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Efficient sparse polynomial chaos expansion methodology for the
probabilistic analysis of computationally-expensive deterministic

models
T. Al-Bittar1,*,† and A.-H. Soubra2

1Univ. of Balamand, Koura, North Lebanon, Lebanon
2University of Nantes, Bd. de l’université, BP 152, 44603 Saint-Nazaire cedex, France
The sparse polynomial chaos expansion (SPCE) methodology is an efficient approach that deals with 
uncertainties propagation in case of high-dimensional problems (i.e., when a large number of random 
variables is involved). This methodology significantly reduces the computational cost with respect to the 
classical full PCE methodology. Notice however that when dealing with computationally-expensive 
deterministic models, the time cost remains important even with the use of the SPCE. In this paper, an 
efficient combined use of the SPCE methodology and the Global Sensitivity Analysis is proposed to solve 
such problem. The proposed methodology is firstly validated using a relatively non-expensive deterministic 
model that involves the computation of the PDF of the ultimate bearing capacity of a strip footing resting on 
a weightless spatially varying soil where the soil cohesion and angle of internal friction are modeled by two 
anisotropic non-Gaussian cross-correlated random fields. This methodology is then applied to an expensive 
model that considers the case of a ponderable soil. A brief parametric study is presented in this case to show 
the efficiency of the proposed methodology.

KEY WORDS: spatial variability; sparse polynomial chaos expansion; global sensitivity analysis;
Sobol indices
1. INTRODUCTION

An efficient approach to deal with uncertainties propagation in case of high-dimensional problems (i.e.,
when a large number of random variables is involved) was recently presented by [1]. This approach is
based on sparse polynomial chaos expansion (SPCE) for the system response and leads to a reduced
computational cost as compared with the classical PCE methodology. Notice that both, the PCE and
SPCE methodologies, aim at replacing the original complex deterministic model which may be an
analytical model or a finite element/finite difference model by a meta-model. This allows one to
calculate the system response [when performing the probabilistic analysis using Monte Carlo
simulations (MCSs)] using a simple analytical equation [1–11]. It should be emphasized that when
dealing with spatially varying soils together with computationally-expensive deterministic models,
the time cost remains important even with the use of the SPCE methodology. Consequently, a
method that can reduce once again the cost of the probabilistic analysis is needed.

In this paper, an efficient approach is proposed. The basic idea of this method is that, for a given
discretized random field, the obtained random variables do not have the same weight in the
variability of the system response. The variables with a very small contribution in the variability of
*Correspondence to: Tamara Al-Bittar, Univ. of Balamand, Koura, North Lebanon, Lebanon.
†E-mail: tamara.albittar@balamand.edu.lb
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the system response can be discarded, which significantly reduces the dimensionality of the treated
problem. This allows one to perform a probabilistic analysis using a reduced experiment design and
thus a smaller number of calls of the computationally-expensive deterministic model. The main
challenge remains in detecting the most influential random variables in order to reduce the
dimensionality of the problem. An efficient combination between the SPCE methodology and the
Global Sensitivity Analysis (GSA) is proposed in this regard.

The proposed methodology is firstly validated using a relatively non-expensive deterministic model.
This model was extensively investigated by [9, 10] using the classical SPCE methodology. It involves
the computation of the ultimate bearing capacity of a strip footing resting on a weightless spatially
varying soil, where the soil cohesion and angle of internal friction (c and φ) are modeled by two
anisotropic non-Gaussian (NG) cross-correlated random fields. In a second stage, a computationally-
expensive deterministic model that involves the computation of the PDF of the ultimate bearing
capacity of a strip footing resting on a ponderable spatially varying (c and φ) soil was briefly
investigated to show the efficiency of the proposed methodology.

The paper is organized as follows: The next two sections aim at briefly presenting both the SPCE
methodology and the GSA. Then, the proposed efficient combination between the SPCE
methodology and the GSA is presented. It is followed by the numerical results. The paper ends with
a conclusion.
2. SPARSE POLYNOMIAL CHAOS EXPANSION METHODOLOGY

In this section, one first presents the PCE and then its extension, the SPCE. The PCE methodology
allows one to replace a complex deterministic model which may be an analytical model or a finite
element/finite difference numerical model by a meta-model. Thus, the system response may be
calculated (when performing the probabilistic analysis using MCS methodology) using a simple
analytical equation. This equation is obtained by expanding the system response on a suitable basis
which is a series of multivariate polynomials that are orthogonal with respect to the joint probability
density function of the random variables. The PCE theory was originally formulated with standard
Gaussian random variables and Hermite polynomials [12]. It was later extended to other types of
random variables that use other types of polynomials [13]. In this paper, standard normal random
variables in conjunction with Hermite polynomials are used. The coefficients of the PCE may be
efficiently computed using a non-intrusive technique where the deterministic calculations are carried
out using for example an analytical model or a finite element/finite difference software treated as a
black box. The most used non-intrusive method is the regression approach [1–11]. This method is
used in the present work. The PCE methodology can be briefly described as follows:

For a deterministic model with M random variables, the system response Γ can be expressed by a
PCE as follows:

ΓPCE ξð Þ ¼
X∞
β¼0

aβΨβ ξð Þ≅
XP�1

β¼0

aβΨβ ξð Þ; (1)

where P is the number of terms retained in the truncation scheme, ξ = {ξ i}i= 1,....,M is a vector of M
independent standard random variables that represent the M random variables, aβ are unknown
coefficients to be computed, and Ψβ are multivariate Hermite polynomials which are orthogonal with
respect to the joint PDF of the standard normal random vector ξ. These multivariate Hermite
polynomials can be obtained from the product of one-dimensional Hermite polynomials as follows:

Ψβ ¼ ∏
M

i¼1
Hαi ξ ið Þ; (2)

where αi (i= 1,…,M) are a sequence of M non-negative integers, andHαi :ð Þ is the αthi one-dimensional
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Hermite polynomial. The expressions of the one-dimensional Hermite polynomials are given in [14]
among others.

In fact, for a PCE of order p, the infinite series in Eq. 1 should be truncated by retaining only the
multivariate polynomials Ψβ of degree less than or equal to p. For this purpose, the classical
truncation scheme based on the first order norm is usually used. The first order norm (which is

defined as αk k1 ¼ ∑
M

i¼1
αi ) should be less than or equal to the order p of the PCE. This leads to a

number P of the unknown PCE coefficients equal to Mþpð Þ!
M!p! . This number is significant in the present

case of random fields (especially when considering small values of the autocorrelation distances)
and thus, one needs a great number of calls of the deterministic model. The SPCE methodology
presented by [1] is an efficient alternative that can significantly reduce the number of calls of the
deterministic model. In this methodology, [1] have shown that the number of significant terms in a
PCE is relatively small because the multivariate polynomials Ψβ corresponding to high-order
interaction (i.e., those resulting from the multiplication of the Hαi , with increasing αi values) are
associated with very small values for the coefficients aβ. Thus, a truncation strategy (called the
hyperbolic truncation scheme) based on this observation was suggested by these authors. Within
this strategy, the multivariate polynomials Ψβ corresponding to high-order interaction were
penalized. This was performed by considering the hyperbolic truncation scheme which suggests
that the q-norm1 should be less than or equal to the order p of the PCE. The q-norm is given by:

αk kq ¼ ∑
M

i¼1
αið Þq

� �1
q=

(3)

where q is a coefficient (0< q< 1). In this formula, q can be chosen arbitrarily. [1] have shown that
sufficient accuracy is obtained for q≥ 0.5. The hyperbolic truncation scheme will be employed in
this paper to build up a SPCE of the system response using a value of q equal to 0.7. Notice,
finally, that the iterative procedure suggested by [1] for building up the SPCE is also employed
herein. For more details on this procedure, the reader may refer to [1] (see also the flowchart
presented in [10] and [11]).

As a conclusion, the proposed SPCE methodology leads to a SPCE that contains a small number of
unknown coefficients which can be calculated from a reduced number of calls of the deterministic
model. The next subsection is devoted to the method used for the computation of the coefficients aβ
of the SPCE using the regression approach.

2.1. Computation of the sparse polynomial chaos expansion coefficients by the regression approach

Consider a set of K realizations {ξ(1) = (ξ1,…,ξM),…, ξ (K) = (ξ1,…,ξM)} of the standard normal
random vector ξ. These realizations are called experimental design (ED) and can be obtained from
MC simulations or any other sampling scheme (e.g., Latin Hypercube sampling or Sobol set). In this
paper, the MC simulations were used. We note Γ = {Γ (ξ(1)),…,Γ (ξ(K))} the corresponding values of
the response determined by deterministic calculations. The computation of the SPCE coefficients
using the regression approach is performed using the following equation:

⌢a ¼ ηTη
� ��1

ηTΓ (4)

where the matrix η is defined by:

ηiβ ¼ Ψβ ξ ið Þ
� �

; i ¼ 1;…;K; β ¼ 0;…; J � 1 (5)
1Equation 3 actually defines a quasi-norm rather than a norm. However, this has no incidence on the derivations of the
SPCE algorithm.
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In equation 5, J is the number of the retained SPCE coefficients. In order to ensure the numerical
stability of the treated problem in Eq. 4, the size K of the ED must be selected in such a way that
the matrix (ηTη)� 1 is well conditioned. This implies that the rank of this matrix should be larger
than or equal to the number of unknown coefficients. This test was systematically performed while
solving the linear system of equations of the regression approach. It should be noted that the quality
of the output approximation via a SPCE closely depends on the SPCE order p. To ensure a good fit
between the meta-model and the true deterministic model (i.e., to obtain the optimal SPCE order),
one successively increases the SPCE order until a target accuracy was obtained. The coefficients of
determination R2 and Q2 used in this paper are presented in Appendix A.

Once the coefficients aβ have been computed, the PDF of the system response and the corresponding
statistical moments (mean, standard deviation, skewness, and kurtosis) can be calculated with no
additional cost. This is performed by generating a large number of realizations of the standard
normal random vector ξ i (i= 1, …, M) and by computing the corresponding system responses using
the meta-model.
3. GLOBAL SENSITIVITY ANALYSIS

Once the SPCE coefficients are determined, a GSA based on Sobol indices can be easily performed.
Notice that the first-order Sobol index of a given random variable ξ i (i= 1,…, M) gives the
contribution of this variable in the variability of the system response. The first-order Sobol index is
given by [15, 16] as follows:

S ξ ið Þ ¼ Var E Γjξ ið Þ½ �
Var Γð Þ (6)

where Γ is the system response, E( Γ |ξ i) is the expectation of Γ conditional on a fixed value of ξ i, and
Var denotes the variance. In the present paper, the system response is represented by a SPCE. Thus, by
replacing Γ in Eq. 6 with the SPCE expression, one obtains the Sobol index as a function of the
different terms of the SPCE (cf. [17]) as follows:

S ξ ið Þ ¼
∑
β∈Ii

aβ
� �2

E Ψβ
� �2h i

∑
P�1

β¼0
aβ
� �2

E Ψβ
� �2h i (7)

where aβ are the obtained SPCE coefficients, Ψβ are the multivariate Hermite polynomials, E[.] is the
expectation operator, and E[(Ψβ)

2] is given by [17] as follows:

E Ψβ
� �2h i

¼ ∏
M

i¼1
αi! (8)

where the αi are the same sequence of M non-negative integers {α1,.....,αM} used in Eq.(2). Notice,
finally, that Ii that appears in the numerator of Eq. (7) denotes the set of indices β for which the
corresponding Ψβ terms are only functions of the random variable ξ i (i.e., they only contain the
variable ξ i).

In order to illustrate the construction of a PCE and the derivation of the equations providing Sobol
indices, an illustrative example of a PCE of order p = 3 using onlyM = 2 random variables (ξ1 and ξ2) is
presented in Appendix B.
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4. EFFICIENT COMBINATION BETWEEN THE SPARSE POLYNOMIAL CHAOS
EXPANSION METHODOLOGY AND THE GLOBAL SENSITIVITY ANALYSIS

As mentioned previously, the time cost of the probabilistic analysis remains important even with the
use of the SPCE when dealing with spatially varying soils and computationally-expensive
deterministic models. Consequently, a procedure that can reduce once again this time cost is needed.
An efficient combination between the SPCE methodology and the GSA is proposed in this section.
This method is called hereafter SPCE/GSA procedure. In this method, a small SPCE order is firstly
selected to approximate the system response by a meta-model. It should be noted that the random
variables involved in the system response are those that result from the discretization of the random
fields into a finite number of random variables. A GSA based on Sobol indices is then performed on
this small SPCE order to determine the weight of each random variable in the variability of the
system response. The variables with very small values of their Sobol indices (i.e., those that have a
small weight in the variability of the system response) can be discarded. Consequently, a response
which only depends on a smaller number of random variables is obtained. In other words, one
obtains a response with an ’effective dimension’. This dimension is smaller than the initial
dimension where the total number of random variables was considered. As it will be shown later,
the use of a small SPCE order to perform the GSA is not a concern because higher SPCE orders
lead to the same influential random variables. Once the ’effective dimension’ was determined, a
higher SPCE order that makes use of only the most influential random variables can be used. This
significantly reduces the computation time. The use of a higher SPCE order is necessary in order to
lead to an improved fit of the SPCE. The SPCE/GSA procedure can be described in more details by
the following steps:

a. Discretize the random field(s): This step was made in this paper using the expansion optimal
linear estimation method (EOLE) by [18] and its extensions by [19] to cover the case of cross-
correlated NG random fields. Let us consider NRF anisotropic NG cross-correlated random fields
ZNG
i x; yð Þ , where i= 1,…,NRF. These random fields are described by (i) constant means and

standard deviations μi and σi; (ii) NG marginal CDFs named Gi; (iii) a target cross-
correlation matrix CNG; and (iv) a common square exponential autocorrelation function ρNGZ
[(x, y), (x’, y’)] that gives the values of the correlation between the two arbitrary points (x, y)
and (x’, y’). This autocorrelation function is given as follows:

ρNG
Z

x; yð Þ; x’; y’ð Þ½ � ¼ exp � x� x’

ax

� �2

� y� y’

ay

� �2
 !

(9)

where ax and ay are the autocorrelation distances along x and y, respectively. In order to discretize the
abovementioned cross-correlated NG random fields, one should first define a stochastic grid composed
of s grid points (or nodes). Then, one should determine the NG autocorrelation matrix, ΣNG, that gives
the correlation between each grid point of the stochastic mesh and the other grid points of this mesh by
using Eq. (9). The common NG autocorrelation matrix ΣNG and the target NG cross-correlation matrix
CNG should be transformed into the Gaussian space by using Nataf model [20], because the
discretization of the random fields by using EOLE is carried out in the Gaussian space. As a
result, one obtains NRF Gaussian autocorrelation matrices Σi (where i= 1,…,NRF) and a Gaussian
cross-correlation matrix C that can be used to discretize the two random fields. The value of the random
field i (where i= 1,…,NRF) at an arbitrary point (x, y) as obtained using this method is given by the
following equation [cf. 19]:

eZi x; yð Þ≅μi þ σi∑
N

j¼1

κDi; jffiffiffiffi
λi
j

q : ϕi
j

� �T
:Ω; (10)

where κDi;j are NRF cross-correlated blocks of independent standard normal random variables obtained
using the Gaussian cross-correlation matrix C between the NRF fields (cf. [10] for more details),
5



λi
j
; φij (where i = 1,…,NRF) are the eigenvalues and eigenvectors of the NRF Gaussian autocorrelation

matrices Σi, Ω is the correlation vector between the value of the field at an arbitrary point (x, y) and
its values at the different grid points, and N is the number of terms (expansion order) retained in the
expansion. This number N is obtained (i) by sorting the eigenvalues λj (j= 1, …, s) in a descending
order and (ii) by choosing the number N of eigenmodes that leads to a variance of the error which is
smaller than a prescribed tolerance (say ε≈ 10%). Notice that the variance of the error for EOLE is
given by [18] as follows:

Var Zi x; yð Þ � eZi x; yð Þ	 
 ¼ σ2
i 1� ∑

N

j¼1

1

λi
j

ϕi
j

� �T
Ω

� �2
( )

;
(11)

where Zi(x,y) and eZi x; yð Þ are respectively the exact and the approximate values of the random field i at

a given point (x, y) and ϕi
j

� �T
is the transpose of the eigenvector ϕi

j
(where i= 1,…,NRF). Notice,

finally, that ϕi
j

� �T
and Ω in Eq. 10 are two vectors of dimensions (1xs) and (sx1), respectively. Once

the Gaussian random fields are obtained, they should be transformed into the NG space (in case of NG
random fields) by applying the following formula:

eZNG
i x; yð Þ ¼ G�1

i Φ eZi x; yð Þ	 
� �
(12)

where Φ(.) is the standard normal CDF. For more details about the EOLE method and its extensions to
cover the case of cross-correlated NG random fields, the reader may refer to [19]. After the
discretization procedure, a random field is represented by N independent standard normal random
variables. For the NRF random fields that have the same autocorrelation function, the total number of
random variables is NT =NRFxN, which can be relatively large especially for the small values of the
autocorrelation distances. It should be noted that for each realization, the values of the NRF random
fields were determined at the centroid of each element of the deterministic mesh. Once the different
elements of the mesh are filed with the values of the different fields, the system response for this
specific realization can be determined.

b. Select a preliminary small order of the sparse polynomial chaos expansion (e.g., p= 2) to approx-
imate the system response by a meta-model. The main reason for selecting a small order is the
exploration of the most influential random variables (i.e., those that have a significant weight in the
variability of the system response) using a small ED. It should be emphasized here that the small value
of the SPCE order leads to a significant decrease in the size of the ED, that is, in the number of calls of
the deterministic model.

c. Perform a GSA based on Sobol indices (using the obtained second-order SPCE) to determine the
weight of each random variable (of the different random fields) in the variability of the system
response. The variables with very small values of their Sobol indices have no significant weight in
the variability of the system response and can thus be discarded. Consequently, a response that only
depends on a smaller number of random variables is obtained. In other words, one obtains a response
with an ’effective dimension’ Ne that is smaller than the initial dimension where the total number NT of
random variables was considered. It should be mentioned here that the small SPCE order (i.e., p = 2)
used to perform the GSA is sufficient to provide the weight of each random variable in the variability
of the system response because higher SPCE orders lead to the same influential random variables as
will be seen later in the numerical results.

d. Use the same ED that was employed in step (b) but this time by only keeping the most influential
random variables. By reducing the number of random variables from NT to Ne (where Ne<NT), one
has the possibility to use a higher SPCE order (i.e., p> 2). The use of a higher SPCE order is necessary
to lead to an improved fit of the SPCE because the coefficient of determination Q2 given in Eq. (A.3)
increases when the SPCE order increases as it will be shown in the numerical results.
6



As a conclusion, the use of the SPCE/GSA procedure is expected to provide a good fit of the
deterministic model with a reduced number of model evaluations as compared with the classical
SPCE approach.
5. NUMERICAL RESULTS

The aim of this section is to show the efficiency of the SPCE/GSA approach for the probabilistic
analysis of geotechnical problems considering spatially varying soils and computationally-expensive
deterministic models. The deterministic model considered in this paper involves the computation of
the ultimate bearing capacity of strip footings resting on a ponderable soil. Because the SPCE
approach was unable to consider the case of a ponderable soil (because of the significant
computational cost of a single-deterministic computation), only the case of a weightless soil was
considered by [9, 10]. In this section, the SPCE/GSA procedure was applied to compute the PDF of
the ultimate bearing capacity of a strip footing resting on a ponderable spatially varying (c and φ)
soil. The soil cohesion and friction angle are modeled by two anisotropic cross-correlated NG
random fields. The deterministic model is based on numerical simulations by using FLAC3D. The
inputs of the deterministic and probabilistic models, which are common for both cases of weightless
and ponderable soils, are briefly presented in Table I. It should be noted that the size of a given
element in the deterministic mesh depends on the autocorrelation distances of the soil properties.
[21] have suggested that the length of the largest element of the deterministic mesh in a given
direction (horizontal or vertical) should not exceed 0.5 times the autocorrelation distance in that
direction. Notice also that [18] have shown that the number of grid points in the stochastic mesh
strongly depends on the autocorrelation distances. These authors have shown that a ratio of about
lRF/a = 1/5 provides a sufficient accuracy in terms of the variance of the error where lRF is the
typical element size in the stochastic grid and a is the autocorrelation distance. The two conditions
mentioned previously have been considered when constructing the deterministic and stochastic
meshes.

Before the presentation of the probabilistic results in the case of a ponderable soil, it seems
necessary to validate the present SPCE/GSA procedure by comparison of its results with those
obtained by the use of the SPCE (in the case of a weightless soil). This is the aim of the next
subsection.

5.1. Validation of the SPCE/GSA

The aim of this section is the validation of the present SPCE/GSA approach. For this purpose, a
comparison between the results obtained in the case of a weightless soil using the classical SPCE
method (cf. [10]) and those obtained with the proposed SPCE/GSA procedure is presented herein.
The adopted soil domain considered in the analysis is 15-m wide by 6-m deep. The footing breadth
is equal to 2m. It should be mentioned here that when neglecting the soil weight γ, the computation
time decreases from 10 to 5min per simulation. Although this difference may not seem to be
significant for a single simulation, it becomes dramatically important during the probabilistic
analyses where a large number of simulations are needed for each probabilistic analysis.

The validation of the SPCE/GSA procedure is carried out for the illustrative case [ax = 10m,
ay= 1m, r(c, φ) = 0]. For this configuration, the discretization of the two random fields c and φ has
led to a total number of random variables NT equal to 24 (12 random variables for each random
field). By using the classical SPCE approach with the total number of random variables NT, a
fourth-order SPCE was sufficient to reach the target value of 0.999 for the coefficients of
determination R2 and Q2. An ED involving 800 points was needed to solve the regression problem
given in Eq. 4 (i.e., to obtain a well-conditioned regression problem for which the rank of the matrix
(ηTη)� 1 is larger than or equal to the number of unknown coefficients). On the other hand, by using
the present SPCE/GSA procedure, a GSA was performed to detect the most influential random
variables. Different SPCE orders (i.e., orders 2, 3, and 4) were considered in order to check if the
SPCE order has an impact on the determination of the most influential random variables.
7
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Figure 1 depicts the magnitudes of Sobol indices for the 24 random variables, as given by the SPCEs
of orders 2, 3, and 4. The first 12 random variables [i.e., ξ i for i = 1, …, 12] correspond to the cohesion
random field, and the last 12 random variables [i.e., ξ i for i = 13, …, 24] are those corresponding to the
friction angle random field. Figure 1 shows that whatever the SPCE order is, the two first random
variables of both fields (i.e., ξ1, ξ2, ξ13, ξ14) are the most influential. For the two random fields, a
very fast decay in the weight of the random variables is noticed with quasi negligible magnitudes
beyond the first two random variables. In fact, the first two random variables of the two random
fields, which correspond to the first two eigenmodes of both fields, involve 95% of the response
variability as may be seen from Table II. This is logical because the system response (i.e., the
ultimate bearing capacity) is a quantity that depends on the average distribution of the soil properties
(c and φ) which is therefore quite insensitive to small-scale fluctuations of the spatially varying
shear strength parameters c and φ. Notice that the first eigenmodes provide the average distribution
of the shear strength parameters over the soil domain; however, the remaining eigenmodes give the
small scale fluctuations around this average distribution. Figure 1 clearly shows that the Sobol
indices of the different random variables do not significantly change with the SPCE order. A
second-order SPCE is thus sufficient to identify the influential random variables (i.e., those that have
a significant weight in the variability of the ultimate bearing capacity). The main advantage of a
small SPCE order is that a small ED is sufficient to solve the regression problem. As shown in
Table III, 150 calls of the deterministic model are needed to solve the regression problem for a
second-order SPCE. This number attains 800 for a fourth-order SPCE. This significant increase is
because the number of unknown coefficients significantly increases from 29 to 144 when one
chooses a fourth-order SPCE instead of a second-order SPCE. It should be emphasized here that the
numbers of coefficient that appear in Table III are those retained by the iterative SPCE procedure
suggested by [1]. Notice, finally, that the numbers of coefficient of the full PCEs of order 2, 3, and
4 are respectively 325, 2925, and 20475. This clearly shows that the use of the PCE in the case of
random fields would not be feasible.

To choose the number of random variables which will be retained hereafter within the SPCE/GSA
procedure, the different random variables of the two random fields are firstly sorted in a descending
order according to the values of their Sobol indices (cf. the first three columns in Table IV). A
threshold of acceptance ta is then fixed as a percentage of the most influential (weighted) random
variable. In the present paper, the most influential random variable is ξ1 and it has a Sobol index
S1 = 0.5. Different values of the threshold were tested (cf. first line in Table IV). The random
variables having a Sobol index smaller than the prescribed threshold ta are discarded (marked with
the symbol (�) in the table). In this paper, a threshold of 2% of the Sobol index of the most
weighed random variable is considered as sufficient; the corresponding retained random variables
provide 98% of the total variance of the system response as may be seen from the last line of the
Figure 1. Sobol indices for sparse polynomial chaos expansions of orders 2, 3, and 4 using the classical
sparse polynomial chaos expansion method with the total number of random variables ξi (i = 1, …, 24).
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Table III. Number of unknown coefficients and model evaluations for different sparse polynomial chaos
expansion orders.

SPCE order 2 3 4

Number of unknown coefficients 29 35 144
Number of model evaluations 150 350 800
7th column in Table IV. For this threshold, an ’effective dimension’ Ne= 5 is obtained (i.e., five
random variables are considered to be the most weighed). The five retained random variables (ξ1,
ξ13, ξ2, ξ14, ξ5) will now be used with the already existing 150 model evaluations which were firstly
employed to approximate the second-order SPCE with the total number of random variables NT= 24.

The reduction in the number of random variables from NT= 24 to Ne= 5 provides the possibility to
use higher SPCE orders (i.e., p> 2) with the same ED (i.e., the 150 model evaluations). The use of a
higher SPCE order is necessary to lead to an improved fit of the SPCE because the coefficients R2 and
Q2 increase when the SPCE order increases as shown in Table V for both the classical SPCE approach
(using the total number of random variables NT= 24 and the number of model evaluations of Table III)
and the present SPCE/GSA procedure (where the effective dimension is equal to 5, i.e., Ne= 5 and the
number of model evaluations is fixed to 150). By using the SPCE/GSA procedure, an SPCE up to p = 8
was reached using only 150 model evaluations. This order is to be compared with the fourth-order
SPCE that was used in the SPCE methodology. From Table V, one can notice that with the use of
the SPCE/GSA procedure, the Q2 and R2 coefficients increase with the increase of the SPCE order
and stabilize beyond the order 5. This means that there is a need to increase the SPCE order to
improve the fit; however, there is no improvement in the fit beyond the fifth order. On the other
hand, the values of Q2 and R2 given by the present approach (i.e., 0.963 and 0.972) are smaller than
those of the classical SPCE approach with a fourth order (i.e., 0.994 and 0.999). This is because 19
random variables were discarded which slightly affect the goodness of the fit.

Figure 2 shows the PDF of the ultimate bearing capacity as obtained by both the classical SPCE
approach (with the total number of random variables NT = 24) and the proposed SPCE/GSA
procedure (using only five random variables). Table VI provides the corresponding statistical
moments and coefficients of determination R2 and Q2. Notice that the results of the present SPCE/
GSA approach are given in Table VI for different values of the number of model evaluations (from
150 to 800) and for a fifth-order SPCE. From this table, one can see that the coefficients R2 and Q2

of the SPCE/GSA procedure are quasi constant with the increase in the number of model
evaluations. This means that 150 model evaluations are sufficient and there is no need for more
model evaluations to improve the accuracy of the fit. On the other hand, one can observe (Table VI)
that the first two statistical moments (μ and σ) are well estimated with the present SPCE/GSA
approach using the 150 model evaluations. However, the third and fourth statistical moments (δu
and κu) need more model evaluations (800 model evaluations) in order to converge to their reference
values given by the SPCE approach. This demonstrates the efficiency of the present SPCE/GSA
procedure to compute only the first two statistical moments with a much reduced number of the
model evaluations (150 model evaluations) with respect to the classical SPCE approach (with 800
model evaluations).

As for the Sobol indices of the two random fields c and φ, Table VII shows that the SPCE/GSA
procedure with only 150 model evaluations gives the same results obtained by the classical SPCE
approach by using 800 model evaluations. This demonstrates once again the efficiency of the
present SPCE/GSA procedure. It should be noted that the Sobol index of a random field was
computed as the sum of the Sobol indices of the different variables that represent this field.
5.2. Probabilistic numerical results for a pondarable soil mass

The aim of this section is to present some probabilistic numerical results in the case of a ponderable soil
mass (with γ = 18kN/m3) using the SPCE/GSA procedure. The study involves the computation of the
PDF of the ultimate bearing capacity of a shallow strip foundation resting on a ponderable 2D
11
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Table V. Coefficients of determination R2 and Q2 for different sparse polynomial chaos expansion orders
when using the total and the reduced number of random variables.

SPCE order 2 3 4 5 6 7 8

Total number of random
variables NT

Coefficient of
determination R2

0.998 0.999 0.999 — — — —

Coefficient of
determination Q2

0.824 0.932 0.994 — — — —

Reduced number
of random variables Ne

Coefficient of
determination R2

0.961 0.963 0.968 0.970 0.972 0.972 0.972

Coefficient of
determination Q2

0.791 0.883 0.957 0.961 0.963 0.963 0.963

Figure 2. PDFs of the ultimate bearing capacity for both the classical sparse polynomial chaos expansion
method with the total number of random variables (NT = 24) and the proposed SPCE/GSA procedure with

only five random variables (Ne = 5) when ax = 10m, ay = 1m and r(c, φ) = 0.
spatially varying soil where the soil shear strength parameters (c and φ) are modeled as two anisotropic
cross-correlated NG random fields. As shown in Figure 3, the adopted soil domain considered in the
analysis is 13-m wide by 5-m deep. The footing breadth is equal to 1m. It should be noticed here
that the random fields of c and φ are discretized into a finite number of random variables. As was
shown by [10], this number is small for the very large values of the autocorrelation distance and
significantly increases for the small values of the autocorrelation distance. Table VIII provides the
total number NT of random variables needed to discretize the two random fields c and φ within a
prescribed variance of the error of 10%. This table also presents the number Ne of the retained
random variables as obtained using the SPCE/GSA procedure. One can observe an important
reduction in the dimensionality of the treated problem with the use of the proposed SPCE/GSA
procedure. For instance, the reduced number Ne of random variables is equal to 21 when the
autocorrelation distances ax= ay = 0.25m. This number is to be compared with the total number
NT = 1760 that shows once again that the ultimate bearing capacity is not sensitive to the very small
fluctuations of the two random fields.

In the following subsections, the effect of the isotropic autocorrelation distance and the cross-
correlation coefficient between the two random fields on the ultimate bearing capacity was
undertaken using the input values presented in Table I.

5.2.1. Effect of the autocorrelation distances. Although the probabilistic model is able to consider
both cases of isotropic and anisotropic random fields, only the isotropic case is considered in this
13



Table VI. Coefficients of determination R2 and Q2 of the sparse polynomial chaos expansion and statistical
moments (μ, σ, δu, and κu) of the ultimate bearing capacity as given by the classical sparse polynomial chaos

expansion approach (with NT = 24) and by the present SPCE/GSA procedure (with Ne= 5).

Number of
model

evaluations
Mean μ
(kPa)

Standard
deviation
σ (kPa)

Skewness
δu (�)

Kurtosis
κu (�) R2 Q2

With the total number of
random variables NT= 24

800 658.2 93.57 0.287 0.163 0.999 0.995

With the reduced number
of random variables Ne = 5

150 657.84 90.80 0.105 0.013 0.970 0.961
200 658.98 91.53 0.168 0.056 0.972 0.951
250 659.90 92.10 0.188 0.063 0.964 0.956
300 659.73 92.15 0.202 0.060 0.962 0.963
400 660.05 90.95 0.291 0.050 0.969 0.960
500 659.50 90.81 0.296 0.043 0.970 0.963
600 659.75 90.99 0.272 0.116 0.968 0.963
700 659.50 90.85 0.280 0.164 0.968 0.963
800 659.85 91.20 0.300 0.160 0.970 0.967
section. This is because this case is the most critical one involving the greatest number of random
variables.

Figure 4 shows the PDFs of the ultimate bearing capacity for different values of the isotropic
autocorrelation distance ax= ay together with the case of random variables when the cross-correlation
coefficient is equal to �0.5. Table IX presents the first two statistical moments of all these PDFs
together with those corresponding to other values of the autocorrelation distance (50m and 100m).
Figure 4 and Table IX show that the variability of the ultimate bearing capacity decreases when the
autocorrelation distance ax= ay decreases. The variability of the ultimate bearing capacity decreases
with the increase in the soil heterogeneity because the zone involved by the possible failure
mechanism will have (for the very small values of the autocorrelation distance) somewhat uniform
values of the shear strength parameters over this zone because of the large number of high and small
values of the shear strength parameters. This leads to close values of the ultimate bearing capacity
from one simulation to another one and thus to a smaller variability in this bearing capacity. Figure 5

Figure 5 and Table IX show that the probabilistic mean value of the ultimate bearing capacity
presents a minimum when the isotropic autocorrelation distance ax= ay is nearly equal to the footing
breadth B (i.e., in our case when ax = ay= 1m). Notice that the minimal probabilistic mean was also
observed by [22–24] when isotropic random fields were studied. For a large value of the isotropic
autocorrelation distance (ax= ay = 100m), the probabilistic mean tends to the one obtained in the
case of random variables as may be seen from Table IX. On the other hand, for very small values of
the autocorrelation distance ax= ay, the probabilistic mean becomes greater than the minimal value.
This is because the weakest path becomes increasingly tortuous and its length is also longer and
thus, the failure mechanism will pass through a shorter path and a stronger soil leading to greater
bearing capacity values as mentioned by [9–11, 22–24]. Finally, it should be mentioned that the
computation time using the SPCE/GSA procedure is relatively small for moderate to great values of
the isotropic autocorrelation distance and becomes significant for the small values of the isotropic
autocorrelation distance. For instance, in the case of very small values of the autocorrelation
distance (i.e., ax = ay= 0.25m), the reduced number of random variables (Ne = 21) has led to a
computation time of about 3 days; however, for the large values of the autocorrelation distance (i.e.,
ax= ay= 100m), the reduced number of random variables (Ne = 2) has led to a computation time of
about 15min.

5.2.2. Effect of the cross-correlation coefficient of the two random fields. Table X presents the
two statistical moments (μ and σ) of the ultimate bearing capacity for negatively cross-
correlated r(c, φ) =�0.5 and non-correlated r(c and φ) = 0 random fields when ax = 10m and
ay = 1m. Table X shows that the variability of the ultimate bearing capacity decreases
when considering a negative correlation between the two random fields. This is because the
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Figure 3. Adopted soil domain and the corresponding deterministic mesh.

Table VIII. Number of random variables used to discretize the two random fields c and φ in the case of
isotropic random fields.

NT: Total number of random variables used to
discretize the two random fields (c and φ)

Ne: Number of most influent random variables
used to construct the SPCE when ta =2%× S1

ax= ay = 0.25m 1760 21
ax= ay = 0.5m 460 21
ax= ay = 1m 120 20
ax= ay = 1.5m 70 20
ax= ay = 2m 50 20
ax= ay = 3m 24 12
ax= ay = 5m 20 8
ax= ay = 10m 10 6
ax= ay = 50m 10 4
ax= ay = 100m 10 2

Figure 4. Influence of the isotropic autocorrelation distance ax = ay on the PDF of the ultimate bearing
capacity in the case where r(c, φ) =�0.5.
increase of one parameter value implies a decrease in the other parameter. Thus, the total shear
strength slightly varies. This leads to a reduced variation in the ultimate bearing capacity. It
should be mentioned that the probabilistic mean value of the ultimate bearing capacity slightly
increases when a negative correlation between the two random fields exists.
16



Table IX. Effect of the isotropic autocorrelation distance ax= ay on the statistical moments (μ, and σ) of the
ultimate bearing capacity.

ax = ay(m) μ (kPa) σ (kPa) COV%

0.25 1022.3 28.5 2.8
0.5 1019.3 53.2 5.2
1 980.2 103.3 10.5
1.5 1001.4 127.0 12.6
2 1005.1 136.9 13.6
3 1012.7 169.2 16.7
5 1021.7 195.1 19.1
10 1040.0 216.9 20.9
50 1051.5 230.1 21.9
100 1052.0 230.9 21.9
Random variables 1052.2 230.9 21.9

Figure 5. Influence of the isotropic autocorrelation distance ax = ay on the probabilistic mean of the ultimate
bearing capacity in the case where r(c, φ) =�0.5.

Table X. Effect of the coefficient of correlation r(c, φ) on the statistical moments (μ and σ) of the ultimate
bearing capacity when ax= 10m and ay= 1m.

r(c,φ) μ (kPa) σ (kPa) COV%

�0.5 1022.7 172.1 16.8
0 1019.7 275.1 27.0
6. CONCLUSIONS

An efficient combined use of the SPCE methodology and the GSA has been proposed. The aim is to
reduce the cost of the probabilistic analysis of computationally-expensive deterministic models. This
methodology was firstly validated in this paper using a relatively non-expensive deterministic
model. Then, it was applied to a computationally-expensive deterministic model. The validation
consists in comparing the results of both the classical SPCE method that uses the total number of
random variables and the proposed combination between the SPCE and the GSA that makes use of
a reduced number of random variables. Satisfactory results were obtained using the proposed
methodology with a smaller number of model evaluations. The first two statistical moments and the
Sobol indices show good agreement between the two methods. On the other hand, the third and
fourth statistical moments need more model evaluations in order to converge to their reference
17



values obtained using the classical SPCE approach. The application of the SPCE/GSA procedure to an
expensive deterministic model that involves the computation of the PDF of the ultimate bearing
capacity of a strip footing in the case of a ponderable spatially varying (c and φ) soil has shown the
efficiency of the proposed methodology.
APPENDIX A

The coefficient of determination R2 is given by:
R2 ¼ 1�
1
K∑

K
i¼1 Γ ξ ið Þ

� �
� Γ SPCE ξ ið Þ

� �h i2
1

K�1∑
K
i¼1 Γ ξ ið Þ

� �
� Γ

h i2 (A:1)
Where
Γ ¼ 1
K
∑K

i¼1Γ ξ ið Þ
� �

(A:2)

The value R2 = 1 indicates a perfect fit of the true model response Γ, whereas R2 = 0 indicates a
nonlinear relationship between the true model response Γ and the SPCE model response ΓSPCE. The
coefficient R2 may be a biased estimate because it does not take into account the robustness of the
meta-model (i.e., its capability of correctly predicting the model response at any point which does
not belong to the experimental design). As a consequence, one makes use of a more reliable and rig-
orous coefficient of determination [1]. In this case, one sequentially removes a point from the experi-
ment design composed of K points. Let Γξ \ i be the meta-model that has been built from the experiment
design after removing the ith observation and let Δi = Γ (ξ (i))�Γξ \ i(ξ(i)) be the predicted residual be-
tween the model evaluation at point ξ(i) and its prediction based on Γξ \ i. The corresponding coefficient
of determination is often denoted by Q2:

Q2 ¼ 1�
1
K∑

K
i¼1 Δi
� �2

1
K�1∑

K
i¼1 Γ ξ ið Þ

� �
� Γ

h i2 (A:3)

Both coefficients R2 and Q2 will be used in the present paper to check the accuracy of the fit,
although only Q2 is sufficient because it is more restrictive than R2.
APPENDIX B
Illustrative Example (for the construction of a PCE and for the computation of Sobol indices)

In order to illustrate the PCE theory in a simple manner, a PCE of order p=3 using only M=2 random
variables (ξ1 and ξ2) will be considered in this illustrative example. By using the classical truncation
scheme, Table B.1 presents the retained PCE terms that are those having a first-order norm ‖α‖1 smaller
than or equal to p (i.e., p=3). These terms are presented in Table B.1 in bold characters. As may be easily
seen from Table B.1, the PCE basis contains P=10 terms whose expressions are computed using Eq.2.

Table B.1. Terms retained using the classical truncation scheme for M=2 and p= 3.
α1
 0
 1
 0
 1
 2
 0
 2
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1
 2
 3
 0
 3
 1
 3
 3

α2
 0
 0
 1
 1
 0
 2
 1
 2
 2
 0
 3
 1
 3
 2
 3

‖α‖1
 0
 1
 1
 2
 2
 2
 3
 3
 4
 3
 3
 4
 4
 5
 6



Table B.2 presents the expressions of the PCE basis Ψβ. By using Table B.2, one can write the PCE
expression as function of the input random variables (ξ1 and ξ2) as follows:

ΓPCE ξð Þ ¼ a0Ψ0 þ a1Ψ1 þ…þ a9Ψ9 ¼
a0 þ a1ξ1 þ a2ξ2 þ a3ξ1ξ2 þ a4 ξ21 � 1

� �þ a5 ξ22 � 1
� �þ a6 ξ21 � 1

� �
ξ2 þ a7ξ1 ξ22 � 1

� �
þa8 ξ31 � 3ξ1

� �þ a9 ξ32 � 3ξ2
� � (B:1)

In this expression, the unknown coefficients can be computed using Eq. (4) by simulating an ED
that contains K initial realizations of the two random variables (ξ1 and ξ2) and by computing the cor-
responding responses from deterministic calculations. It should be mentioned here that the size K of the
ED should ensure the numerical stability of the regression problem and thus it can be enriched each
time the matrix (ηTη)� 1 is badly-conditioned.

The first-order Sobol indices for the two random variables (ξ1 and ξ2) can be easily obtained once
the coefficients a0,…, a9 are computed using Eq. (7). The only additional step is to compute E[(Ψβ)

2]
corresponding to these two random variables. Table B.2 shows the values of E[(Ψβ)

2] computed using
Eq. 8 for the different Ψβ terms. The expression of the first-order Sobol indices of the two random vari-
ables ξ1 and ξ2 are written as follows:

S ξ1ð Þ ¼ a21 þ 2a24 þ 6a28
a21 þ a22 þ a23 þ 2a24 þ 2a25 þ 2a26 þ 2a27 þ 6a28 þ 6a29

S ξ2ð Þ ¼ a22 þ 2a25 þ 6a29
a21 þ a22 þ a23 þ 2a24 þ 2a25 þ 2a26 þ 2a27 þ 6a28 þ 6a29

(B:2)

with

I1 ¼ 1; 4; 8ð Þ; I2 ¼ 2; 5; 9ð Þ (B:3)

Table B.2. Basis of the polynomial chaos expansion with the classical truncation scheme forM=2 and p=3.
β
 PCE order p

Ψβ ¼ ∏

M

i¼1
Hαi ξ ið Þ
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E Ψβ
� �2h i

¼ ∏
M

i¼1
αi!
0
 p= 0
 H0(ξ1) ×H0(ξ2) = 1
 α1! × α2! = 0! × 0! = 1

1
 p= 1
 H1(ξ1) ×H0(ξ2) = ξ1
 α1! × α2! = 1! × 0! = 1

2
 H0(ξ1) ×H1(ξ2) = ξ2
 α1! × α2! = 0! × 1! = 1

3
 p= 2
 H1(ξ1) ×H1(ξ2) = ξ1 ξ2
 α1! × α2! = 1! × 1! = 1

4
 H2(ξ1) ×H0(ξ2)= ξ21 � 1
 α1! × α2! = 2! × 0! = 2

5
 H0(ξ1) ×H2(ξ2)= ξ22 � 1� �
 α1! × α2! = 0! × 2! = 2

6
 p= 3
 H2(ξ1) ×H1(ξ2)= ξ21 � 1 ξ2

2
� �
 α1! × α2! = 2! × 1! = 2
7
 H1(ξ1) ×H2(ξ2)= ξ1 ξ2 � 1
3

α1! × α2! = 1! × 2! = 2

8
 H3(ξ1) ×H0(ξ2)= ξ1 � 3ξ1
 α1! × α2! = 3! × 0! = 6

9
 H0(ξ1) ×H3(ξ2)= ξ32 � 3ξ2
 α1! × α2! = 0! × 3! = 6
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