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loaded cylindrical shells

Philippe Le Grognec a,*, Anh Le van b

a Ecole des Mines de Douai, Polymers and Composites Technology and Mechanical Engineering Department,

941 rue Charles Bourseul—BP 10838, 59508 Douai Cedex, France
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In this paper, a shell finite element is designed within the total Lagrangian formulation framework to deal with the plas-
tic buckling and post-buckling of thin structures, such as cylindrical shells. First, the numerical formulation is validated 
using available analytical results. Then it is shown to be able to provide the bifurcation modes—possibly the secondary 
ones—and describe the complex advanced post-critical state of a cylinder under axial compression, where the theory is 
no longer operative.
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1. Introduction

Failure of slender or thin structures which is mainly due to the buckling phenomenon implies the analysis of
buckling and post-buckling behaviors for their mechanical design, namely the calculation of the critical loads,
the bifurcation modes and the post-critical equilibrium branches.

The problem is particularly difficult with thicker structures where plasticity may occur before buckling.
Shanley (1947) was the first to give the tangent modulus critical load for a discrete model. He showed that
the load increases during the post-bifurcation stage, owing to the elastic unloading in the structure. Hill
(1958) extended these results to a three-dimensional continuum by using the concept of ‘‘comparison elastic
solid’’. He examined the uniqueness and stability criteria, and pointed out the difference between bifurcation
and stability.

More precisely, the critical problem of a cylinder under axial compression was the subject of a lot of exper-
imental and numerical investigations (Bushnell, 1982, 1985). A wide variety of experimental results were
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obtained in terms of the boundary conditions, the geometries and the material parameters. On the other hand,
different numerical models were devised in order to predict the critical loads as well as the advanced post-
buckling behavior. Some pioneering experimental, theoretical and numerical results in the literature will be
briefly presented in the sequel.

Large discrepancies have always been observed between theoretical and experimental results. The most
important feature is that the experimental critical loads sometimes fall down to less than half of the analytical
or numerical values. These differences, due to unavoidable imperfections in experiments, were explained by
many authors. Among others, in his asymptotic analysis of plastic post-buckling, Hutchinson (1974) examined
the influence of various geometric imperfection types on the buckling and post-critical behavior of several
structures. It allows one to determine safety factors for the critical load versus the imperfection size and assess
the stability of the bifurcated branch. Despite the significant influence of the imperfections on the buckling
behavior of a cylinder under axial compression, we shall not account for any type of imperfection in this paper
and will only analyze the critical and post-critical behavior of a perfect cylinder.

From a material point of view, different critical values are obtained in the literature, depending on the plas-
ticity theory considered. Indeed, when numerically (or theoretically) solving the problem of plastic buckling,
one can choose between the deformation and the incremental theories, which have each their own advantages
and drawbacks. The critical stresses obtained by the deformation theory are fairly far from the ones corre-
sponding to the flow theory. As a matter of fact, the solutions derived from the deformation theory turn
out to compare best with the experimental results, although such a theory does not take into account the elas-
tic unloading possibility. On the contrary, the flow theory overpredicts the critical loads. However, the dis-
crepancies can be accounted for and quantified through an analysis of imperfection sensitivity.

More than 50 years ago, Batdorf (1949) and Bijlaard (1949) already tried to explain these differences
between the two theories. Later, Christoffersen and Hutchinson (1979) proposed a new ‘‘corner yield surface’’
theory which realized a compromise between both theories and was used in number of numerical develop-
ments in the literature. Dealing with axially compressed cylinders, Gellin (1979) analyzed the effects of an axi-
symmetric modal imperfection on the plastic buckling, using the deformation theory. Tvergaard analyzed the
effect of geometric and material parameters on the buckling behavior of a cylinder under axial compression
(Tvergaard, 1983a,b). He numerically solved the compressed shells using the phenomenological theory of
Christoffersen and Hutchinson, and validated his numerical approach by the experimental results obtained
by Batterman, Lee, Horton and Johnson in the sixties. He considered an initial sinusoidal axisymmetric defect
and looked for a possible bifurcation towards a non-axisymmetric mode. For relatively thin shells, he found a
bifurcation point just before the maximum load. For thicker shells, however, the maximal load occurs simul-
taneously as the axisymmetric deformed shape is localized at both ends in the form of outward axial half-
waves. Consequently, the bifurcation is delayed or may merely disappear (very thick shells display an axisym-
metric failure). When the bifurcation precedes the localization, a ‘‘diamond’’ mode is observed, displaying
both axial and circumferential waves throughout the structure. Otherwise, the localization is followed by
the loss of axisymmetry and gives rise to an ‘‘elephant foot’’ mode with regularly distributed ‘‘toes’’ at both
ends of the cylinder. According to Tvergaard, the bifurcation is delayed because of the localization which stiff-
ens the structure. Moreover, Tvergaard showed that the circumferential order of the solution decreases as the
radius-to-thickness ratio decreases. Also, he noticed that a weak hardening makes it easier for either an axi-
symmetric failure or an ‘‘elephant foot’’ mode to occur.

Recently, the analysis of this transition between the axisymmetric mode and the ‘‘diamond’’ mode was con-
ducted on a perfect cylinder by Goto and Zhang (1999) using the flow plasticity theory. It was shown therein
that the boundary conditions are a deciding factor for obtaining the previous types of buckling modes. In the
case of a moderately thick cylinder with built-in ends, Goto and Zhang found two successive bifurcation
points: the first one (on the fundamental branch) near the limit load leading to an axisymmetric mode, the
second one (on the decreasing primary bifurcated branch) leading to a localized non-axisymmetric secondary
mode, named ‘‘elephant foot’’. The thinner the shell, the earlier the secondary mode occurs. Thus, if the shell is
thin enough, the second bifurcation point supersedes the first one, prevents from any localization and gives
rise to a ‘‘diamond’’ mode. Conversely, if the shell is thick enough, the second bifurcation point disap-
pears—at least in the computed range—and the failure is very likely axisymmetric. The circumferential wave
number decreases with the thickness. Less obvious is the observed fact that an increase of the length-to-radius
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ratio makes the second bifurcation occur earlier too, without changing the circumferential order of the
deformed shape. In the case of simply supported ends, the wave is very near the ends, so that the localiza-
tion—if it exists—never leads to a second bifurcation. Eventually, the free end condition produces one single
non-axisymmetric bifurcation, which is immediately localized. Again, the circumferential order of the solution
decreases with the thickness.

Comparisons between the predictions of both flow and deformation theories and experimental results were
then performed in Kyriakides et al. (2005), Bardi and Kyriakides (2006) and Bardi et al. (2006), in the case of
axially loaded cylindrical shells, including the effect of anisotropy with the use of the Hill’s yield criterion. The
flow theory significantly overpredicts both the critical stresses and strains, whereas the deformation theory
gives rise to predictions much closer to the experimental values. Furthermore, better predictions were reached
with the deformation theory, when including imperfections whose amplitude was only a small fraction of the
thickness instead of the full thickness used by Gellin and Tvergaard.

Finally, Peek (2000) derived analytical solutions for the immediate post-critical behavior of a cylinder under
axial compression in the axisymmetric case only, considering finite strains.

All the above-mentioned facts show that it is necessary to use a numerical tool to analyze the influence of
the geometries, the material parameters and the boundary conditions on the complete non-linear buckling and
post-buckling response of compressed shells. All plastic bifurcations are strongly influenced by the constitutive
model used. Usually, the deformation theory of plasticity or the corner theory are preferred as they predict
more accurate critical loads than the flow theory, although some recent works have tried to show that the flow
theory is also able to give good results. In this paper, our aim is not to compare the merits of the different
theories. Rather, we adopt the J2 flow theory and aim to test the ability of numerical tools developed in pre-
dicting plastic bifurcations and post-bifurcation paths. It will be shown that (i) the proposed formulation
allows to obtain primary and secondary buckling modes and to exhibit the localization phenomenon, as
observed in experiments; (ii) and that the predicted bifurcation stresses may indeed be higher than the exper-
imental ones. Nothing will be done to compare between numerical and experimental results, since this is a tre-
mendous task which is out of the scope of the paper.

2. Outline of the paper

This paper is devoted to the numerical computations of the critical loads, the bifurcation modes and the
advanced post-critical behaviors of compressed shells in the elastoplastic range.

The principle of virtual work and the total Lagrangian formulation will be used to build a shell finite ele-
ment encompassing the geometric non-linearities (finite rotations and finite strains) and the material non-lin-
earities (elastoplastic behavior with non-linear isotropic hardening). The shell element is designed to deal with
buckling and advanced post-buckling of thin structures, it will be shown to correctly exhibit a wide variety of
bifurcation modes and possibly the secondary ones.

First, the numerical formulation will be validated using available analytical results. Then it will be seen that
the numerical computations can provide more complete results on the advanced post-critical state of a cylin-
der under axial compression, where the theory is no longer operative.

3. Shell finite element formulation

3.1. Shell kinematics with finite rotations

Let us consider a three-dimensional shell-like body with reference volume X0 at the initial time, subjected to
finite quasi-static elastoplastic transformations. In this work, the shell-like body is modeled by the Mindlin–
Reissner theory, it is represented by a middle surface and an inextensible director field which is not constrained
to be normal to the middle surface, except at the reference configuration.

The reference and current positions of a particle on the middle surface are denoted by ~P 0ðn; gÞ and ~P ðn; gÞ,
respectively, where (n,g) are the surface parameters. The displacement of the middle surface particle is denoted
~Uðn; gÞ ¼ ~P ðn; gÞ �~P 0ðn; gÞ.

The reference and current positions of any particle in the shell are given respectively by:
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~X ¼ ~P 0ðn; gÞ þ f~T ðn; gÞ
~x ¼ ~P ðn; gÞ þ f~tðn; gÞ

ð1Þ
where f is the through-thickness parameter, ~T ðn; gÞ and~tðn; gÞ are the reference and current director vectors,
respectively. The displacement of any particle is:
~Dðn; g; fÞ ¼ ~Uðn; gÞ þ fð~tðn; gÞ �~T ðn; gÞÞ: ð2Þ
All the vectors will be resolved in a fixed Cartesian basis:
~X ¼ X i~ei; ~T ¼ T i~ei; ~x ¼ xi~ei; ~t ¼ ti~ei ð3Þ
where implicit summations are made on repeated indices.
The deformation gradient is:
F ¼~gi � ~Gi ð4Þ
where f~Gigi¼1;2;3 is the contravariant natural basis in the reference configuration, dual to f~Gigi¼1;2;3, and
f~gigi¼1;2;3 is the covariant natural basis in the current configuration:
~G1 ¼
o~X
on

; ~G2 ¼
o~X
og

; ~G3 ¼
o~X
of

~g1 ¼
o~x
on
; ~g2 ¼

o~x
og
; ~g3 ¼

o~x
of
:

ð5Þ
Here, the variation of the metric through the shell thickness is neglected, so that the bases f~Gigi¼1;2;3 and f~Gigi¼1;2;3

are equal to those defined on the middle surface and denoted by f~Aigi¼1;2;3 and f~Aigi¼1;2;3. Thus, the metric tensor

is defined, respectively, in its covariant and contravariant components as Aij ¼ ~Ai:~Aj and Aij ¼ ~Ai:~Aj.

It follows from the definition of the deformation gradient:
F ¼ ð~aa �~Aa þ~t �~T Þ þ f~t;a �~Aa ð6Þ
where the Greek indices take the values 1 or 2.
The motion of the inextensible director is described by:
~t ¼ R:~T ð7Þ
where the rotation tensor R is orthogonal (R�1 = RT) and can be associated with the skew-symmetric tensor H
through the exponential mapping:
R ¼ exp H ¼
Xþ1
k¼0

Hk

k!
: ð8Þ
Let us define the axial vector~h by H:~h ¼~0 and H:~v ¼~h ^~v, 8~v 2 R3. From the equality R:~h ¼~h, it follows that
R is the rotation about ~h. Then an explicit expression for Eq. (8) is given by the Rodrigues formula:
R ¼ cos hIþ sin h
h

Hþ 1� cos h

h2
~h�~h ð9Þ
where h ¼ k~hk is the magnitude of the rotation.
Since ~h is perpendicular to ~T , the director field~t can be recast in the simplified form:
~t ¼ R:~T ¼ cos h~T þ sin h
h
~h ^~T : ð10Þ
Denoting ~h ¼ hi~ei, one gets the components of~t in the fixed Cartesian basis f~eigi¼1;2;3:
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t1

t2

t3

8><>:
9>=>; ¼ cos h

T 1

T 2

T 3

8><>:
9>=>;þ sin h

h

h2T 3 � h3T 2

h3T 1 � h1T 3

h1T 2 � h2T 1

8><>:
9>=>;: ð11Þ
By defining a new local orthonormal basis f~Eigi¼1;2;3 at each point of the middle surface as ~E3 ¼ ~T , ~E1 ¼
~A1

k~A1k
and ~E2 ¼ ~E3 ^~E1, and by denoting ~h ¼ ĥ1~E1 þ ĥ2~E2, Eq. (11) becomes:
t̂1

t̂2

t̂3

8><>:
9>=>; ¼ cos h

0

0

1

8><>:
9>=>;þ sin h

h

ĥ2

�ĥ1

0

8><>:
9>=>;: ð12Þ
3.2. Variations of kinematic variables

The linearization of the kinematic variables at a given configuration is performed by using the directional
derivative with respect to a small parameter e. The following relations hold for small values of e:
~P e ¼ ~P þ ed~U

~te ¼ Re:~T ¼ Rð~hþ ed~hÞ:~T
ð13Þ
which yield:
d~P ¼ d

de
~P e

� �
je¼0
¼ d~U

d~t ¼ d

de
~te
� �

je¼0
¼ sin h

h
�ð~h:d~hÞ~T þ d~h ^~T
h i

¼ h cos h� sin h

h3
ð~h:d~hÞð~h ^~T Þ:

ð14Þ
The latter relation can be written in the local basis f~Eigi¼1;2;3:
d̂t1

d̂t2

d̂t3

8><>:
9>=>; ¼ ½U� dĥ1

dĥ2

( )

½U� ¼ � sin h
h

0 �1

1 0

ĥ1 ĥ2

264
375þ sin h� h cos h

h3

�ĥ2ĥ1 �ĥ2ĥ2

ĥ1ĥ1 ĥ1ĥ2

0 0

264
375

264
375

ð15Þ
and then transformed in the Cartesian basis f~eigi¼1;2;3 for computational purposes.
3.3. Strains

The Green strain tensor E is written in the contravariant basis f~Aigi¼1;2;3 as:
E ¼ 1

2
ðFT:F� IÞ ¼ 1

2
ð~ai:~aj �~Ai:~AjÞ~Ai �~Aj ¼ Eij

~Ai �~Aj ð16Þ
or:
E ¼ Eab
~Aa �~Ab þ Ea3

~Aa �~T þ E3a
~T �~Aa þ E33

~T �~T : ð17Þ
Since ~aa ¼ ~Aa þ ~U ;a, the components of E can be written as functions of the through-thickness parameter f:
Eij ¼ Eð0Þij þ fEð1Þij þ f2Eð2Þij ð18Þ
where:
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Eð0Þab ¼
1

2
ð~Aa:~U ;b þ~Ab:~U ;a þ ~U ;a:~U ;bÞ

Eð0Þa3 ¼ Eð0Þ3a ¼
1

2
ð~Aa:ð~t �~T Þ þ ~U ;a:~tÞ

Eð1Þab ¼
1

2
ð~Aa:ð~t;b �~T ;bÞ þ~Ab:ð~t;a �~T ;aÞ þ ~U ;a:~t;b þ ~U ;b:~t;aÞ

Eð2Þab ¼
1

2
ð~t;a:~t;b �~T ;a:~T ;bÞ:

ð19Þ
All other components, in particular Eð0Þ33 , Eð1Þ33 and Eð2Þ33 , are zero since the director field is assumed to be inex-
tensible. However, the expression for E33 will rather be derived from the plane stress condition, as seen further.
The variation of the Green tensor is computed by:
dE ¼ dEð~P e;~teÞ
de je¼0

ð20Þ
which yields:
dEð0Þab ¼
1

2
ðð~Aa þ ~U ;aÞ:d~U ;b þ ð~Ab þ ~U ;bÞ:d~U ;aÞ

dEð0Þa3 ¼ dEð0Þ3a ¼
1

2
ðð~Aa þ ~U ;aÞ:d~t þ d~U ;a:~tÞ

dEð1Þab ¼
1

2
ðð~Aa þ ~U ;aÞ:d~t;b þ ð~Ab þ ~U ;bÞ:d~t;a þ d~U ;a:~t;b þ d~U ;b:~t;aÞ

dEð2Þab ¼
1

2
ðd~t;a:~t;b þ~t;a:d~t;bÞ:

ð21Þ
3.4. Stresses

The second Piola–Kirchhoff stress tensor R is resolved in basis f~Aigi¼1;2;3:
R ¼ Rij~Ai �~Aj ¼ Rab~Aa �~Ab þ Ra3~Aa �~T þ R3a~T �~Aa þ R33~T �~T : ð22Þ

In the sequel, use will be made of the stress resultant tensors defined as:
n ¼ nij~Ai �~Aj nij ¼
Z h

2

�h
2

Rij df

mð1Þ ¼ mijð1Þ~Ai �~Aj mijð1Þ ¼
Z h

2

�h
2

Rijfdf

mð2Þ ¼ mijð2Þ~Ai �~Aj mijð2Þ ¼
Z h

2

�h
2

Rijf2 df:

ð23Þ
3.5. Elastoplasticity formulation

The equation set for finite elastoplasticity is established on the basis of the total Lagrangian formulation
and the generalized standard materials theory introduced by Halphen and Nguyen (1975). Use is made of
the von Mises yield criterion with a non-linear isotropic hardening:
f ðR; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
Rd : Rd

r
� r0 � a ð24Þ
where Rd denotes the deviatoric part of stress tensor R, r0 the initial yield stress and a the thermodynamic
force characterizing the isotropic hardening.
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Following Green and Naghdi (Green and Naghdi, 1965, 1971), the Green strain tensor E is split additively
into its elastic and plastic parts:
E ¼ Ee þ Ep: ð25Þ

The elastic strain is related to the second Piola–Kirchhoff stress by the three-dimensional Saint–Venant–

Kirchhoff law:
R ¼ D : Ee ¼ ktrðEeÞIþ 2lEe ð26Þ

where k and l are the Lamé parameters, related to Young’s modulus E and Poisson’s ratio m by:
k ¼ Em
ð1þ mÞð1� 2mÞ l ¼ E

2ð1þ mÞ : ð27Þ
For computational purposes, all the equations are written in matrix representations using the covariant or
contravariant bases. For instance, the relationship (26) reads in the covariant and contravariant bases:
Rij ¼ DijklEe
lk ¼ ðkAijAkl þ lðAikAjl þ AilAkjÞÞEe

lk: ð28Þ
The thermodynamic force a in (24) is derived from the so-called hardening energy wa(a), where a is the hard-
ening variable:
a ¼ owaðaÞ
oa

: ð29Þ
The flow rule and the hardening law are derived from the yield function:
_Ep ¼ _k
of
oR
¼ _k

Rdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
Rd : Rd

q _a ¼ � _k
of
oa
¼ _k ð30Þ
where _k is the plastic multiplier. Use will also be made of the equivalent plastic strain P defined by its rate:
_P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_Ep : _Ep

r
¼ _k ¼ _a: ð31Þ
Since the normal material stress is assumed to be zero, R33 = 0, the elastic fourth-order tensor D must be re-
placed with the reduced one C for the shell model:
Cijkl ¼ Dijkl � Dij33D33kl

D3333
ði; jÞ 6¼ ð3; 3Þ; ðk; lÞ 6¼ ð3; 3Þ: ð32Þ
Substituting Eq. (18) into (23) gives the expressions for the stress resultant tensors (23):
nij ¼
Z h

2

�h
2

Cijkl Eeð0Þ
lk þ fEeð1Þ

lk þ f2Eeð2Þ
lk

� �
df

mijð1Þ ¼
Z h

2

�h
2

Cijkl Eeð0Þ
lk þ fEeð1Þ

lk þ f2Eeð2Þ
lk

� �
fdf

mijð2Þ ¼
Z h

2

�h
2

Cijkl Eeð0Þ
lk þ fEeð1Þ

lk þ f2Eeð2Þ
lk

� �
f2 df

ði; jÞ 6¼ ð3; 3Þ; ðk; lÞ 6¼ ð3; 3Þ:

ð33Þ
According to the thin shell assumptions, the strain components Eeð2Þ
ij in Eq. (18) will be neglected in the sequel.

3.6. The discretized non-linear equations

Use is made of the principle of virtual work in order to obtain the discretized non-linear equations:
dW int þ dWext ¼ 0 ð34Þ
7



where:
dW int ¼ �
Z

X0

R : dEdV ¼ �
Z
M

Z h
2

�h
2

Rij dEð0Þji þ fdEð1Þji

� �
df

 !
dA ð35Þ
and:
dWext ¼
Z

X0

~f P :d~P dVþ
Z

X0

~f t:d~t dVþ
Z

oX0

~sP :d~P dSþ
Z

oX0

~st:d~t dS ð36Þ
where M represents the shell middle surface, and ~f and ~s are the volume and surface distributed loads,
respectively.

Substituting Eqs. (35) and (36) into (34) gives:
�
Z
M

nijdEð0Þji þ mijð1ÞdEð1Þji

� �
dAþ dWext ¼ 0 ð37Þ
where the components nij and mij(1) are defined in (23).
The middle surface is discretized using isoparametric shell finite elements. There are five degrees of freedom

at each node: three translations and two rotations in the tangent space. The reference position~P 0, the displace-
ment ~U on the middle surface, and the director vectors ~T and~t are interpolated in the same way:
~P 0ðn; gÞ ¼
XN
i¼1

Niðn; gÞ~P 0i

~T ðn; gÞ ¼
XN
i¼1

N iðn; gÞ~T i

~U ¼
XN
i¼1

Niðn; gÞ~Ui

~t ¼
XN
i¼1

N iðn; gÞ~ti

ð38Þ
where N is the element node number and ðN iÞi2½1;N � are the shape functions.
Attention should be drawn on two types of errors due to the geometric discretization:

– The interpolation of the reference position ~P 0 of a particle on the middle surface leads to several normals at
each node, one per contiguous element.

– The interpolated reference director vector ~T does not coincide with the normal at the surface defined by the
interpolation of ~P 0.

Let us mention that it is necessary to define a local orthonormal basis at each node in correspondence with the
Cartesian fixed basis in order to describe ~h in every adjoined element in a coherent way.

The tangent vectors on the middle surface are computed from the interpolation of ~P 0:
~A1 ¼ ~P 0;1 ¼
XN
i¼1

N ;i1~P 0i

~A2 ¼ ~P 0;2 ¼
XN
i¼1

N ;i2~P 0i:

ð39Þ
The following variations and derivatives of these fields will be required:
8



~U ;a ¼
XN
i¼1

N ;ia~U i

d~U ;a ¼
XN
i¼1

N ;iad~U i

~t;a ¼
XN
i¼1

N ;ia~ti

d~t ¼
XN
i¼1

Nid~ti

d~t;a ¼
XN
i¼1

N ;iad~ti:

ð40Þ
The second derivatives will also be required:
Dðd~tÞ ¼
XN
i¼1

NiDðd~tiÞ

Dðd~t;aÞ ¼
XN
i¼1

N ;iaDðd~tiÞ:
ð41Þ
It should be noted that Dðd~UÞ is always zero. The integrations over the middle surface and through the thick-
ness are performed using the Gaussian quadrature. Eventually, the virtual work principle (37) yields the non-
linear discretized equation system:
fRðUÞg ¼ fWðUÞg � fUg ¼ f0g ð42Þ
where {U} denotes the nodal displacement vector of the whole structure, {R} the residual vector, {W} and {U}
are the internal and external force vectors, respectively.
4. Solution procedure

4.1. The Newton–Raphson procedure

The non-linear equation system (42) is solved by the iterative Newton–Raphson procedure, which requires
the computation of the structural tangent stiffness matrix:
½KT� ¼
ofRðUÞg

ofUg ¼ ofWðUÞg
ofUg : ð43Þ
The geometric part of [KT] requires the computation of Dðd~tiÞ at the middle surface nodes and entails a com-
plicated development. The interested reader is referred to Brank et al. (1997) for more details.

At each iteration, the local integration consists in solving the following problem: assuming the strain E is
known, compute the plastic strain Ep, the stress R and the reduced consistent elastoplastic tangent modulus Cp

as in (32). The implicit Euler scheme and an algorithm of radial return type are employed to integrate the state
and evolution laws as described in Simo and Hughes (1998). In particular, the von Mises criterion (24) is
rewritten as:
f ¼ 1

2
RTPR� 1

3
ðr0 þ aÞ2 ð44Þ
where P is the deviatoric operator ðRd ¼ PRÞ. At each step n, after computing the prediction RE and the con-
sistency parameter k, the consistent elastoplastic tangent operator for computing the structural tangent stiff-
ness matrix is obtained by:
9



Cp
n ¼

oRn

oEn
¼ CðkÞ � ðCðkÞPRnÞðCðkÞPRnÞT

RT
n PTCðkÞPRn þ l

ð45Þ
where:
CðkÞ ¼ ðC�1 þ kPÞ�1

Rn ¼ CðkÞC�1RE

P n ¼ P n�1 þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
RT

n PRn

r
l ¼ 2a0ðP nÞ

3c
RT

n PRn c ¼ 1� 2
3
ka0ðP nÞ

� �
:

ð46Þ
In the above, C denotes the matrix of tensor C in Eq. (32).
It should be noticed that the plane stress condition R33 = 0 is a non-trivial constraint for the non-linear

equation set which is strain driven.
4.2. Arc-length method

The nodal displacement vector {U} is split into two parts as shown in Eq. (47) below: one denoted by feUg
contains the unknown degrees of freedom, the other denoted by fUg contains the prescribed degrees of free-
dom. The external force and the residual vector in Eq. (42) are split in a similar way. For instance, the external
force {U} is seen as the union of two parts: feUg corresponding to feUg contains the prescribed force compo-
nents, and fUg corresponding to fUg contains the unknown reaction force components. Likewise, the tangent
stiffness matrix [KT] is partitioned into four sub-matrices:
fUg ¼
eU
U

( )
fRg ¼

eR
R

( )
fUg ¼

eU
U

( )
½KT� ¼

eeKT
eKTeKT KT

" #
: ð47Þ
Either the prescribed displacement or the external loading is assumed to be proportional:
fUg ¼ U
� �0 þ k U

� �ref ð48aÞ

eUn o
¼ k eUn oref

ð48bÞ
where k is the control parameter, fUgref and feUgref denote reference prescribed quantities. Vector fUg0 related
to zero prescribed displacements does not change the value of fUg. At each increment, the quadratic arc-
length method is used in order to proceed on the solution branches given a specified arc-length Dl, see Wemp-
ner (1971), Riks (1979) and Crisfield (1991). The constraint equation is either of the following relations,
depending on whether one has a proportional prescribed displacement or loading:
kDeUk2 þ Dk2kUrefk2 ¼ Dl2 ð49aÞ
kDeUk2 þ Dk2C2

ref ¼ Dl2 ð49bÞ
where DeU ¼ eU � eUn�1 is the difference between the displacement eU at the current increment (n) and that at
the previous increment (n � 1). Similarly, Dk = k � kn�1. In Eq. (49b), the scalar Cref is a scale factor which
makes the relation consistent dimensionally.

Combining Eq. (49a,b) with the equilibrium equation leads to a quadratic equation. When solving this qua-
dratic equation, one may encounter severe computational difficulties due to complex roots which occur repeat-
edly. It is found that an efficient way to cope with these complex roots is to modify the standard solution
scheme according to Lam and Morley (1992). Let us explain the procedure in the case of prescribed loadings
(48b). The main idea is to project the residual force onto the external load vector. At a current iteration
where complex roots occur, the residual force is split into one component in the load direction and another
10



component orthogonal to this load. The last component is mainly responsible for the complex roots and
should be eliminated. The standard iteration loop is modified as follows.

Iteration loop
[� � �]
In the standard arc-length method, solve the quadratic equation.
If the roots are complex, then:

(i) Compute g ¼ eRT eUref=eUrefT eUref and H ¼ eR � geUref .
(ii) Compute:
deUH ¼ � eeK�1
T H and eUUref ¼ eeK�1

T
eUref : ð50Þ

(iii) Solve a quadratic equation in g: ag2 + 2bg + c = 0, where the coefficients a, b and c depend on g, C2
ref ,eUUref and deUH . Hopefully, this equation in g gives real roots g1 and g2. Choose a value for g at 5% of

jg2 � g1j from g1 or g2.
(iv) Solve a quadratic equation in n: An2 + 2B(g)n + C(g) = 0, where the coefficient A depends on C2

ref andeUUref , B(g) and C(g) are functions of g, g, C2
ref ,

eUUref and deUH . This equation in n gives real roots.
Choose that root n which enables the solution point to advance in the desired direction.

(v) Make the corrections for the ith-iteration: dk = g + n and deU ¼ gdeUH þ neUUref .

End if
[� � �]

End of iteration loop.

The modified arc-length method described above is also applicable to the case of prescribed displacements
(48a), providing that eUref is replaced with eKTUref , C2

ref with kUrefk2 and eUUref with:
eUUref ¼ � eeK�1
T
eKTUref : ð51Þ
For numerical purposes, the computer program is developed so as to handle both prescribed loads and pre-
scribed displacements in a unified way.
4.3. Branching method

The branch switching techniques are included in the numerical procedure in order to detect the bifurcation
points and bifurcate onto a given branch. Specific methods are implemented following Riks (Riks, 1979, 1991)
and Seydel (1994). The four fundamental steps are given below.

1. At the end of each increment, it must be checked whether one has gone across one or several critical points.
The detection of critical points is based on the singularity of the tangent stiffness matrix, which is factorized
following the Crout formula KT = LDLT, where L is a lower triangular matrix with unit diagonal elements
and D is a diagonal matrix. Since the number of negative eigenvalues of KT is equal to the number of neg-
ative diagonal elements (pivots) of D, the critical points are determined by counting the negative pivot
number.

2. Each critical point detected has to be isolated in order to determine its nature: limit point or bifurcation
point. To do this, the current arc-length Dl is re-estimated several times using a dichotomy-like method.
In the case of prescribed loadings, a simple way to distinguish a limit point from a bifurcation point is
to determine the sign of the current stiffness parameter introduced by Bergan et al. (1978):
k ¼
eUref

n oT eUUref

n o
eUUref

n oT eUUref

n o ð52Þ
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where feUrefg is defined in (48b) and feUUrefg in (50). The sign of parameter k changes when passing a limit
point, whereas it remains unchanged when passing a bifurcation point. In the case of prescribed displace-
ments, parameter k is computed by:
k ¼ �
eKTUref

n oT eUUref

n o
eUUref

n oT eUUref

n o ð53Þ
where fUrefg is defined in (48a) and feUUrefg in (51).
3. If it is a bifurcation point, the step increment is renewed so as to reach a point just behind the bifurcation

point.
4. Finally, the switching on a bifurcated branch is performed using the mode injection method (Wagner and

Wriggers, 1988; Seydel, 1994): at the first step of a bifurcating branch, the eigenvector eZ, solution ofeeKT
eZ ¼ 0, is computed and the following predictions are used:
dk ¼ 0 deU ¼ � eZ
keZk : ð54Þ
5. Numerical results

Let us consider a cylindrical tube defined in the reference configuration by the length l along the x-axis, the
average radius R and the thickness t� R. One end of the cylinder lies in the plane X = 0 (more details will be
given according to the boundary condition type) whereas the other end at X = l is loaded by a uniformly dis-
tributed nominal axial compressive stress PXX = �k < 0.

First, comparisons will be made between the numerical results and available analytical solutions, in the
case of axisymmetric modes with a linear isotropic hardening. Next, still considering axisymmetric modes,
we will compare our numerical results with those obtained by Brank et al. (1997) using the flow plasticity
theory with a non-linear isotropic hardening. Eventually, we will go further in the description of the post-
buckling behavior and obtain both axisymmetric and non-axisymmetric deformed shapes, especially the
so-called ‘‘diamond’’ modes or the ‘‘elephant foot’’ secondary modes. It will be shown how the geometric
and material parameters, together with the boundary conditions, affect the buckling mode type. For sim-
plicity sake, the numerical results will be presented assuming a linear isotropic hardening. The obtained
results show that the proposed formulation is able to provide complex experimental modes which are hard
to predict in theory.

In all examples, the Newton–Raphson method is used for solving the matrix non-linear equations of the
problem. The path-following is carried out either by displacement (49a) or by force control (49b), use is also
made of the extended version of the arc-length method in Lam and Morley (1992) as explained in Section 4 to
deal with the complex roots in the solution scheme.

A few preliminary mesh convergence tests lead us to use about 200 quadratic eight-node elements for the
considered portion of the cylinder and four Gaussian points for the numerical quadrature through the shell
thickness.

5.1. Comparison between analytical and numerical results

The comparison between analytical and numerical results is possible within the context of a linear isotropic
hardening and axisymmetric bifurcation modes. In order to simplify the discussion, let us take the yield stress
r0 small enough so that the plastification occurs before the tangent modulus critical load is reached. Further-
more, it is assumed that the hardening energy wa(a) in Eq. (29) is a quadratic function, i.e. wa ¼ 1

2
ha2, where

constant h is the hardening modulus. The numerical values are shown in Tables 1 and 2. The hardening mod-
ulus h is given a very high value just to make sure of obtaining an axisymmetric mode, so that the numerical
results can be compared with the analytical solution.
12



Table 1
Geometry used in Section 5.1

Length l Radius R Thickness t

2 m 1 m 1 cm

Table 2
Material properties used in Section 5.1

Young’s modulus E Poisson’s ratio m Yield stress r0 Isotropic hardening modulus h

2.1 · 1011 Pa 0.3 Free edges: 1 · 108 Pa 2 · 1010 Pa
Simply supported edges: 3.5 · 108 Pa
5.1.1. Free edges

In the case of free edge cylinders, the yield stress r0 is supposed to be small enough for the buckling to occur
in the plastic range.

The analytical results for a cylinder of infinite length can be obtained by describing the shell kinematics with
the Koiter model, which is equivalent to the Love–Kirchhoff plate model. The critical stress was given by Bat-
terman (1968):
kfree edges
c ¼ Et

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ET

E

3 5� 4m� ð1� 2mÞ2 ET

E

h ivuut ð55Þ
where ET is the tangent modulus, related to the Young’s modulus E and the isotropic hardening modulus h by
1

ET
¼ 1

E þ 1
h. Batterman showed that the critical stress is a little bit smaller for a finite shell and it hardly depends

on the length. The eigenmode is:
U ¼ �2t
ffiffiffi
3t
R

q
1
p

1�ð1�2mÞET
E

1þ3
ET
E

sin pXffiffiffi
Rt
p
� �

exp � pXffiffiffiffiffi
3Rt
p

� �
V ¼ 0

W ¼ t
ffiffiffi
3
p

cos pXffiffiffi
Rt
p
� �

� sin pXffiffiffi
Rt
p
� �� �

exp � pXffiffiffiffiffi
3Rt
p

� �
8>>><>>>: ð56Þ
where U, V and W are axial, circumferential and radial displacements, respectively, and:
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27 5� 4m� ð1� 2mÞ2 ET

E

h i
ET

E

1þ 3 ET

E

� �2

4

vuuut : ð57Þ
In the above, the mode has been normalized so that Wð0Þ ¼ t
ffiffiffi
3
p

.
The numerical computations show that an axisymmetric bifurcation under increasing load is obtained at

the critical value of 184 MPa, which is identical with the analytical critical stress kfree edges
c derived from Eq.

(55), within 1%. The bifurcation shape is a sinusoid weighted by a decreasing exponential function, so that
its magnitude is minimal at the middle of the cylinder and maximal at the ends. This result is in full accordance
with Batterman’s results (Batterman, 1968). Fig. 1 shows that the numerical modal shape is very close to the
Batterman’s analytical one corresponding to the semi-infinite cylinder.
5.1.2. Simply supported edges

The case of simply supported edges is simpler and does not require the infinite length assumption. Let the
radial displacements be fixed and the rotations be free on both edges.

Batterman (1965) showed that, if the cylinder is long enough, a good approximate expression for the critical
value is:
13
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Fig. 1. Analytical and numerical axisymmetric bifurcation modes of an elastoplastic cylinder under axial compression with free edges.

Fi
ksupported edges
c ¼ 2Et

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ET

E

3 5� 4m� ð1� 2mÞ2 ET

E

h ivuut ¼ 2kfree edges
c : ð58Þ
In the case of simply supported edges, it is also possible to obtain the analytical slope to the post-critical curve
at the bifurcation point. Since the calculation is somewhat intricate, we give the final result without proof:
ksupported edges
1 ¼ 2ET

t
R

5þ ð8m� 1Þ ET

E þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 5� 4m� ð1� 2mÞ2 ET

E

h i
ET

E

r
1þ 3 ET

E

� �
5� ð1� 2mÞ ET

E

	 
 : ð59Þ
In the case of simply supported edges, the numerical critical value is found to be twice as large as in the free
edge case, which is in agreement with the analytical solution ksupported edges

c obtained from Eq. (58). From a
qualitative point of view, the bifurcation comes just before the maximum load value, as commonly observed
in other numerical applications in the literature.
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g. 2. Elastoplastic cylinder under axial compression with simply supported edges: compressive stress versus axial shortening.
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Fig. 2 shows the load versus the axial shortening in the simply supported edge case. The analytical tangent
to the post-critical curve at the bifurcation point is also plotted using Eq. (59) and fits well with the numerical
curve.
5.2. Comparison with a numerical result of the literature

We still consider axisymmetric modes and now compare the numerical results with those obtained by Brank
et al. (1997) using the flow plasticity theory with a non-linear isotropic hardening. The computations are
carried out with the same geometry and material as in Brank et al. (1997), see Tables 3 and 4. The coefficients
in the non-linear isotropic hardening law are determined by fitting the data given in Brank et al. (1997), see
Table 5.

The computations are performed for two boundary conditions: simply supported edges and built-in edges.
The bifurcation loads are 280 MPa in the case of simply supported edges and 300 MPa in the case of built-in
edges, which agree very well with the solutions of Brank et al. (1997). As shown in Fig. 3, the bifurcation loads
are close to the maximum loads. Both boundary conditions lead to similar bifurcation modes, see Fig. 4. In
addition, Fig. 3 shows that although the bifurcation loads are similar, the corresponding axial shortenings are
significantly distinct.

Fig. 5 shows the maximum equivalent plastic strain P in the shell thickness. Fig. 5a is related to the case of
simply supported edges when the axial shortening equals 1.6%; Fig. 5b to the case of built-in edges when the
axial shortening equals 2.3%. As regards the maximum plastic strain in the whole shell, it is 5.6% in the case of
simply supported edges and 6.7% in the case of built-in edges. The points where the plastic strain P reaches the
maximum are also indicated in Fig. 5. For both boundary condition types, it is found that P reaches its max-
imum value near the ends of the cylinder where the axisymmetric localization takes place.
5.3. Influence of thickness, hardening modulus and boundary conditions

In the previous Sections 5.1 and 5.2, the numerical formulation has been validated by comparing analytical
versus numerical results and numerical versus numerical results. Attention is next focused on more complex
modes. Several thicknesses, isotropic hardening moduli and boundary conditions (free, simply supported or
built-in edges, prescribed displacements or stresses) are considered in order to exhibit the variety of post-crit-
ical responses of the cylinder under axial compression. It is expected that the boundary conditions have a
strong influence on the deformed shapes, especially for non-axisymmetric modes. Indeed, in the particular case
of free edges, prescribing the axial displacements at the ends of the cylinder leads more naturally to an axisym-
Table 3
Geometry used in Section 5.2

Length l Radius R Thickness t

1.271 · 10�1 m 4.333 · 10�2 m 2.36 · 10�3 m

Table 4
Material properties used in Section 5.2

Young’s modulus E Poisson’s ratio m Yield stress r0 Isotropic hardening coefficients

2.16962 · 1011 Pa 0.274 1.62722 · 108 Pa Obtained by fitting values in Brank et al. (1997)

Table 5
Non-linear isotropic hardening curve

P (10�3) 0 1 2.55 4.25 6.75 9.25 14.25 24.25 54.25
K(P) (MPa) 0 68.95 86.19 106.2 123.4 133.1 151 166.9 211
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Fig. 3. Elastoplastic cylinder under axial compression: compressive stress versus axial shortening. Case of non-linear isotropic hardening.
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Fig. 4. Axisymmetric bifurcation modes of an elastoplastic cylinder under axial compression. Case of non-linear isotropic hardening.

P
0.067
0.062
0.057
0.053
0.048
0.043
0.038
0.034
0.029
0.024
0.019
0.014
0.010
0.005
0.000

Pmax in the whole shell (6.7 %)
reached about this parallel

(b) Built-in edges

P
0.056
0.052
0.048
0.044
0.040
0.036
0.032
0.028
0.024
0.020
0.016
0.012
0.008
0.004
0.000

Pmax in the whole shell (5.6 %)
reached about this parallel

(a) Simply supported edges

Fig. 5. Maximum equivalent plastic strain in the thickness of the cylinder under axial compression. Case of non-linear isotropic
hardening: (a) simply supported edges, axial shortening = 1.6%; (b) built-in edges, axial shortening = 2.3%.
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metric mode, whereas prescribing the stresses leads to non-axisymmetric modes as the ends are free to move
now.

The numerical results in this section are obtained using the geometry and the material properties shown in
Tables 6 and 7. The length-to-radius ratio is constant and equal to l/R = 3.33, while several radius-to-thick-
ness ratios will be used.

Remark. Why the unrealistically high values of the hardening modulus h in Table 7? It is found that with
usual h values, the numerical computations in plasticity give axisymmetric modes. Only very high moduli give
rise to non-axisymmetric modes, similar to those encountered in elasticity. The very high moduli are
admittedly unrealistic, but they are useful to check how and when non-axisymmetric modes can be obtained
using the proposed plasticity formulation.
5.3.1. Free edges

Consider a rather large thickness t = 7 cm, a medium hardening modulus h = 2 · 1010 Pa, and prescribed
stresses at the ends of the cylinder. Fig. 6 shows that the first bifurcated solution has three circumferential
waves, which is in agreement with experimental and numerical results obtained by Goto and Zhang (1999).
Fig. 7 depicts the distribution of the equivalent plastic strain P in the cylinder when the nominal axial com-
pressive stress is k = 1.617 · 108 Pa. The maximum value of 8.4% is reached at the junction of two circumfer-
ential waves which are localized at the ends of the cylinder.

Let us maintain the boundary conditions and reduce the thickness to t = 5 cm so as to see the influence of
the radius-to-thickness ratio R/t on the circumferential wave number. Fig. 8 shows that the wave number
increases with the ratio R/t—now there are four circumferential waves with the new thickness—as was already
observed in Goto and Zhang (1999) and Tvergaard (1983a). The bifurcation mode is localized at both ends
and displays a series of periodic inward dimples.

Fig. 9 describes the load–displacement curves for t = 5 cm and t = 7 cm. In both cases, the (complete) plas-
tification of the cylinder just precedes the bifurcation, which itself precedes the maximum stress value.
Table 6
Geometries used in Section 5.3

Length l Radius R Thickness t

5 m 1.5 m 7 cm, 5 cm, 3 cm, 2 cm, 12 mm, 6 mm according to the considered case

Table 7
Material properties used in Section 5.3

Young’s modulus E Poisson’s ratio m Yield stress r0 Isotropic hardening modulus h

2.1 · 1011 Pa 0.3 4 · 108 Pa 2 · 1010 Pa, 5 · 1010 Pa, 5 · 108 Pa according to the considered case

Fig. 6. Non-axisymmetric bifurcation mode of an elastoplastic cylinder under axial compression (free edges, prescribed stresses, t = 7 cm).
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Fig. 7. Maximum equivalent plastic strain in the thickness of the cylinder under axial compression (free edges, prescribed stresses,
t = 7 cm, nominal axial stress k = 1.617 · 108 Pa).

Fig. 8. Non-axisymmetric bifurcation mode of an elastoplastic cylinder under axial compression (free edges, prescribed stresses, t = 5 cm).
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Fig. 9. Elastoplastic cylinder under axial compression (free edges, prescribed stresses): compressive stress versus axial shortening.
Remark. About the mesh: it is necessary to mesh a quarter of the cylinder in order to get three circumferential
waves as shown in Fig. 6. From now on only one eighth of the cylinder will be meshed so as to reduce the
computational cost. Consequently, one necessarily obtains even circumferential wave numbers, as shown in
Fig. 8.
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5.3.2. Built-in edges

In the sequel, we consider the cases of built-in and simply supported edges, which are closer to experimental
conditions. Here, the linear isotropic hardening modulus is given by the new value h = 5.1010 Pa in order to
obtain non-axisymmetric modes with dimples spreading over the entire surface of the cylinder (‘‘diamond’’
modes) or limited in regions near the ends.

Under prescribed stresses, with built-in edges, two ‘‘diamond’’ modes are obtained with the thicknesses
t = 5 cm and t = 3 cm, as shown in Fig. 10. These ‘‘diamond’’ modes display both axial and circumferential
waves, whose numbers increase with the ratio R/t, as in the case of free edges.

Again, the load–displacement curves in Fig. 11 show that the bifurcation point occurs just before the limit
load. It is noteworthy that the ratio between the two stresses at the bifurcation points is almost equal to the
ratio of thicknesses, which reminds us the proportionality between the analytical stress in Eq. (58) and the
thickness of the cylinder.
Fig. 10. Primary modes (‘‘diamond’’ modes) of an elastoplastic cylinder under axial compression (built-in edges, prescribed stresses).
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Fig. 11. Elastoplastic cylinder under axial compression (built-in edges, prescribed stresses): load–displacement curves for primary modes.
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Remark. Prescribed displacements give rise to similar results.

The secondary modes are obtained with lower hardening moduli, and only in the case of prescribed dis-
placements, because the localization of the axisymmetric mode seems to appear more easily in such conditions.
As in the case of the primary modes, the elastoplastic response is not homogeneous in the cylinder since the
edges are clamped. The cylinder is partly plastified before the bifurcation occurs, so that the bifurcation does
occur in plasticity. But unlike the primary mode case, here the plastification onset and the bifurcation are very
close. It is more difficult to computationally detect the bifurcation points for secondary modes. The step size
should be smaller than usual and some numerical devices have to be added in order to correctly deal with this
bifurcation type. Fig. 12 shows two ‘‘elephant foot’’ transitional secondary modes with h = 5.108 Pa and med-
ium thicknesses. As in the primary mode case, the circumferential wave number mainly depends on the radius-
to-thickness ratio.
Fig. 12. Secondary modes (‘‘elephant foot’’ modes) for an elastoplastic cylinder under axial compression (built-in edges, prescribed
displacements).
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Fig. 13. Elastoplastic cylinder under axial compression (built-in edges, prescribed displacements): load–displacement curves for secondary
modes.
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The load–displacement curves for secondary modes are shown in Fig. 13. It is worth mentioning the pres-
ence of a so-called snap-back (a limit point in displacement) in the case of the thinner shell.

5.3.3. Simply supported edges
Consider now a cylinder with simply supported edges and thickness t = 2 cm. In the case of prescribed

stresses on the ends, a non-axisymmetric mode is obtained with dimples localized at the ends of the cylinder,
as shown in Fig. 14a. As shown in Eq. (48a,b), the axial stress is prescribed on the edges through the control
parameter k. Here, since the numerical computations show that there can be some limit load, one has to use
the arc-length method (see Section 4.2) to control the prescribed stress.

Fig. 14b shows that in the case of prescribed displacements on the ends, the deformation is more significant
and there are more dimples in the middle of the cylinder than in the case of prescribed stresses. This fact could
be accounted for as follows: since the lower and upper circumferences are constrained to remain plane under
prescribed displacements, the global stiffness increases as compared with the case of prescribed stresses, thus
increasing the dimples number too.

Fig. 15 shows that the load–displacement curves are very close before the critical point. Contrary to the case
of prescribed stresses, the post-critical branch displays several successive limit points in the case of prescribed
displacements, which must appear in the same time as additional dimples.

5.4. Summary

Table 8 summarizes the encountered bifurcation modes and the post-bifurcation behaviors versus the cyl-
inder thickness and the boundary conditions. The major influence of the shell thickness on the axial and cir-
cumferential wave numbers has been highlighted for all encountered mode types.

(a) In the case of sufficiently thick shells and for some combinations of R/t and stress–strain properties, the
axisymmetric mode degenerates into a non-axisymmetric one after the limit load of the axisymmetric
response and the second bifurcation corresponds to the so-called ‘‘elephant foot’’ mode. Note that in
the cases of simply supported or built-in edges, the pre-critical deformations are found to be negligible
and an axisymmetric mode is still possible.
Fig. 14. Primary modes (‘‘diamond’’ modes) of an elastoplastic cylinder under axial compression with simply supported edges.
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Fig. 15. Elastoplastic cylinder under axial compression (simply supported edges, t = 2 cm): compressive stress versus axial shortening.

Table 8
Bifurcation modes and post-bifurcation behaviors of a cylinder under axial compression versus the thickness and the boundary conditions

Cylinders Simply supported edges Built-in edges Free edges

Thick Sinusoidal axisymmetric mode Sinusoidal axisymmetric mode Damped sinusoidal axisymmetric
mode (Fig. 1)Post-bif: localization at the ends

(Fig. 4)
Post-bif: localization somewhat far from the
ends (Fig. 4)

Moderately
thick

(Results between those for thick
and thin cylinders)

Axisymmetric mode (+localization)
‘‘Elephant foot’’ secondary mode (Fig. 12)

(Results between those for thick and
thin cylinders)

Thin ‘‘Diamond’’ mode (Fig. 14) ‘‘Diamond’’ mode (Fig. 10) Damped sinusoidal non-
axisymmetric mode (Figs. 6 and 8)
(b) For thin shells, it has been found that there are no more axisymmetric modes (as if the two bifurcation
points coalesce into one) and one gets straight to the so-called ‘‘diamond’’ mode, before the limit load of
the ‘‘diamond’’ response.

The hardening modulus value has a great influence on the solution, as it may give rise to secondary bifurcation
modes or not. Only quite high hardening modulus values (and the thicknesses considered) lead to interesting
post-critical deformed shapes as presented in this work.

6. Conclusions

This work deals with the numerical solution of the elastoplastic thin shell buckling and post-buckling
problem.

The proposed shell finite element has been validated by showing that the numerical results on the plastic
buckling of axially compressed cylinders compare well with the analytical solutions derived from the plastic
bifurcation theory.

The numerical computations have been carried out considering the influence of the geometry, the material
properties and the boundary conditions. For the cylinder under axial compression, it has been shown that a
large range of primary and secondary buckling modes can be computed in a unified way without using imper-
fections, and that the post-critical behavior can be described in an advanced deformation state, exhibiting the
localization phenomenon as observed in experiments.
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