either aligned fibers parallel to the longitudinal direction or
flat-discs the normal of which is parallel to the normal direction of the sample, were, as an example extensively treated
in [31, 32].

The above presented fundamental equation (4) is actually compatible with either the historical, classical arithmetic
framework or, as demonstrated for the first time in [14], with a product-based, “geometric” rewriting of the polarization
tensors used to express the deviation of the mechanical states experienced by a single crystallite from the corresponding
macroscopic quantities. The first formulation results in a sum of terms, whereas the second involves products of factors.
This fact yields a privileged (but not exclusive) link between each formulation and the corresponding averaging operation-
type. It was demonstrated in [14] that the geometric polarization tensors are proportional to either the strain localization
tensor or the stress concentration tensor, two quantities on which many scale transition models are based upon, for practical
applications, but also because of their strong physical meaning. On the contrary, the classical arithmetic polarization tensors
did hold very little appeal on the scientific community working on this field of research. Since the arithmetic mean is
considered as better suited for achieving averages over sets of sums of terms, it was historically clearly the most appropriate
solution, in the mathematical framework of Eshelby-Kröner model. However, according to [14] the geometric set average-
type, which is, in statistics, considered as better suited for performing such mathematical operations over products of factors,
would also be relevant, since the corresponding analytical writing of Eshelby-Kröner model involves more physically
meaningful intermediate quantities. Thus, according to the results obtained in [14], either the arithmetic, or the geometric
mean, could be employed at the discretion of the user in order to perform calculations according to Eshelby-Kröner self-
consistent model.

3.1.2 Computation of the lattice strains according to Eshelby-Kröner model

X-Ray stress analysis is an experimental method that enables the determination of the residual [19] or applied [33] average
stress in the diffracting volume of a studied phase of a material from the measurement of the so-called (elastic) “lattice
strains”. The lattice strains εϕψ(hkl) actually correspond to the average of the mesoscopic strains over the grains suitably
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aligned to the X-ray beam path (as described in Subsects. 2.1 and 2.2). The projection of the mesoscopic strains on the
measurement direction is defined by the two angles ϕ and ψ as shown on Fig. 1 [19]:

εDVφ,ψ =
→t
n ·
〈
εII (Ω)

〉DV
· →n, with n =

⎛
⎜⎝

sinψ cosϕ
sinψ sinϕ

cosψ

⎞
⎟⎠ . (6)

In relation (6) above, the superscript t denotes the transposition of the vector.
The computation of lattice strains, following the classical arithmetic averaging procedure is straightforward, as indicated

in Subsect. 2.2. In the case that the geometric average is preferred, some precautions have to be considered since the
mesoscopic strains experienced by the grains contributing to the diffraction may generally have some negative components,
which are incompatible with the application of the power product (2) necessary to achieve the calculation of (6):

• First, the classical scale transition relation linking the mesoscopic strains to the macroscopic strains within Eshelby-
Kröner self-consistent model (refer to [34] for details) has to be considered:

εII (Ω) =
[
EI :

(
CII (Ω) − CI

)
+ I
]−1

: εI. (7)

• Then, (7) is introduced in Eq. (6), which transforms as follows:

εDVφ,ψ =
→t

n ·
〈[

EI :
(

CII (Ω) − CI
)

+ I
]−1

: εI
〉DV

· →n . (8)

The term εI being constant, it can be factorized in the average over the diffracting volume featured in the right-hand member
of Eq. (8):

εDVφ,ψ =
→t

n ·
〈[

EI :
(

CII (Ω) − CI
)

+ I
]−1
〉DV

: εI · →n . (9)

In (8), the lattice strain over the diffracting volume is actually written under the form of the average of the elementary
mesoscopic lattice strains εIIφ,ψ (Ω) of each crystallite contributing to the diffracted beam. Such a mesoscopic lattice strain
would satisfy:

εIIφ,ψ =
→t

n ·
[
EI :

(
CII (Ω) − CI

)
+ I
]−1

: εI · →n . (10)

εIIφ,ψ (Ω) is obviously a scalar. In practice, when the applied load is sufficiently high, the sign of all the mesoscopic lattice
strains is often identical on the subset of grains constituting the diffracting volume, whatever the concerned crystallographic
orientations. While this condition is satisfied, the power product involved by the geometric mean can be applied to the
following rewritten form of Eq. (9):

εDVφ,ψ = sign
[
εIIφ,ψ (Ω)

] ∣∣∣∣∣
→t

n ·
〈[

EI :
(

CII (Ω) − CI
)

+ I
]−1
〉DV

: εI · →n
∣∣∣∣∣ , (11)

where sign
[
εIIφ,ψ (Ω)

]
is respectively −1 in the case that each mesoscopic lattice strain (10) involved in the averaging

operation (11) is compressive, and +1, in the case that each of the diffracting grains experience tensile lattice strains in the
probed {ϕψ} direction. Please take care of the fact that the geometric average cannot be computed in the case that both
tensile and compressive lattice strains are simultaneously experienced by the subset of grains constituting the diffracting
volume of the material.

3.2 Examples – numerical comparisons between geometric and arithmetic averaging

3.2.1 Prediction of macroscopic elasticity constants in single-phase materials.
Investigation of grain-shape effects

Computations of the macroscopic elastic stiffness were performed following the formalism described in Subsect. 3.1, using
either the arithmetic or the geometric averages. In order to avoid statistical errors, the same set of 2000 crystallographic
orientations was kept for every calculation. Moreover the materials were considered as crystallographically untextured.
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Thus the volume fraction of each orientation was assumed to be identical. In order to check the possible morphological
texture related effects, three extreme grain shapes were successively considered during the computations: spherical grains
(η = 1), disc-shaped grains (η → 0) and, finally, needle-shaped grains (η → ∞).

In order to iteratively calculate the stiffness tensor using (4), a starting value is required for CI. According to the liter-
ature, elastic stiffness predicted by Eshelby-Kröner model involving arithmetic averaging respectively converges towards
Neerfeld [4] – Hill [5], Vook-Witt [35] and inverse Vook-Witt [36] estimations, in the cases that equi-axed (spherical), disc-
shaped, and needle (cigar)-shaped grains, respectively, are considered [32, 37]. Thus, the three last-cited approximations
were used in the present work in order to provide adequate starting value of CI for the considered morphologies.

The single-crystal elastic constants required for performing the computations were taken from the tables provided by
Chung and Buessem [38].
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Fig. 2 Comparison between some macroscopic elastic stiffness components estimated with Eshelby-Kröner model in-
volving either geometric or arithmetic averages for various materials. Study of grain shape effects: a) spherical grains,
b) disc-shaped grains, and c) cigar-shaped grains.

Obtained results are depicted on Fig. 2, where the relative deviation between stiffness components calculated according

to the geometric and the arithmetic approach (i.e.
CI

ij(geometric )−CI
ij(arithmetic )

CI
ij(arithmetic )

) are given for various single-phase cubic

polycrystals.

Table 1 Coefficient of elastic anisotropy of various single-crystals [38].

Crystal Al Diamond-C Mo W Cr αFe γFe SiC Cu

Ac 1.23 1.00 0.91 0.97 0.71 2.41 3.34 2.20 3.21
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The following properties are remarkable:

(i) Geometric and arithmetic averages do not generally lead to identical macroscopic stiffness tensors.
(ii) Components of the stiffness tensor estimated through geometric mean are more compliant than (i.e. their numerical

value is always inferior to) the corresponding component deduced from the classical arithmetic average.

(iii) The relative deviation
CI

ij(geometric)−CI
ij(arithmetic)

CI
ij(arithmetic) increases in first approximation with the deviation from 1 (which

correspond to the elastic isotropy) of the considered material’s single-crystal coefficient of elastic anisotropy Ac (cf.
Table 1). Conversely, the relative deviation between stiffness components calculated according to the two studied
averaging type tends towards zero in the cases that the single-crystal exhibits an almost isotropic elastic behaviour
(aluminum, tungsten, molybdenum and diamond-C). This result was attributed to the relatively weak heterogeneities
existing between the mechanical elasticity constants exhibited by the grains constituting a single-phase polycrystal. For
metallic single-phase materials, the elastic heterogeneities existing at the mesoscopic scale are actually only induced
by the coefficient of elastic anisotropy of the single crystal, and remain rather small. This property of single-phase
metallic polycrystals explains the good agreement observed for the estimated effective macroscopic stiffness whatever
the choice of averaging type, in the case that the material is assumed to deform according to purely elastic mechanism
(Fig. 2).

(iv) The relative deviation between stiffnesses calculated according to the arithmetic or geometric mean strongly depends
on the grain shape assumed during the computations. For instance, CI

33 values estimated for disc-shaped grains are
almost identical with the two types of averages, even for materials having strongly anisotropic single-crystals like
copper; whereas the same component calculated assuming cigar-shaped grains noticeably varies from one average
type to another. Grain-shape texture induces a change in the distribution of the mechanical elastic heterogeneities
experienced by a single-phase polycrystal at mesoscopic scale. The interested reader can refer to [32] where that
specific issue was extensively investigated. Nevertheless, the elastic stiffness heterogeneities remains of the same order
of magnitude whatever the considered extreme grain-morphology, according to Fig. 2. Thus, the predicted macroscopic
stiffness of a single-phase polycrystal is almost independent on the set-average method chosen in order to achieve the
computations, even in the case that an extreme grain-morphology is accounted for.

3.2.2 Influence of the chosen averaging type on the elastic mechanical behavior calculated
for the diffracting volume of the material

Lattice strains in single-phase SiC corresponding to an applied macroscopic load of 100 MPa in the longitudinal direction of
the sample reference frame were calculated using Eshelby-Kröner model for various conditions. Three different calculation
procedures were envisaged:

1) Full arithmetic approach. Both macroscopic stiffnesses (4) and average lattice strains (9) are calculated using the
arithmetic mean (1).

2) Full geometric approach. Same as case 1), but applying the geometric mean (2) in equations (4) and (11), whether the
macroscopic stiffness or the lattice strains have to be computed, respectively.

3) A mixed geometric-arithmetic procedure. The geometric mean (2) is kept for the calculation of the macroscopic
stiffness (4) of the polycrystal that is required for computing Eq. (9). But, the lattice strains are calculated using the
arithmetic average (1), in order to avoid indeterminations occurring with the geometric mean when mesoscopic elastic
anisotropy leads to simultaneous positive and negative values of the mesoscopic lattice strains in the measurement
direction (in that case, as explained in Subsect. 3.1.2, the arithmetic mean only enables calculation of the lattice strains
over the diffracting volume of the material).

The assumed measurement conditions were as follows: ϕ = 0◦ ψ varies from 0◦ up to 90◦ and the calculations were
repeated for two diffracting planes, {200} that does not present any mesoscopic elastic anisotropy (thus, the mechanical
states and lattice strains are identical in one given measurement direction {ϕψ}) and the {311} family, that generally
presents a distribution of the mesoscopic mechanical states over the diffracting grains.

The obtained results are shown on Fig. 3. The following properties have been observed:

(v) No significant discrepancy of the lattice strains plotted as a function of sin2 ψ appears in the case that single-phase
materials are considered, whatever the choice of averaging type.

(vi) According to Fig. 3, a rather good agreement between the “mixed geometric-arithmetic” and the “full geometric”
calculation schemes is obtained. This property is interesting because it provides a practical way to achieve realistic
calculations of averaged mechanical states, taking into account the effect of the geometric mean on the effective
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Fig. 3 Comparisons between lattice strains [10−6] estimated in silicon carbide with Eshelby-Kröner model involving
either geometric or arithmetic averages. The captions ari, geo and geo-ari respectively stand for the “full arithmetic”, “full
geometric”, and “mixed geometric-arithmetic” as described in Sect. 3.2.2.

mechanical behaviour of the polycrystal, without being limited by the mathematical constraints due to the power-
product for the purpose of averaging mechanical states such as lattice strains.

4 Conclusions and perspectives

The present paper was devoted to the comparison of the numerical results provided in pure elasticity by Eshelby-Kröner
model depending on the average type chosen for achieving set average operations: either the traditional arithmetic mean or
the geometric average, on the basis of the theoretical analysis previously presented in [14]. Various numerical applications
of the model to the case of predicting either the effective stiffness or the lattice strains of single-phase polycrystals were
provided. The particular case when an extreme grain-shape occurs was also taken into account. It was shown that a mixed
geometric-arithmetic set-average based methodology could be used in order to overcome the difficulties encountered when
performing averaging operations over subsets of mechanical states including both positive and negative values.

According to the observations i) to vi) listed in Subsect. 3.2, the present work confirms that the micro-mechanical elastic
models based on arithmetic or geometric averages are, in most cases, at least numerically close together, provided that
single-phase materials are considered.

Thus, in order to treat such a case, the choice of an averaging type will have, at worst, only a minor, and, thus, by
comparison to the experimental errors, negligible influence on the calculated behaviour of the studied polycrystal. It means,
for instance, that the inversion of scale transition models, in order to estimate the single-crystal elastic properties from
measurements performed on single-phase polycrystals, should lead to the determination of the same physical constants
independently of the method chosen in order to perform averaging operations (knowing that the standard relative deviation
on each estimated single-crystal elasticity constant is around 10%, due to experimental errors). This is an important prop-
erty, since both averaging types have been used in the literature: the classical application of the arithmetic mean to estimate
single-crystal elasticity constants [39–41] having been recently, sometimes, replaced by the geometric mean [13].

Further studies will be devoted to an extensive comparison between the materials properties predicted by Eshelby-Kröner
elastic model depending on the average type chosen for achieving set average operations, in the context of identifying the X-
Ray Elastic Constants (XEC) or the Single-crystal Elastic Constants (SEC), from lattice strains measured on polycrystalline
samples owing to diffraction methods. The aim would be to extend the results already obtained by [21], in the specific
context of computing the Diffraction Elastic Constant (DEC) F11 of a strongly textured cold rolled ultra low carbon steel
sample through various simple yet effective models (Reuss, Voigt, Hill) owing to through either the arithmetic average or
the so-called “new average” proposed by Morawiec [9], which indeed corresponds to the geometric mean. The authors
obtained a good agreement between the DEC predicted by a given model, whatever the considered set averaging method.
However, the consequences related to that choice on the identified SEC has still not been investigated.

Extensions to the present analysis to the scale transition analysis of heterogeneous materials experiencing thermal or
hygroscopic loads or even chemical shrinkage through the self-consistent model will also be provided in a forthcoming
paper.
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Mech. 9, 49–58 (1929).

[3] W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig/Berlin, 1928).
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