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Energy conserving balance of explicit time steps to
combine implicit and explicit algorithms in structural dynamics

L. Noels 1, L. Stainier 2, J.-P. Ponthot *

Université de Liège, LTAS-Milieux Continus & Thermomécanique, Chemin des Chevreuils 1, B-4000 Liège, Belgium 

Recent developments have proved the advantage of combining both time implicit and time explicit integration algo-
rithms in structural dynamics. A major problem is to define the initial conditions for the implicit simulation on the basis
of a solution obtained from an unbalanced explicit resolution. The unbalanced nature of the explicit algorithm leads to
oscillations in the fields of interest. Therefore, the values obtained after an explicit computation cannot be used directly
as initial conditions for an implicit simulation. In this paper, we develop such initial values that lead to a stable (no
numerical creation of energy) and energy-conserving transition.
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1. Introduction

A current problem in computational dynamics is to be able to simulate numerically the response of a
very non-linear structure submitted to dynamic loading. The finite-element model, resulting from the spa-
tial discretization of the balance equations describing these dynamic problems, needs to be temporally inte-
grated with a step by step approach. The time-integration algorithms can be separated in two families: the
explicit algorithms family [1–5], and the implicit algorithms family [1–3,5–8]. When studying the numerical
properties of an algorithm such as that of Newmark�s scheme [6], it appears that, for a linear system, the
unconditional (i.e. for any time step size) stability (i.e. no numerical energy is added to the energy of the
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system) requires that the parameters of the algorithm verify some relations. Once these relations are veri-
fied, it appears that the resulting equations have to be iteratively resolved. The algorithm is therefore called
implicit and the balance equation is solved, for example, with a Newton–Raphson scheme. To avoid these
iterations that are very time consuming, especially for non-linear systems, the parameters of the algorithm
can be chosen so that the balance equations need not to be iteratively solved, but are used to predict the
accelerations. This explicit solution is not able to verify the relations that lead to an unconditionally stable
algorithm. Indeed, a stability limit does exist. As long as the time step size is lower than a critical value, the
algorithm is stable. But if the time step size becomes larger, the numerical integration adds energy to the
system, leading to an unstable integration.

Explicit methods are therefore generally used to simulate fast dynamics and highly non-linear simula-
tions with a large number of degrees of freedom. For such a model, if one uses an implicit algorithm,
the iterations are very expensive and the problems of convergence are frequent [9]. Moreover, in order
to correctly capture the physics of fast dynamics problems, small time steps have to be used. But if the prob-
lem is governed by low frequencies, the limitation on the time step size leads to a very important number of
time steps. The fact that the balance equations are not verified at each time step can also lead to a loss of
accuracy in the integration. On the other hand, an implicit simulation has the advantages of requiring less
time steps, while being more accurate [9–12]. Let us note that for some clearly fast dynamics problems,
implicit solutions can be cheaper and more accurate than explicit solutions [13,14].

Moreover, many practical problems combine some time intervals ideally integrated by explicit methods
and some other time intervals ideally integrated by implicit methods. For example, a stamping process is
highly non-linear and, though essentially a quasi-static process, is thus generally integrated with an explicit
algorithm. But the spring-back process occurring after the stamping itself when the loads are removed, has
to be integrated by an implicit algorithm to be accurate [9–11]. A methodology combining both types of
algorithms was used by Finn et al. [15] and by Narkeeran and Lovell [16]. In their approach, when shifting
from an explicit algorithm to an implicit one, the velocities and the accelerations are set to zero. Neverthe-
less, these conditions of transition cannot be used for problems where the dynamics is much more compli-
cated. For example, when studying a blade loss in an aircraft engine, we want the blade impact on the
casing to be computed by an explicit scheme, but the time interval after the impact, when the rotational
velocity of the engine is decreased, should be computed with an implicit algorithm. If, for such a simulation,
the velocities and the accelerations are set to null, the dynamics of the simulation is completely modified by
this artefact, leading to a wrong solution. Moreover, the unbalanced nature of the explicit algorithm leads
to oscillations in the simulation. Therefore, the values after an explicit computation cannot be used as ini-
tial conditions of an implicit simulation. Thus, in a previous work [17], when the decision to switch from an
explicit algorithm to an implicit one has been taken, we have proposed to stabilize the last explicit steps to
be able to start an implicit simulation with stabilized initial values. We have applied this method to impact
simulations [18] and to sheet metal forming simulations [19]. Nevertheless, if this method seemed to be sta-
ble and accurate, we were not able to prove it mathematically. Using the recent considerations initiated by
Simo and Tarnow [20] on the stability and the thermodynamical consistency of implicit algorithms in the
non-linear range, we propose in this work to develop, in the fully non-linear range, a stable and thermo-
dynamically consistent methodology that balances explicit steps. The balance method we propose to estab-
lish gives the initial conditions to carry on a process with an implicit scheme without loss of accuracy.

Let us note that when switching from an implicit method to an explicit one, the explicit simulation starts
with a balanced solution, thus leading to no stability problems (other than the stability problems inherent
from the use in the non-linear range of an explicit scheme that is proved to be stable only in the linear
range). Such a shift to an explicit method was used by Jung and Yang [21] who proposed, in sheet metal
forming simulations, to start the computation with an implicit scheme and then to shift to an explicit one
when convergence problems appear. We used such a shift in [17,18] for structures submitted to impact load-
ing. Finally, Rust and Schweizerhof [12] proposed to shift from an implicit algorithm to an explicit one to
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compute the limit load and buckling mode of a thin-walled structure. In their approach, the structure is
loaded with an implicit algorithm while this load remains lower than the limit load. During the loading
phase, the implicit method has the advantage of using large time steps and being balanced, contrarily to
the explicit one. But when the structure is close to buckling, and during the buckling phase, the non-linear-
ities cause the explicit algorithm to be more efficient.

The outline of the paper is as follows. Section 2 presents the problem of time integration. After an intro-
duction to the notations and balance equations, we will briefly recall the explicit scheme based on a central
difference method, that can be proved to be stable only in the linear range. Next, we will present the implicit
Energy Momentum Conserving Algorithm (EMCA), first proposed by Simo and Tarnow [20]. This algo-
rithm conserves the linear momentum, the angular momentum, and the energy of an isolated system in the
non-linear range. But these conservation properties are reached only if the internal forces of the system are
‘‘well designed’’. We will recall this expression of the forces for a mass-spring system and for an elasto-plas-
tic material model. Thanks to the previous expressions, when the decision to switch from an explicit algo-
rithm to an implicit algorithm has been taken, we will show in Section 3 how to balance the explicit steps in
order to obtain stable initial conditions to start the implicit simulation. We will use the last explicit steps as
initial values for a subsequent implicit step of larger size. Studying the predictor–corrector algorithms, and
adapting the expressions of the internal forces, we will demonstrate that our proposed balancing algorithm
is stable (no numerical energy is introduced), conserves the linear momentum, the angular momentum and
the energy in the non-linear range (i.e. that it is thermodynamically consistent). Some numerical examples
will be presented in Section 4. First, we will use our balance method to perform a long-duration simulation
of a non-linear mass-spring system. Since this computation will be shown to occur without numerical intro-
duction of any energy, it will demonstrates numerically that our method is stable in the non-linear range.
Since our balance method is developed to be able to shift from an explicit algorithm to an implicit one with-
out introducing numerical energy in the system, we will present two elasto-plastic dynamics problems where
the integration method will shift from a method to another one. When shifting to an implicit algorithm, the
last explicit steps will be balanced with our proposed method. These examples will show that the proposed
shift method allows the implicit simulation, following an explicit one, to be reached without loss of
accuracy.

2. Time integration

In this section, after having explained our notations, we recall the form of the balance equations. Then,
we present how to integrate these equations in time, with an explicit algorithm or with an implicit algo-
rithm. For both methods, the stability of the integration is discussed in the linear and in the non-linear
range.

2.1. Notations

Let V � R
3 be the volume of the system, and S the current surface bounding V. Since our developments

are conducted for arbitrary strains, we have to distinguish between (at least) two configurations: the refer-
ence configuration at time 0 and the current one at time t. Both configuration can differ significantly by an
arbitrary deformation which is not restricted in magnitude. The initial density is denoted q0 : V 0 ! Rþ. Let
us use a subscript 0 to indicate a value in the reference configuration. Volume V is discretized in finite ele-
ments and each point of V is referenced by its initial positions~x0 2 R

3. The surface is decomposed into a
part S~x where the displacements are imposed and a part S~t where the loads are imposed. We always have
S~x [ S~t ¼ S and S~x \ S~t ¼ 0. Let~x be the current positions mapping. The two-point gradient of deformation
tensor is defined by
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F �
o~x

o~x0
. ð2:1Þ

Its inverse is denoted by f and its determinant by J = detF. The set X of admissible positions is defined
by

X � f~x : V 0 ! R
3j½J > 0 and ~xjS~x ¼

�~x� 8~x0 2 V 0g; ð2:2Þ

where �~x are the imposed positions and V0 the reference volume.
Let t be the time and T ¼ ½0; tf � be the time interval of integration. Therefore the motion is a map

defined by t 2 T !~xðtÞ 2 X. During this motion, the volume is loaded by the body forces ~bðtÞ:
V 0 �T ! R

3. If R is the Cauchy stress tensor, the surface loads ~tðtÞ : S~t0 �T ! R
3 have to verify

~tðtÞ ¼ RðtÞ~nðtÞ with ~n the current unit outward normal of S.
The finite element decomposition [2] is reached by the use of shape functions un

: V 0 ! R with
n 2 [1,nnodes] (nnodes is the number of nodes), with unð~xl0Þ ¼ d

l

n (with d the Kronecker symbol). It leads,
for n 2 [1,nnodes], to

~xð~x0Þ ¼ unð~x0Þ~x
n;

_~xð~x0Þ ¼ unð~x0Þ _~x
n; ð2:3Þ

€~xð~x0Þ ¼ unð~x0Þ€~x
n;

where Einstein�s notations have been used.

2.2. The balance equations

Using notations of Section 2.1, the balance equation at node n leads to

Mnl½€~x�
l
¼ ½~F ext �~F int�

n
ð2:4Þ

with Mnl the mass matrix component relative to nodes n and l, with ~F
n

ext the external forces at node n, and
with ~F

n

int the internal forces at node n. The external forces have the following expression

~F
n

ext ¼

Z

V 0

fq0
~bungdV 0 � d~x

n þ

Z

S~t

f~tungdS ð2:5Þ

and the internal forces can be written as

~F
n

int ¼

Z

V 0

fRTfT~D
n
JgdV 0; ð2:6Þ

where ~D is the derivative of the shape functions (in the reference configuration, i.e. ~D
n
¼ oun

o~x0
).

For an exact solution, Eq. (2.4) has to be verified for every time t 2 T. To integrate this equation in time,
the time interval T is decomposed into some partitions [tn, tn+1] (such that T ¼

SN

n¼0½t
n; tnþ1�) with

Dt = tn+1 � tn the time step size. Therefore, superscripts n and n + 1 are respectively used to denote a value
at time tn and at time tn+1.

2.3. Particular case of the rod

Eq. (2.6) defines the general form of a three dimensional problem. The formulation for a discretized rod
can be derived from it. Let A0 be the (constant) initial section of the rod and l be its length at time t. There-
fore, introducing E, the Young�s modulus, the expression for internal forces defined by Eq. (2.6), with first
order shape functions, becomes
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~F
n

int ¼
k½l� l0�

l
½~xn �~xl�;

~F
l

int ¼
k½l� l0�

l
½~xl �~xn�

ð2:7Þ

with k ¼ EA0

l0
, l ¼ k~xl �~xnk and l and n the indices of the two end nodes. Defining U int ¼

1
2
k½l� l0�

2 the
internal potential, the rod can be seen as a spring with

~F
n

int ¼
oU intðlÞ

o~xn
;

~F
l

int ¼
oU intðlÞ

o~xl
.

ð2:8Þ

With m ¼ q0A0l0
2

, masses at nodes n and l can be written as

Mnl ¼ mdnl. ð2:9Þ

2.4. Explicit time integration of the balance equation

The explicit scheme most commonly used to integrate Eq. (2.4) in time is the central difference scheme
[1,2]. At time tn+1 the solution depends only on the solution at time tn and not on solution at time tn+1.
Therefore, no iteration is needed to integrate Eq. (2.4).

First, knowing the solution of Eq. (2.4) at time tn (i.e.~x n, _~x n�1
2, €~x n are supposed to be known as well as the

stress tensor and associated values), velocities are computed at time tnþ
1
2 for each node n

_~x nþ1
2

h in

¼ _~x n�1
2

h in

þ Dt½€~x n�
n
. ð2:10Þ

Positions at time tn+1 are deduced from these velocities

½xnþ1�n ¼ ½xn�n þ Dt½ _xnþ
1
2�n. ð2:11Þ

Finally, the balance Eq. (2.4) is used in an explicit way to evaluate the accelerations at time tn+1

½€~x nþ1�n ¼ ½M�1�nl½~F
nþ1

ext �~F
nþ1

int �
l. ð2:12Þ

The mass matrix is lumped to improve the efficiency of the algorithm. The internal forces are computed
from Eq. (2.7) for a mass-spring system and from Eq. (2.6) for a general 3D elasto-viscoplastic model.

The stability of such an explicit algorithm can only be studied for a linear model. Let us assume the fol-
lowing relation between the velocities in the configuration nþ 1

2
and in the configuration n + 1 (i.e. constant

time step)

_~x nþ1
2

h in

� _~x nþ1
h in

�
Dt

2
½€~x nþ1�

n
. ð2:13Þ

Then, system of Eqs. (2.10), (2.11) and (2.12) can be shown to be equivalent to the Newmark scheme for
some particular choice of parameters [2]. Therefore the algorithm is stable if and only if

Dt 6
2

xmax

ð2:14Þ

with xmax the maximal pulsation of the system. Considering a security factor cs < 1 to take into account the
non-linearities of the system, Eq. (2.14) becomes

5



Dt ¼
2cs
xmax

. ð2:15Þ

The maximal pulsation of the system can be evaluated as proposed by Flanagan and Belytschko [22] or
more efficiently through the power iteration method as proposed by Benson [5]. We have adopted the latter
solution here. The security parameter can be given as a fixed value or better evaluated by an estimation on
the integration error [23,24] in order to be able to integrate more efficiently the resulting non-linear system.

2.5. Implicit time integration of the balance equation

The solution proposed by Simo and Tarnow [20] to be able to obtain an integration algorithm that is
stable and thermodynamically consistent in the non-linear range is to adapt the mid-point scheme (see prin-
ciple below) for each kind of non-linearity under interest.

2.5.1. Basic principle

In the mid-point scheme, the relation between the positions and velocities is given by

½~x nþ1�
n
¼ ½~x n�

n
þ
Dt

2
½ _~x nþ1�

n
þ
Dt

2
½ _~x n�

n
; ð2:16Þ

while the relation between the velocities and accelerations is

½ _~x nþ1�
n
¼ ½ _~x n�

n
þ
Dt

2
½€~x nþ1�

n
þ
Dt

2
½€~x n�

n
. ð2:17Þ

The balance Eq. (2.4) is implicitly solved at node n through the relation

1

2
Mnl½€~x nþ1 þ €~x n�l ¼ ~F

nþ1
2

ext �~F
nþ1

2

int

� �n

; ð2:18Þ

where ~F
nþ1

2, is the expression of the forces (internal or external) in the configuration nþ 1
2
(i.e. at time tnþ

1
2).

In the classical mid-point scheme, this expression is computed from Eq. (2.6) or from Eq. (2.7) evaluated at
position ~x nþ1þ~x n

2
and not at positions~x nþ1. But this expression must be designed in order to achieve an inte-

gration algorithm that is consistent in the non-linear range (i.e. the conservation laws have to be verified).

2.5.2. The conservation laws

Assuming pure Neumann boundary condition (i.e. S~x ¼ 0), during the time interval of interest, the
motion of the center of gravity must depend only on the external forces. Moreover, the modification of
the energy of the system must depend only on these external forces too. Thus, the variation of the energy
of the system must be equal to the work done by the external forces minus the internal dissipation (due to
plasticity, frictional sliding, . . .) of the system. If these conditions are satisfied, the integration is called ther-
modynamically consistent [20]. To reach this goal, internal forces have to verify some conditions that we
will give below. For more details, we refer the reader to [20].

Conservation of the linear momentum ~L is reached if

~L
nþ1

�~L
n
¼

X

n

Mnl½ _~x nþ1 � _~x n�
l
¼ Dt

X

n

½~F
nþ1

2

ext �
n
. ð2:19Þ

This relation is verified if the internal forces verify
X

n

½~F
nþ1

2

int �
n
¼ 0. ð2:20Þ
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Conservation of the angular momentum ~J is reached if

~J
nþ1

�~J
n
¼ Mnl½~x n ^ _~x l�

nþ1
�Mnl½~x n ^ _~x l�

n
¼ Dt

~x n þ~x nþ1

2

� �n

^ ~F
nþ1

2

ext

� �n

ð2:21Þ

with the operation~a ^~b denoting the vector product of~a and~b. To verify Eq. (2.21), internal forces have to
verify

~x nþ1 þ~x n

2

� �n

^ ~F
nþ1

2

int

� �n

¼ 0. ð2:22Þ

Let E, Uint, Wext and K be respectively the total energy of the system, the internal energy, the work done
by the external forces and the kinetic energy. Conservation of the energy E � K + Uint is discretized on a
time step by

Enþ1 � En ¼ W nþ1
ext � W n

ext � Dint; ð2:23Þ

where DintP 0 is the internal dissipation, during the step, coming from the irreversible behavior of the
material, the frictional sliding, . . . Therefore, to verify Eq. (2.23), the relation that the internal forces have
to verify is

~F
nþ1

2

int

� �n

� ½~x nþ1 �~x n�
n
¼ U nþ1

int � U n
int þ Dint. ð2:24Þ

Now in order to obtain a scheme consistent with thermodynamics, the expression of the internal forces
has to be designed to verify Eqs. (2.20), (2.22) and (2.24).

2.5.3. Construction of the internal forces

The internal force expression consistent with thermodynamics was given for a spring by Simo et al. [25],
and by Gonzalez and Simo [26,27]. To be able to verify the Eqs. (2.20), (2.22) and (2.24) Eq. (2.7) is rewrit-
ten as

~F
nþ1

2

int

� �n

¼
Uðlnþ1Þ � UðlnÞ

lnþ12 � ln
2

f½~x nþ1 þ~x n�n � ½~x nþ1 þ~x n�lg if lnþ1 6¼ ln

¼

o

ol
U

lnþ1 þ ln

2

� �

lnþ1 þ ln
f½~x nþ1 þ~x n�

n
� ½~x nþ1 þ~x n�

l
g if lnþ1 ! ln. ð2:25Þ

Conservation of the linear momentum (2.20) and of the angular momentum (2.22) are directly obtained
from Eq. (2.25). Conservation of the energy (2.24), with Dint = 0 (no internal dissipation) is obtained by
setting the potential U equal to the internal energy Uint.

Simo and Tarnow [20] and Simo and Gonzalez [28] gave a consistent expression for Saint Venant–Kir-
chhoff hyperelastic materials. A generalization to other hyperelastic models was given by Laursen and
Meng [29], who iteratively solved a new equation for each Gauss point to determine the adequate second
Piola–Kirchhoff stress tensor. Another solution that avoids this iterative procedure leads to a general for-
mulation of the second Piola–Kirchhoff stress tensor, as given by Gonzalez [30]. This formulation is valid
for general hyperelastic materials. The EMCA (Energy Momentum Conserving Algorithm) was recently
extended to dynamic finite deformation plasticity by Meng and Laursen [31,32]. In such a formulation,
the algorithm remains energy conserving when no irreversible deformation occurs, and ‘‘dissipates energy
in a manner consistent with the physical model in use’’ (sic) when plastic deformation occurs. Finally, we
have extended in [33,34] the model of the elasto-plastic material to the hypoelastic description. Such a
model integrates spatially Cauchy stresses, which do not derive from a potential but are computed form
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a hardening law. In this section we will briefly recall the expression of the internal forces for a hypoelastic
bulk model. Our present work that consists to balance the explicit steps can easily be extended to other
models such as hyperelastic bulk ones or frictional contact model.

Deformation gradient F defined in Eq. (2.1) is incrementally computed between the two configurations n
and n + 1. Thanks to the Polar Decomposition Theorem, F is decomposed into the product of a rotation
tensor R and a positive definite symmetric tensor U such that

Fnþ1
n ¼

o~x nþ1

o~x n ¼ Rnþ1
n Unþ1

n . ð2:26Þ

The inverse of F is denoted by f and the determinant of F is denoted by J. Green–Lagrange strain tensor
GL, Almansi strain tensor A and natural strain tensor E are computed from F respectively as

GLnþ1
n ¼ 1

2
½Fnþ1T

n Fnþ1
n � I�;

Anþ1
n ¼ 1

2
½I� fnþ1T

n fnþ1
n �;

Enþ1
n ¼ 1

2
ln½Fnþ1T

n Fnþ1
n �.

ð2:27Þ

As far as the integration of the hypoelastic constitutive model (for elasto-viscoplastic material models) is
concerned, the incremental procedure is the following (see [35] for details). The Cauchy stress are then
obtained by

R
nþ1 ¼ Rnþ1

n ½Rn þH : Enþ1
n � sc�Rnþ1T

n ; ð2:28Þ

where H is the four order Hooke tensor and where sc is the viscoplastic correction obtained by the radial
return mapping scheme [35–38] to verify the discretized von Mises criterion evaluated at time tn+1. This
method guarantees the incremental objectivity of the algorithm. Now that the current state of stress can
be computed, one still has to verify the thermodynamic consistency of the time integration scheme.

To be able to satisfy the Eqs. (2.20), (2.22) and (2.24), the expression of the internal forces (2.6) is rewrit-
ten as

½~F
nþ1

2

int �
n
¼

1

2
½~F

�

int þ
~F

��

int�
n
;

½~F
�

int�
n
¼

1

2

Z

V 0

f½Iþ Fnþ1
n �½RnT þ C��fn

T

0
~D

n
J n
0gdV 0;

½~F
��

int�
n
¼

1

2

Z

V 0

f½Iþ fnþ1
n �½Rnþ1T þ C���fnþ1T

0
~D

n
J nþ1
0 gdV 0;

ð2:29Þ

where tensors C� and C�� will be derived to verify the conservation of energy.
Since

P

n
~D

n
¼ 0, the conservation of the linear momentum (2.20) is directly verified.

Assuming that the Cauchy stress tensors and tensors C� and C�� are symmetric, the conservation of the
angular momentum (2.22) is obtained from Eq. (2.29) after some algebra [33,34].

For general hypoelastic models, no internal potential exists. Therefore, Eq. (2.24) has to be verified
through the evaluation of the work of the internal forces on a loading/unloading cycle. Let Uelnþ1

n be the
incremental tensor of elastic deformation such that

H :
1

2
ln½Uelnþ1

n Uelnþ1

n � ¼ H : Enþ1
n � scnþ1

n . ð2:30Þ

Plastic Green–Lagrange tensor GLplnþ1

n , and plastic Almansi tensor Aplnþ1

n are defined from Uelnþ1

n as
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GLplnþ1

n � GLnþ1
n �

1

2
½Uelnþ1

n Uelnþ1

n � I�;

Aplnþ1

n � Anþ1
n �

1

2
Rnþ1

n ½I�Uelnþ1�1

n Uelnþ1�1

n �Rnþ1T

n .

ð2:31Þ

In [33], we have proved that Eq. (2.24) could then be rewritten

Dint ¼
1

2

Z

V 0

f½GLplnþ1

n : R
n þGLnþ1

n : C��J n
0gdV 0 þ

1

2

Z

V 0

f½Aplnþ1

n : R
nþ1 þ Anþ1

n : C���J nþ1
0 gdV 0. ð2:32Þ

Therefore, this last relation is the only one that remains to be proved. It can easily be done by setting

C� ¼

Dint

J n
0

� R
n
: GLplnþ1

n

GLnþ1
n : GLnþ1

n

GLnþ1
n ;

C�� ¼

Dint

J nþ1
0

� R
nþ1

: Aplnþ1

n

Anþ1
n : Anþ1

n

Anþ1
n

ð2:33Þ

with

Dint ’
1
2
epnþ1
n ½Rnþ1

v J nþ1
0 þ Rn

vJ
n
0�; ð2:34Þ

where epnþ1
n ¼ epnþ1 � epn is the equivalent plastic strain increment and Rv the equivalent von Mises yield

stress. Thanks to Eqs. (2.32) and (2.33), Eq. (2.24) can then be reduced to

Dint ¼

Z

V 0

fDintgdV 0 > 0. ð2:35Þ

Since Dint defined by Eq. (2.34) corresponds to the plastic dissipation by unit of initial volume [34], the
Eq. (2.35) is verified and therefore, the time integration scheme is energetically consistent.

2.5.4. Iterative solution of the algorithm

In this section, the system of Eqs. (2.16), (2.17) and (2.18) is iteratively resolved by a predictor corrector
algorithm. Since this methodology of resolution will be needed to establish our balance method in Section
3, we present here the principle with some details.

Predicted values (iteration 0 at configuration n + 1) are

½~x nþ1;0�n ¼ ~x n þ Dt _~x n þ
Dt2

4
€~x n

� �n

;

½ _~x nþ1;0�
n
¼ _~x n þ

Dt

2
€~x n

� �n

;

½€~x nþ1;0�
n
¼ 0.

ð2:36Þ

These nodal values are compatible with Eqs. (2.16) and (2.17) and are now corrected to satisfy the Eq.
(2.18).

Residual i of the Newton–Raphson scheme, at configuration n + 1, is obtained by

½D~F
i
�n ¼

1

2
Mnl½€~x nþ1;i þ €~x n�l þ ½~F

nþ1
2

int ð~x
nþ1;iÞ �~F

nþ1
2

ext ð~x
nþ1;iÞ�n. ð2:37Þ

The balance Eq. (2.18) is linearized with respect to the accelerations. Therefore the correction of iteration
i + 1 at configuration n + 1 is

9



Sinl ½D€~x iþ1�
l
¼ �½D~F

i
�
n
;

½€~x nþ1;iþ1�
l
¼ ½€~x nþ1;i þ D€~x iþ1�

l
;

½ _~x nþ1;iþ1�
l
¼ _~x nþ1;i þ

Dt

2
D€x iþ1

� �l

;

½~x nþ1;iþ1�
l
¼ ~x nþ1;i þ

Dt2

4
D€~x iþ1

� �l

;

ð2:38Þ

where S is the Jacobian matrix defined by

Snl ¼

o
1
2
Mnm½€~x nþ1 þ €~x n�

m
þ ~F

nþ1
2

int �~F
nþ1

2

ext

� �n
( )

o½€~x nþ1�l
. ð2:39Þ

Let Knl be the tangent stiffness matrix

Knl ¼

o ~F
nþ1

2

int

� �n

o½~x nþ1�l
�

o ~F
nþ1

2

ext

� �n

o½~x nþ1�l
. ð2:40Þ

Therefore, if (2.39) is compared to (2.40), it leads (with I the unity tensor) to

Snl ¼ Knm o~x
m

o€~xl
þ
1

2
MnlI. ð2:41Þ

Thanks to Eqs. (2.16) and (2.17), it comes

o~xm

o€~xl
¼

Dt2

4
Idml. ð2:42Þ

Finally Eq. (2.41) becomes

Snl ¼ Knl Dt2

4
I

� �

þ
1

2
MnlI. ð2:43Þ

After each iteration, Eqs. (2.16) and (2.17) are verified. Moreover, we will admit that Eq. (2.18) is sat-
isfied if the following relative norm of the out-of-equilibrium forces D~F , defined by Eq. (2.37), gets lower
than a given tolerance Tol (typically Tol = 10�6), so that balance equations are satisfied if

D~F
iþ1n

� D~F
iþ1n

~F
nþ1

2

int ð~x
nþ1Þ

� �n

� ~F
nþ1

2

int ð~x
nþ1Þ

� �n

þ ~F
nþ1

2

ext ð~x
nþ1Þ

� �n

� ~F
nþ1

2

ext ð~x
nþ1Þ

� �n
< Tol. ð2:44Þ

3. Balance of the explicit time steps

The goal of this section is to balance the explicit steps in a thermodynamical consistent way, including
the non-linear range. Thanks to this balance, a traditional explicit computation can provide stable initial
conditions for a subsequent traditional implicit simulation after an algorithmic switch from explicit to
implicit. First, the principle of the balance is presented. Then we will detail the equations in the special case
of a spring model and in the special case of an elasto-plastic hypoelastic model.
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3.1. Principle

Let us assume to have reached time tn with a traditional explicit central-difference scheme. The explicit
steps are of size Dtexpl. At this time we want to compute the remaining part of the simulation with an impli-
cit Energy Momentum Conserving Algorithm with a time step size Dtimpl, that is much larger than Dtexpl.
We restrict the first implicit time step size to be a multiple (by an integer r�) of the explicit time step i.e.

Dtimpl ¼ r�Dtexpl. ð3:1Þ

Factor r� is a user defined parameter or could be evaluated from an integration error [17,19]. Therefore
we proceed as described in Fig. 1. The nodal values, and the values at the Gauss points are stored for the
configuration n. Let us note that we have reached this point with a traditional explicit scheme, but these
values will be used as starting values for the balance. Next, r� explicit time steps are computed to reach
t ¼ tnþr� (this is the time where the implicit computation will actually start). For this configuration, the
new nodal positions are stored and denoted by ~x nþr�

expl . These values are the only ones of interest at time
tnþr� (i.e. velocities and accelerations computed by the explicit scheme at this time will not be used). They
will be used to compute the balanced step.

The equations to be solved for this balance step are the following ones. Let us denote with a subscript
impl the values (positions, velocities, accelerations) of the balanced solution at configuration n + r� while
the subscript expl denotes the unbalanced solution obtained by the explicit method. Eqs. (2.16) and
(2.17) are respectively rewritten as

½~x nþr�

impl �
n
¼ ½~x n�

n
þ
Dtimpl

2
½ _~x nþr�

impl �
n
þ
Dtimpl

2
½ _~x n�

n
ð3:2Þ

and

½ _~x nþr�

impl �
n
¼ ½ _~x n�

n
þ
Dtimpl

2
½€~x nþr�

impl �
n
þ
Dtimpl

2
½€~x n�

n
; ð3:3Þ

where the values ~x nþr�

impl ,
_~x nþr�

impl and €~x nþr�

impl are the balanced solutions to be computed at time tnþr� . Explicit
velocities _~x n at time tn can be computed from mid point velocities at time tn�

1
2 and from acceleration at time

tn thanks to Eq. (2.13). The balance Eq. (2.18) is rewritten as

1

2
Mnl½€~x nþr�

impl þ
€~x n�l ¼ ½~F

nþr�

2

ext �~F
nþr�

2

int �n. ð3:4Þ

The expression of the internal forces ~F
nþr�

2

int will be given later.
The system of Eqs. (3.2), (3.3) and (3.4) is solved for~x nþr�

impl ,
_~x nþr�

impl and €~x nþr�

impl by a predictor corrector algo-
rithm. The predictor values (iteration 0), still verifying Eqs. (3.2) and (3.3), are taken as

t
n

t
n+r*

t
n+r*+1

∆texpl

transition
phase

purely implicit
phase

Balance of the explicit
steps with an implicit step

∆timpl ∆timpl

purely explicit
phase

∆texpl

t0

Fig. 1. Description of the method developed to balance the explicit steps when shifting from an explicit simulation to an implicit one.
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½~x nþr�;0
impl �

n
¼ ~x n þ Dtimpl

_~x n þ
Dt2impl

4
€~x n

" #n

;

½ _~x nþr�;0
impl �

n
¼ _~x n þ

Dtimpl

2
€~x n

� �n

;

½€~x nþr�;0
impl �

n
¼ 0.

ð3:5Þ

If values predicted by Eq. (3.5) are used to start the correction phase, the balance Eq. (3.4) generally
cannot be reached since the values at configuration n (obtained with a traditional explicit scheme) are
not balanced, leading to a lack of convergence in the Newton–Raphson scheme. Therefore, ~xnþr�

expl is used
as initial predicted positions and the first increment of position is then

D~x ¼~x nþr�

expl �~x nþr�;0
impl ð3:6Þ

and, to be able to still verify Eqs. (3.2) and (3.3), we have a new prediction given by

½~x nþr�;1
impl �

n
¼ ½~x nþr�

expl �
n
;

½ _~x nþr�;1
impl �

n
¼ ½ _~x nþr�;0

impl �
n
þ

2

Dtimpl

½~x nþr�

expl �~x nþr�;0
impl �

n
;

½€~x nþr�;1
impl �

n
¼ ½€~x nþr�;0

impl �
n
þ

4

Dt2impl

½~x nþr�

expl �~x nþr�;0
impl �

n
.

ð3:7Þ

From this point, the system is solved iteratively as in Section 2.5.4. Residual (2.37) at iteration i > 1 for
configuration n + r� is rewritten as

ðD~F
i
Þ
n
¼ Mnl

€~x nþr�;i
impl þ €~x n

2

" #l

þ ~F
nþr�

2

int ð~x nþr�;i
impl Þ �~F

nþr�

2

ext ð~x nþr�;i
impl Þ

� �n

ð3:8Þ

and the corrections on the nodal values are obtained by

Sinl ½D€~x iþ1�
l
¼ �½D~F

i
�
n
;

½€~x nþr�;iþ1
impl �l ¼ ½€~x nþr�;i

impl þ D€~x iþ1�l;

½ _~x nþr�;iþ1
impl �l ¼ _~x nþr�;i

impl þ
Dt

2
D€x iþ1

� �l

;

½~x nþr�;iþ1
impl �

l
¼ ~x nþr�;i

impl þ
Dt2

4
D€~x iþ1

� �l

;

ð3:9Þ

where S is the tangent matrix obtained in the same way than Eq. (2.39). Iterations are stopped when the
balance equation is verified within a given tolerance Tol (see Eq. (2.44)).

In summary, the proposed method is the following:

• from initial conditions at time t0, a traditional explicit simulation is led until time tn;
• at time tn nodal values and values at Gauss points are stored;
• r� explicit steps are taken from time tn to time tnþr� , leading to the displacements~x nþr�

expl ;
• displacement~x nþr�

expl are used, through a predictor–corrector algorithm, to initiate a balance step between
time tn (for which values at nodes and Gauss points were stored) and time tnþr� ;

• once the Newton–Raphson scheme of this balance step has converged, new values obtained at time tnþr�

are used as initial conditions for the following implicit time integration.
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Let us note some remarks:

• the described procedure remains valid if we have shifts from an implicit method to an explicit one and
more than once shift from an explicit scheme to an implicit one;

• this procedure can be extended to other explicit schemes, such as the a-generalized explicit scheme [4]
and to an implicit consistent algorithm with numerical dissipation such as the Energy-Dissipative-Con-
serving-Momentum [39,40].

Now we are able to design the internal force expressions ~F
nþr�

2

int ð~x nþr�

impl Þ that will lead to a thermodynamical
consistent balanced step. To achieve this goal, we have to rewrite the conservation laws for this balanced
step.

3.2. Construction of the internal forces for the balance step

Since Eqs. (3.2), (3.3) and (3.4) are already satisfied, the conservation laws established in Section 2.5.2,

can easily be adapted to obtain the new conditions on ~F
nþr�

2

int ð~x nþr�

impl Þ. These conditions correspond to the

physical principles of motion (the internal forces cannot modify the motion of the centre of gravity and
the variation of the energy of a system correspond to the work done by the external forces).

Conservation of the linear momentum (2.19) is rewritten

~L
nþr�

�~L
n
¼ Dt

X

n

~F
nþr�

2

ext

� �n

ð3:10Þ

and is verified if we have

X

n

½~F
nþr�

2

int �
n
¼ 0. ð3:11Þ

Conservation of the angular momentum (2.21) is rewritten as

~J
nþr�

�~J
n
¼

Dt

2
½~x nþr�

impl þ~x n�
n
^ ½~F

nþr�

2

ext �
n
; ð3:12Þ

which is verified if the internal forces satisfy

~x nþr�

impl þ~x n

2

" #n

^ ~F
nþr�

2

int

� �n

¼ 0. ð3:13Þ

Conservation of the energy (2.23) is rewritten as

Enþr� � En ¼ W nþr�

ext � W n
ext � Dint ð3:14Þ

that leads to the following condition

½~F
nþr�

2

int �
n
� ½~x nþr� �~x n�

n
¼ U nþr�

int � U n
int þ Dint. ð3:15Þ

Therefore, the internal forces ~F
nþr�

2

int ð~x nþr�

impl Þ have to be constructed so that they verify Eqs. (3.11), (3.13)
and (3.15). By similitude with Section 2.5.3, the expression of the internal forces (2.25) and (2.29) (for
respectively the spring and the bulk element) are adapted by computing these expressions between config-
urations n and n + r� and not between configurations n and n + 1. Therefore, we just give the final results.
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Expression of the balanced internal forces for a spring model (2.25) is rewritten as

½~F
nþr�

2

int �
n
¼

Uðlnþr�Þ � UðlnÞ

lnþr�2 � ln
2

f½~x nþr� þ~x n�
n
� ½~x nþr� þ~x n�

l
g if lnþr� 6¼ ln

¼

o

ol
U

lnþr� þ ln

2

� �

lnþr� þ ln
f½~x nþr� þ~x n�

n
� ½~x nþr� þ~x n�

l
g if lnþr� ! ln ð3:16Þ

that satisfies Eqs. (3.11), (3.13) and (3.15).
Expression of the balanced internal forces for a hypoelastic model (2.29) is rewritten as

½~F
nþr�

2

int �n ¼
1

2
½~F

�

int þ
~F

��

int�
n;

½~F
�

int�
n
¼

1

2

Z

V 0

f½Iþ Fnþr�

n �½RnT þ C��fnT0
~D

n
J n
0gdV 0;

½~F
��

int�
n ¼

1

2

Z

V 0

f½Iþ fnþr�

n �½Rnþr�T þ C���fnþr�T

0
~D

n
J nþr�

0 gdV 0;

ð3:17Þ

where C� and C�� will be defined. In this last relation, we use the deformation gradient F between the con-
figurations n and n + r�

Fnþr�

n ¼
o~x nþr�

impl

o~x n ð3:18Þ

and Cauchy stress tensor obtained by

R
nþr� ¼ Rnþr�

n ½Rn þH : Enþr�

n � sc�Rnþr�T

n ð3:19Þ

with Enþr�

n and Rnþr�

n computed from Fnþr�

n , and with sc the viscoplastic corrections obtained by the
von Mises criterion evaluated at time tnþr� . Using Fnþr�

n to compute strain tensors, the two tensors
C� and C�� are defined by

C� ¼

Dint

J n
0

� R
n
: GLplnþr�

n

GLnþr�

n : GLnþr�

n

GLnþr�

n ;

C�� ¼

Dint

J nþr�

0

� R
nþr�

: Aplnþr�

n

Anþr�

n : Anþr�

n

Anþr�

n

ð3:20Þ

with

Dint ’
1
2
epnþr�

n ½Rnþr�

v J nþr�

0 þ Rn
vJ

n
0� ð3:21Þ

the internal dissipation between time tn and time tn+1.
Similitudes in the construction of the internal forces with Section 2.5.3, allow us to claim (this is rigor-

ously demonstrated in Appendix A) that Eq. (3.17) satisfies Eqs. (3.11), (3.13) and (3.15) and therefore, the
time step between tn and tnþr� is thermodynamically consistent.

4. Numerical examples

In this section, we will prove numerically that our method of transition between an explicit time integra-
tion and an implicit time integration does not lead to numerical instability in the non-linear range. In a first
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example, we will compute a long-duration non-linear explicit simulation with the balance method. It will
allow us to prove that the proposed methodology ensures stability in the non-linear range. Nevertheless
the goal of this paper is not to balance a whole explicit simulation, but to use this methodology to be able
to shift from an explicit algorithm to an implicit algorithm. Therefore, in the next two examples, we will use
the proposed balance method only when shifting from an explicit simulation to an implicit one. We will
then prove that this methodology allows us to combine the two methods without loss of accuracy.

4.1. Numerical example 1: Dynamics of a mass-spring system

This example was initially proposed by Armero and Romero [39,40]. It consists of a mass (m = 2 kg)
attached to the extremity of a spring (stiffness k = 15 N/m, length at rest l0 = 10 m). The other extremity
of the spring is fixed. The mass has an initial velocity of 10 m/s perpendicular to the spring that is initially
unstressed (Fig. 2). Due to the large rotation, the system is geometrically non-linear. Let us point out that
the problem is solved in the Cartesian coordinates and not using polar coordinates. We compare the results
obtained by the three following methods:

• simulation with an implicit algorithm (EMCA) and a time step of 1.5 s;
• simulation with an explicit algorithm (central difference) and a security factor cs = 0.68465 that leads to a
time step of Dt ’ 0.5 s (time step size of the non-linear two-degree of freedom problem is computed by a
power iteration method [5] and is therefore not exactly constant Dt 2 [0.49;0.51]). It should be noted that
in such a simple case, using a constant time step such as Dt = 0.5 s would lead to a less oscillatory solu-
tion. Nevertheless, for more complex situations such as those encountered in industrial applications, one
has to use a non-constant time step. Thus, as the purpose of this example is just to illustrate the meth-
odology, we have preferred to use the non-constant time step computed by the power-iteration method;

• simulation with this explicit algorithm, but with each three explicit steps balanced by the proposed
method (Dtimpl = 3Dtexpl). Note that the simultaneous use of explicit and implicit schemes in this example
is purely for purposes of illustrating the properties of the proposed balancing algorithm. The actual use
of balancing when shifting from explicit to implicit will be illustrated by the next examples.

Fig. 3 represents the time evolution of the spring length and Fig. 4 represents the time evolution of the
energies. The implicit solution (Figs. 3(a) and 4(a)) gives a consistent solution where the oscillations (in the
length, the kinematic energy and the potential energy) have the amplitudes obtained by other authors
[39,40]. The explicit solution (Figs. 3(b) and 4(b)) is unconsistent since the total energy is not constant
and since the oscillations do not have a constant amplitude. This comes from the non-linearities that are
approximatively integrated with the explicit scheme (these oscillations are also reinforced by the use of a

.k = ∂²U/l²∂=15N/m

m = 2kg

x
0
= 10m/s

l
0
=10m

Fig. 2. Sketch of the mass-spring system.
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non-strictly-constant time step). Now we balance the explicit steps with the developed method (each three
explicit steps are balanced). Figs. 3(c) and 4(c) illustrate, respectively the length and the energies for each
explicit step (balanced and unbalanced). Contrarily to the explicit solution, even if the total energy is not
constant, the oscillations are limited. In fact, the unbalanced explicit steps, that are unstable (we are under
the stability limit that is established only for linear systems, and no longer remains necessarily true in this
non-linear example) lead to an increase in the total energy. But the balance method provides consistent
results after three explicit steps. If only the balanced solutions are represented (Figs. 3(d) and 4(d)), the
solution obtained is consistent and similar to the implicit solution. Finally, let us note that the implicit solu-
tion requires the resolution of 749 Newton–Raphson iterations and that the balanced explicit solution
requires the resolution of 671 Newton–Raphson iterations.

Let us also point out that if the standard explicit simulation leads to unbounded oscillations in the total
energy, which results from the fact that time step size is non-constant (time step size of the two-degree of
freedom problem is computed by the power iteration method [5] with Dt 2 [0.49;0.51]). The computed step
size is always lower than the critical one, but its variation leads to the presented results. If we use a constant
time step, the oscillations in the energy are bounded. For example we illustrate the length evolution (Fig. 5)
and the energy evolution (Fig. 6) for two constant time step sizes (Dt = 0.05 s and 0.5 s). Since the explicit
scheme with constant time step is symplectic, the total energy is bounded. Amplitude of the oscillations
increases with the time step size. Nevertheless small variations in the time step size lead to instability.
For more complex systems than a mass/spring one, these variations in the step size cannot be avoided.

This example allows us to conclude that the balance of explicit steps is stable and consistent in the non-
linear range and does not require too many iterations. Therefore, we can use it without destabilizing the
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Fig. 3. Time evolution of the spring length. (a) Implicit resolution with EMCA, (b) explicit resolution (central difference), (c) explicit

resolution balanced by an implicit algorithm (balanced and unbalanced times are plotted), (d) explicit resolution balanced by an

implicit algorithm (only balanced times are plotted).
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computation. In this example, the balanced solution was used to stabilize a fully explicit simulation. But we
have developed it to be used only when shifting from an explicit scheme to an implicit one. Therefore, we
will study academic examples where we will shift from an integration method to another one. When shifting
from an explicit method to an implicit one, the proposed method will be used.

4.2. Numerical example 2: Dynamics of a 3D beam

The dynamics of a cantilever beam is studied. The beam is discretized into 320 (4 in width, 4 in height
and 20 in length) elements. Its geometry is illustrated in Fig. 7. Dimensions and material properties are
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Fig. 4. Time evolution of the mass-spring system energy. (a) Implicit resolution with EMCA, (b) explicit resolution (central difference),

(c) explicit resolution balanced by an implicit algorithm (balanced and unbalanced times are plotted), (d) explicit resolution balanced

by an implicit algorithm (only balanced times are plotted).

Fig. 5. Time evolution of the spring length with an explicit scheme and a constant time step size. (a) Dt = 0.05 s, (b) Dt = 0.5 s.
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reported in Table 1. On top of face A (Fig. 7), a time dependent force is applied at each node. This force is
computed from

Fig. 6. Time evolution of the mass-spring system energy with an explicit scheme and a constant time step size. (a) Dt = 0.05 s,

(b) Dt = 0.5 s.

Fig. 7. Initial geometry and mesh for the beam problem.

Table 1

Geometrical and material properties of the beam

Property Value

Length L = 100 mm

Width l = 8 mm

Height h = 8 mm

Density q = 10,000 kg/m3

Young�s modulus Y = 186,000 N/mm2

Poisson�s ratio m = 0.3

Yield stress Rv = 20,000 + 16,000ep N/mm2
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After 6 ms, the forces are relaxed. We compare the solutions obtained for all times between 0 and 10 ms
by:

• an implicit simulation (EMCA) with a time step equal to 0.01 ms,
• an explicit simulation (central difference) with a security factor cs = 0.626764, that leads to a time step
size Dt = 0.25 ls,

• an implicit/explicit combined algorithm that uses the implicit scheme (with Dtimpl = 0.01 ms) between
t = 0 ms and t = 2 ms and between t = 3 ms and t = 10 ms. The explicit scheme (central difference) is
used when the loading reaches its maximal value between t = 2 ms and t = 3 ms. The balance of the
explicit steps is then activated, with Dtimpl = 40Dtexpl, between time t = 3 ms and time t = 3.01 ms.

Fig. 8(a) illustrates the time evolution of the plastically dissipated energy. All the computed solutions are
similar (maximum difference of 0.3%). For the combined method, no perturbation appear when the algo-
rithm shifts from an implicit method to an explicit method at time t = 2 ms or when the explicit algorithm
shifts back to an implicit method at time t = 3 ms. The same observations are obtained by analyzing the
vertical displacement of the extremity of the beam (Fig. 8(b)). During the loading (t < 3 ms), the unloading
(3 ms 6 t < 6 ms), and the free vibration of the beam (t 6 10 ms), the solutions are identical in amplitude
and in phase. The equivalent plastic strain obtained after the loading (Fig. 9(a)) and after 10 ms
(Fig. 9(b)) are also identical.

4.3. Numerical example 3: Taylor’s bar problem

The impact of a cylindrical bar, with an initial velocity _~x0 is studied. Due to the symmetry, only a fourth
of the cylinder is discretized into 576 elements (48 in the base and 12 in length). The initial geometry is illus-
trated in Fig. 10. Dimensions and material properties are reported in Table 2. The total simulation time is
80 ls. We compare the solutions obtained by:
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Fig. 8. Time evolution of the results for the beam. (a) Energy plastically dissipated, (b) displacement (along y) of the extremity.
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Fig. 9. Equivalent plastic strain for the beam after (a) t = 3 ms, (b) t = 10 ms.

Fig. 10. Initial geometry and mesh for Taylor�s bar.
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• an implicit simulation (EMCA) with a time step equal to 500 ns (160 steps for the total simulation),
• an explicit simulation (central difference) with a security factor cs = 0.8, that leads to an initial time step
size Dt = 61.3 ns (1409 steps for the total simulation),

• an implicit/explicit combined algorithm that uses an explicit scheme (cs = 0.8) for t < 40 ls and an
implicit scheme (with Dtimpl = 0.5 ls) for t > 40 ls. The balance of the explicit steps is reached, with
Dtimpl = 9Dtexpl, between time t = 40 ls and time t = 40.5 ls.

Fig. 11(a) illustrates the time evolution of the plastically dissipated energy. All the computed solutions
are similar (maximum difference of 1.5%). The same observations are obtained by analyzing the reversible
energy stored (kinetic energy added to the work of the internal forces minus the plastically dissipated
energy) in the cylinder (Fig. 11(b)). Since the implicit algorithm is energetically conservative, and since
the explicit algorithm uses small time steps, the reversible energy almost corresponds to the initial energy
minus the plastically dissipated energy. It remains true for the combined method, demonstrating once again
that the shift method, at time t = 40 ls, is energetically consistent. Nevertheless, by analyzing the final val-
ues of the simulation (Table 3), it appears that the energy plastically dissipated with the explicit scheme or
with the combined scheme is larger than the initial kinetic energy (equal to 56.27 J). This results from the
fact that the explicit scheme is not thermodynamically consistent in the non-linear range and not from a
lack of stability in the shift method. The final length and radius (of the base) of the cylinder are equivalent
by 0.5% for all methods (Table 3). The equivalent plastic strains obtained after the impact (Fig. 12) are also
almost identical (the explicit scheme leads to about 7% higher plastic strain, corresponding to the fact that
the plastically dissipated energy is overestimated).

Table 2

Geometrical and material properties of Taylor�s bar

Property Value

Length L = 32.4 mm

Radius r = 3.2 mm

Initial velocity _~x0 ¼ 227 m/s

Density q = 8900 kg/m3

Young�s modulus Y = 117,000 N/mm2

Poisson�s ratio m = 0.35

Yield stress Rv = 400 + 100ep N/mm2
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Fig. 11. Time evolution of some results for Taylor�s bar. (a) Plastically dissipated energy, (b) reversible energy.
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5. Conclusions

In this work, we have proposed a stable and thermodynamically consistent way, even in the non-linear
range, to balance some explicit time steps. This method is based on a predictor–corrector algorithm. We
have used this methodology for a long-duration simulation of a non-linear mass-spring system to numer-
ically demonstrate its stability in the non-linear range. Next, we have used it to be able to shift from an
explicit simulation to an implicit simulation occurring with a larger time step size. The method has been
shown to be stable and accurate, and to allow this transition between the two methods to occur without
divergence of the iterative procedure.

Appendix A. Consistency of the balance step for the hypoelastic bulk model

Eq. (3.17) corresponds to the internal force formulation developed to balance the r� last explicit steps. In
this section, we will prove that this relation leads to a balanced step that verify the conservation of the linear
momentum, the conservation of the angular momentum and the conservation of the energy.

Fig. 12. Equivalent plastic strain for Taylor�s bar after 80 ls.

Table 3

Comparison of the final results of Taylor�s bar

Values Full implicit Full explicit Combined implicit/explicit

Plastically dissipated energy Dint = 56.25 J Dint = 56.97 J Dint = 57.33 J

Maximal plastic strain eplmax ¼ 2:37 eplmax ¼ 2:54 eplmax ¼ 2:53
Length L = 21.5784 mm L = 21.6279 mm L = 21.5971 mm

Radius r = 6.8530 mm r = 6.8368 mm r = 6.8325 mm
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A.1. Conservation of the linear momentum

Eq. (3.17) satisfies conservation of the linear momentum defined by Eq. (3.11). It is directly proved by
using the property of the shape functions

P

n
~D

n
¼ 0.

A.2. Conservation of the angular momentum

Using the fact that the Cauchy stress tensor and tensors C� and C�� are symmetric, Eq. (3.17) satisfies,
after some algebra, conservation of the angular momentum defined by Eq. (3.13).

A.3. Conservation of the energy

We have proved in [33] that Eq. (2.24) could then be rewritten as (2.32). Using definitions of Eq. (3.17),
the same demonstration reduces Eq. (3.15) to

Dint ¼
1

2

Z

V 0

f½GLplnþr�

n : R
n þGLnþr�

n : C��J n
0gdV 0

þ
1

2

Z

V 0

f½Aplnþr�

n : R
nþr� þ Anþr�

n : C���J nþr�

0 gdV 0 ðA:1Þ

that becomes the relation to be proved. Thanks to Eqs. (3.20) and (3.21), Eq. (A.1) is reduced to

Dint ¼

Z

V 0

fDintgdV 0 > 0. ðA:2Þ

Since Dint defined by Eq. (3.21) corresponds to the plastic dissipation by unit of initial volume [34], Eq.
(A.2) is satisfied and therefore, the time integration of the balanced step is energetically consistent.
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Antipolis, France, 1996).

[15] M. Finn, P. Galbraith, L. Wu, J. Hallquist, L. Lum, T.-L. Lin, Use of a coupled explicit–implicit solver for calculating spring-back

in automotive body panels, J. Mater. Process. Technol. 50 (1995) 395–409.

[16] N. Narkeeran, M. Lovell, Predicting springback in sheet metal forming: An explicit to implicit sequential solution procedure,

Finite Elements Anal. Des. 33 (1999) 29–42.

[17] L. Noels, L. Stainier, J.-P. Ponthot, J. Bonini, Combined implicit–explicit algorithms for non-linear structural dynamics, Revue

Eur. des Elements-Finis 11 (2002) 565–591.

[18] L. Noels, L. Stainier, J.-P. Ponthot, Combined implicit/explicit algorithms for crashworthiness analysis, Int. J. Impact Engrg.

[19] L. Noels, L. Stainier, J.-P. Ponthot, Combined implicit/explicit time integration algorithms for the numerical simulation of sheet

metal forming, J. Comput. Appl. Math. 168 (2004) 331–339.

[20] J. Simo, N. Tarnow, The discrete energy–momentum method. Conserving algorithms for nonlinear elastodynamics, J. Appl.

Math. Phys. (ZAMP) 43 (1992) 757–792.

[21] D. Jung, D. Yang, Step-wise combined implicit–explicit finite-element simulation of autobody stamping process, J. Mater.

Process. Technol. 83 (1998) 245–260.

[22] D. Flanagan, T. Belytschko, Eigenvalues and stable time steps for the uniform strain hexahedron and quadrilateral, J. Appl.

Mech. 51 (1984) 35–40.

[23] L. Noels, L. Stainier, J.-P. Ponthot, Self-adapting time integration management in crash-worthiness and sheet metal forming

computations, Int. J. Vehicle Des. 30 (2) (2002) 1–48.

[24] W. Daniels, A partial velocity approach to subcycling structural dynamics, Comput. Methods Appl. Mech. Engrg. 192 (2003) 375–

394.

[25] J. Simo, N. Tarnow, K. Wong, Exact energy–momentum conserving algorithms and sympletic schemes for nonlinear dynamics,

Comput. Methods Appl. Mech. Engrg. 100 (1992) 63–116.

[26] O. Gonzalez, J. Simo, On the stability of sympletic and energy–momentum algorithms for non-linear Hamiltonian systems with

symmetry, Comput. Methods Appl. Mech. Engrg. 134 (1996) 197–222.

[27] O. Gonzalez, Mechanical systems subject to holonomic constraints: Differential-algebraic formulations and conservative

integration, Physica D 132 (1999) 165–174.

[28] J. Simo, O. Gonzalez, Recent results on the numerical integration of infinite-dimensional Hamiltonian system, in: T. Hughes, E.

Onate, O. Zienkiewicz (Eds.), Recent Developments in Finite Element Analysis, CIMNE, Barcelona, Spain, 1994, pp. 255–271.

[29] T. Laursen, X. Meng, A new solution procedure for application of energy-conserving algorithms to general constitutive models in

nonlinear elastodynamics, Comput. Methods Appl. Mech. Engrg. 190 (2001) 6309–6322.

[30] O. Gonzalez, Exact energy and momentum conserving algorithms for general models in nonlinear elasticity, Comput. Methods

Appl. Mech. Engrg. 190 (2000) 1763–1783.

[31] X. Meng, T. Laursen, Energy consistent algorithms for dynamic finite deformation plasticity, Comput. Methods Appl. Mech.

Engrg. 191 (2001) 1639–1675.

[32] X. Meng, T. Laursen, On energy consistency of large deformation plasticity models, with application to the design of

unconditionally stable time integrators, Finite Elements Anal. Des. 38 (2002) 949–963.

[33] L. Noels, L. Stainier, J.-P. Ponthot, Energy–momentum conserving algorithm for non-linear hypoelastic constitutive models, Int.

J. Numer. Methods Engrg. 59 (2004) 83–114.

[34] L. Noels, L. Stainier, J.-P. Ponthot, On the use of large time steps with an energy–momentum conserving algorithm for non-linear

hypoelastic constitutive models, Int. J. Solids Struct. 41 (2004) 663–693.

[35] J.-P. Ponthot, Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-

viscoplastic processes, Int. J. Plasticity 18 (2002) 91–126.

[36] M. Wilkins, Calculation of elastoplastic flows, in: B. Alder (Eds.), Methods of Comput. Phys., 1964, pp. 211–263 (Chapter 3).

[37] M. Maenchen, S. Sack, The Tensor code, in: B. Alder (Eds.), Methods of Comput. Phys., 1964, pp. 387–400 (Chapter 3).

[38] J. Simo, T. Hughes, Computational Inelasticity, Springer, 1998.

[39] F. Armero, I. Romero, On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. Part I:

Low-order methods for two model problems and nonlinear elastodynamics, Comput. Methods Appl. Mech. Engrg. 190 (2001)

2603–2649.

[40] F. Armero, I. Romero, On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. Part

II: Second-order methods, Comput. Methods Appl. Mech. Engrg. 190 (2001) 6783–6824.

24


	Energy conserving balance of explicit time steps to combine implicit and explicit algorithms in structural dynamics
	Introduction
	Time integration
	Notations
	The balance equations
	Particular case of the rod
	Explicit time integration of the balance equation
	Implicit time integration of the balance equation
	Basic principle
	The conservation laws
	Construction of the internal forces
	Iterative solution of the algorithm


	Balance of the explicit time steps
	Principle
	Construction of the internal forces for the balance step

	Numerical examples
	Numerical example 1: Dynamics of a mass-spring system
	Numerical example 2: Dynamics of a 3D beam
	Numerical example 3: Taylor’s bar problem

	Conclusions
	Consistency of the balance step for the hypoelastic bulk model
	Conservation of the linear momentum
	Conservation of the angular momentum
	Conservation of the energy

	References


