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Efficient mold cooling optimization by using model reduction

Fabrice Schmidt & Nicolas Pirc & Marcel Mongeau &

Francisco Chinesta

Abstract Optimization and inverse identification are two
procedures usually encountered in many industrial processes
reputed gourmand for the computing time view point. In fact,
optimization implies to propose a trial solution whose accuracy
is then evaluated, and if needed it must be updated in order to
minimize a certain cost function. In the case of mold cooling
optimization the evaluation of the solution quality needs the
solution of a thermal model, in the whole domain and during
the thermal history. Thus, the optimization process needs
several iterations and then the computational cost can become
enormous. In this work we propose the use of model reduction
for accomplishing this kind of simulations. Thus, only one
thermal model is solved using the standard discretization
technique. After that, the most important modes defining the
temperature evolution are extracted by invoking the proper
orthogonal decomposition, and all the other thermal model
solutions are performed by using the reduced order approxi-
mation basis just extracted. The CPU time savings can be
impressive.

Keywords BEM .Optimisation .Model reduction .

Injection moulding

Introduction

Process description—injection molding

About 30% of the annual polymer production is transformed
by injection molding. Injection molding is a cyclic process of
forming a plastic into a desired shape by forcing the molten
polymer under pressure into a hollow cavity [1, 25]. For
thermoplastic polymers, the solidification is achieved by
cooling. Typical cycle times range from 1 to 100 s and
depend mainly on the cooling time. The complexity of
molded parts is virtually unlimited, sizes may range from
very small (<1 mm) to very large (>1 m), with an excellent
control of tolerances.

The injection molding equipment

The reciprocation screw injection molding machine is the
most common injection unit used (Fig. 1). These machines
consist of two basic parts, an injection unit and a clamping
unit. The injection unit melts the polymer resin and injects
the polymer melt into the mold. Its screw rotates and axially
reciprocates to melt, mix, and pump the polymer. A hydraulic
system controls the axial reciprocating of the screw, allowing
it to act like a plunger, moving the melt forward for injection.
The clamping unit holds the mold together, opens and closes
it automatically, and ejects the finished part.

Importance of cooling step for manufacturing injected parts

Part cooling during injection molding is the critical step as
it is the most time consuming. An inefficient mold cooling
may have dramatic consequences on cycle time and part
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quality and may require expensive mold rectification.
Depending on the wall thickness of the molded parts, it
usually takes the major portion of the cycle time to
evacuate the heat since polymers are bad conductors as
thermal conductivity ranges from 0.1 W/mK to 1.8 W/mK
[25]. The cooling cycle can represent more than 70% of the
injection cycle [18, 23]. The cooling rate is an important
factor for productivity, and important benefits can be
achieved by decreasing the cooling time of parts with hot
zones badly cooled. A bad design of the cooling channels
may generate zones with higher temperatures in the mold,
increasing the cooling time.

In addition, different types of injection defects due to a
bad thermal regulation of the mold can appear: dimensional
defects, structural defects and aspect defects [21, 40].

In order to reduce mold and production costs, an automatic
optimization of cooling device geometry and processing
parameters (temperature, flow rate...) may be developed.
The optimization procedure necessitates to compute numerous
transient heat balance problem (eventually non linear). For
solving the thermal problem, we need an efficient meshing
technique. Boundary elements method (BEM) is well adapted
for such a problem because it only requires a surfacing mesh.
The displacement of cooling channels after each optimization
iteration is then facilitated (no remeshing). In addition, reduced
modeling is useful in order to reduce CPU time of the direct

computations, particularly for 3D computations. Injection
molding process is a cycling one; which imply computation
of numerous cycles. On Fig. 2, an example of temperature
history of 40 cycles is plotted versus time. Curves (a) and (b)
give respectively the maximum of the temperature in the
cavity before and after optimization. Curve (c) represents the
average temperature at the cavity surface after optimization.

Mold cooling optimization

Introduction

Several CAD and simulation tools are available to help
designing the cooling system of an injection mold.
Simulation of heat transfer during injection can be used to
check a mold design or study the effect of a parameter
(geometry, materials...) on the cooling performance of the
mold. Several numerical methods such as Finite Elements
Method (FEM) [6] or Boundary Element Method (BEM)
[4, 7, 8] can be used. Bikas et al. [5] used C-Mold®
simulations and design of experiments to find expressions
of mean temperature and temperature variation as functions
of geometry parameters of the mold.

Numerical simulation can also be used to perform an
automatic optimization of the mold cooling. Numerical
simulation is used to solve the thermal equations and evaluate
a cost function related to productivity or part quality. An
optimization method is used to modify the parameters and
improve the thermal performance of the mold. Tang et al. [37]
used 2D transient FEM simulations coupled with Powell’s
optimization method [10] to optimize the cooling channel
geometry to get uniform temperature in the polymer part.
Huang et al. [13] used 2D transient FEM simulations to
optimize the use of mold materials according to part
temperature uniformity or cycle time. Park et al. [27]
developed 2D and 3D stationary BEM simulations in the
injection molds coupled with 1D transient analytical com-
putation in the polymer part (throughout the thickness). The
heat transfer integral equation is differentiated to get
sensitivities of a cost function to the parameters. TheFig. 2 Temperature history of the first 40 cycles

Fig. 1 Injection molding
machine with reciprocating
screw [39]
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calculated sensitivities are then used to optimize the position
of linear cooling channels for simple shapes (sheet, box).

In the next section, we present the use of Boundary
Element Method (BEM) and DRM applied to transient heat
transfer of injection molds. The BEM software, [20, 30, 31],
was combined with an adaptive reduced modeling (widely
described later). This procedure will be fully described in
“Reduced modeling”, it allows reducing considerably the
computing time during the linear system solution in transient
problem. Then, we present a practical methodology to
optimize both the position and the shape of the cooling
channels in injection molding processes (“Application of
BEM reduced model to mold cooling optimization”). We
couple the direct computation with an optimization algo-
rithm: Sequential Quadratic Programming.

BEM for transient heat balance equation

Using BEM, only the boundary of the domain has to be
meshed and internal points are explicitly excluded from the
solution procedure. An interesting side effect is the consid-
erable reduction in size of the linear system to be solved [30].
The transient heat conduction in a homogeneous isotropic
body Ω is described by the diffusion equation where α is
the material thermal diffusivity assumed constant:

DT x; tð Þ ¼ 1

a
@T x; tð Þ

@t
ð1Þ

We define the initial conditions and the boundary
conditions (Fig. 3) as:

T x; t ¼ 0ð Þ ¼ To xð Þ
�lrT � n ¼ qP 8 x 2 GP

�lrT � n ¼ hc T � Tcð Þ 8 x 2 Gc

�lrT � n ¼ ha T � Tað Þ 8 x 2 GM

8><>: ð2Þ

Where l is the thermal conductivity (the medium is
assumed homogeneous and isotropic), Γp is the boundary of
the cavity surface (plastic part), Γc the boundary of the
cooling channels and ΓM the mold exterior surface. The
temperature of the coolant is Tc and hc and ha represent
the heat transfer coefficient between the mold and the coolant
and the mold and the ambient air at temperature Ta

respectively. In order to avoid multi-domains calculation and
save computation time, the plastic part is taken into account
via a heat flux qp imposed on the mold cavity surface. The
flux density qp is calculated from the cycle time and polymer
properties [20, 29].

Different strategies are possible to solve such problems
using BEM. Pasquetti et al. [28] propose to use space and
time Green’s function. Another solution should be to
apply Laplace [36] or Fourier [11] transforms on time
variable before spatial integration. In this section, we will
use only space Green’s function inspired from stationary
heat transfer problem (i.e. Laplace’s equation). To express
the domain integral resulting from time derivative in terms
of equivalent boundary integrals, we introduce the DRM
approximation. The DRM consists in seeking the solution
as series of particular solutions and interpolated on N
points inside and on the boundary of the domain. The
interpolation function used in this paper is the linear radial
function. In what follows we are not considering the detail
of the Boundary Element discretization technique that has
been addressed in many papers and books. Anyways,
DRM procedure used in this paper is detailed in the paper
of Mathey et al. [20]. As we knew from the literature that
instabilities may occur using this method, and particularly in
case of thermal shock, a parametric study has been
performed in a 2D configuration [19]. A thermal shock
was simulated by applying on one side of a square initially at
zero temperature a temperature TL. The opposite side is kept
at zero temperature and the upper and lower sides are
assumed thermally insulated (Fig. 4):where the value of
different parameters are: a ¼ 10�5m2=s, L=0.1 m and TL=
200°C. The analytical solution of such problem could be
found in Özisik [24]. Different parameters have been tested
such as time step, boundary mesh size, radial function, time
integration scheme. From this study, we have highlighted
that the influence of the parameters is only significant at the
beginning of heating as it is illustrated on Fig. 5 (x=0.05 m).

If we want to improve the accuracy of simulations, we
need to decrease the time step, to use a finer mesh, and an
implicit time integration scheme. Using the results of this
study, we are able to optimise the DRM method.

In any case, using the BEM (as was also the case when
using the finite element method) one should solve at each time
step a linear system of equationsAup=f p−1, where in the case

Fig. 3 Boundary conditions applied to the mold

Fig. 4 Thermal shock
configuration
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of the BEM, vector up contains all the discrete model
unknowns (nodal temperatures or nodal fluxes on the
domain boundary) at the current time step p whereas f p−1

contains all the known information given at the previous
time step p−1. The matrix of coefficients is fully populated
and in some cases it changes as time evolves. For these
reasons, even if the number of degrees of freedom involved
in the BEM discrete model is much lower than that involved
in standard finite element discretizations, its solution can be
cumbersome. This is especially true if the thermal model
must be solved many times, as is the case in mold
optimization that implies the solution of a transient thermal
model for each trial geometrical configuration.

Coupling BEM with an optimization method

We couple heat transfer computation with an optimization
method to modify automatically the parameters at each
optimization iteration as shown in Fig. 6. Given initial
parameters, the BEM simulation is performed and the cost
function is calculated. The optimization method allows
updating parameters according to constraints until a minimum
of the cost function is found. SQP (Sequential Quadratic
Programming) [19] is used for the optimization of continuous
non linear functions with continuous non linear constraints.

In order to reduce the computing time during the linear
system solution (especially in 3D), we propose the use of
model reduction within the BEM solver. Before presenting
results of optimization, the reduced modeling approach is
summarized in detail.

Reduced modeling

Introduction

Most engineering systems can be represented by a
continuous model usually expressed by a system of linear
or non-linear coupled partial differential equations describ-
ing the different conservation balances (momentum, energy,
mass and chemically reacting substances). From a practical
point of view, the determination of its exact solution, that is,
the exact knowledge of the different fields characterizing
the physical system at any point and time instant (velocity,
pressure, temperature, chemical concentrations, ...) is not
possible in real systems due to the complexity of models,
geometries and/or boundary conditions. For this reason the
solution is searched only at some points and at some times,
from which it could be interpolated to any other point and
time. Numerical strategies allowing this kind of represen-
tation are known as discretization techniques. There exist
numerous discretization techniques, e.g. finite elements,
finite volumes, boundary elements, finite differences,
meshless techniques, among many others. The optimal
technique to be applied depends on the model and on the
domain geometry. Progresses in numerical analysis and in
computation performances make possible today the solution
of complex systems involving millions of unknowns related
to the discrete model. However, the complexity of the
models is also increasing exponentially, and today engi-
neers are not only interested in solving a model, but in
solving these models many times (e.g. when they address
optimization or inverse identification). For this purpose,
strategies able to speed-up the numerical solution, preserving
the solution accuracy, are in the focus.

Fig. 5 Temperature versus time
(left)—Heat flux versus time
(right)

Fig. 6 Heat transfer simulation/optimization coupling
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In the context of control, optimization or inverse analysis,
numerous problems must be solved, and for this reason the
question related to the computation time becomes crucial. The
question is very simple: is it possible to perform very fast and
accurate simulations? Different answers have been given to
this question depending on the scientific community to which
this question is addressed. For specialists in computational
science the answer to this question concerns the improvement
of computational resources, high performance computing and
the use of parallel computing platforms. For some specialists
in numerical analysis the challenge is in the fast resolution of
linear systems via the use of preconditioners or multigrid
techniques among many others. For others the idea is to adapt
the cloud of nodes (points where the solution is computed) in
order to avoid an excessive number of unknowns. Many other
answers have been given, however at present all these
approaches allow to alleviate slightly the computation efforts
but the fast and accurate computation remains a real challenge.

This section describes another different approach based
on model reduction allowing fast and accurate computa-
tions. The idea is very simple. Consider a domain where a
certain model is defined as well as the associated cloud of
nodes able to represent by interpolation the solution
everywhere. In general the number of unknowns scales
with the number of nodes, and for this reason even if the
solution is evolving smoothly in time all the nodes are used
for describing it at each time step. In the reduced modeling
that we describe later the numerical algorithm is able to
extract the optimal information describing the evolution of
the solution in the whole time interval. Thus, the evolution
of the solution can be expressed as a linear combination of
a reduced number of functions (defining the reduced
approximation basis), and then the size of the resulting
linear problems is very small, and consequently the CPU
time savings can attain several orders magnitude (in the
order of millions sometimes).

The extraction of this relevant information is a well
known topic based on the application of the proper
orthogonal decomposition, also known as Karhunen-
Loève decomposition [14, 16] that is summarized in the
next section. This kind of approach has been widely used
for weather forecast purposes [17], turbulence [12, 35],
solid mechanics [15] but also in the context of chemical
engineering for control purposes [26].

Usual reduced modeling performs the simulation of
some similar problem or the desired one in a short time
interval. From these solutions the Karhunen-Loève decom-
position applies, allowing the extraction of the most
relevant functions describing the solution evolution. Now,
it is assumed that the solution of a “similar” problem can be
expressed using this reduced approximation basis, allowing
a significant reduction on the discrete problem size and then
to significant CPU time savings. However, in general the

question related to the accuracy of the computed solutions
is usually ignored. An original approach combining the
model reduction and the control of the solution accuracy
was proposed by Ryckelynck [32], and applied later in a
large catalogue of applications [2, 9, 22, 33, 34, 38]. This
model reduction strategy can be coupled with usual finite
element or boundary element discretizations [3].

We summarize in this section the main ideas of this
reduction strategy for non specialists in numerical analysis,
in order to show its potentiality in many domains of
engineering and in particular in the context of optimization.

Revisiting the Karhunen-Loève decomposition

We assume that the evolution of a certain field that depends
on the physical space x and on time t, u(x, t) is known. In
practical applications, this field is expressed in a discrete
form, that is, it is known at the nodes of a spatial mesh and
at some times, i.e. u xi; t pð Þ � upi . We can also write,
introducing a spatial interpolation: up xð Þ � u x; t ¼ pDtð Þ;
8p 2 1; � � � ;P½ �. The main idea of the Karhunen-Loève
(KL) decomposition is how to obtain the most typical or
characteristic structure 8(x) among these up(x), ∀p. This is
equivalent to obtaining functions 8(x) maximizing α

a ¼

Pp¼P

p¼1

Pi¼N

i¼1
8 xið Þup xið Þ

� �2
Pi¼N

i¼1
8 xið Þð Þ2

ð14Þ

which leads to:

Xp¼P

p¼1

Xi¼N

i¼1

e8 xið Þup xið Þ
" # Xj¼N

j¼1

8 xj
� �

up xj
� �" #" #

¼ a
Xi¼N

i¼1

e8 xið Þ8 xið Þ

ð15Þ

8e8 , which can be rewritten in the form

Xi¼N

i¼1

Xj¼N

j¼1

Xp¼P

p¼1

up xið Þup xj
� �

8 xj
� �( )e8 xið Þ

" #
¼ a

Xi¼N

i¼1

e8 xið Þ8 xið Þ

ð16Þ

Defining vector 8 such that its i-component is 8(xi),
Eq. 16 takes the following matrix form

e8Tk8 ¼ ae8T8; 8e8 ) k8 ¼ a8 ð17Þ

where the two points correlation matrix is given by

kij ¼
Xp¼P

p¼1

up xið Þup xj
� � , k ¼

Xp¼P

p¼1

up upð ÞT ð18Þ
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which is symmetric and positive definite. If we define the
matrix Q containing the discrete field history:

Q ¼
u11 u21 � � � uP1
u12 u22 � � � uP2
..
. ..

. . .
. ..

.

u1N u2N � � � uPN

0BBB@
1CCCA ð19Þ

it is easy to verify that the matrix k in Eq. 18 results

k ¼ Q QT ð20Þ

Reduced modeling

If the evolution of a certain field is known

u xi; t
pð Þ � upi ; 8i 2 1; � � � ;N½ �; 8p 2 1; � � � ;P½ � ð21Þ

from some direct simulations or from experimental measures,
then matrices Q and k can be computed and the eigenvalue
problem given by Eq. 17 can be solved. The solution of
Eq. 17 results in N eigenvalue-eigenvector couples. How-
ever, in a large number of models involving regular time
evolutions of the solution, the magnitude of the eigenvalues
decreases very fast, evidencing that the solution evolution
can be represented as a linear combination of a reduced
number of functions (the eigenvectors related to the largest
eigenvalues).

In our numerical applications we consider the eigenvalues
ordered a1 > a2 > � � � > aN . The n eigenvalues belonging
to the interval a1 > � � � > an with an > a1 � 10�8 and
anþ1 < a1 � 10�8 are selected, because their associated
eigenvectors are expected to be sufficient to represent
accurately the entire solution evolution. In a large variety of
models n ≪ N and moreover n only depends on the regularity
of the solution evolution, but neither on the dimension of the
physical space (1D, 2D or 3D) nor on the size of the model (N).

The reduced approximation basis consists on the n
eigenvectors 81,⋯, 8n, allowing to define the basis
transformation matrix B:

B ¼ 81;82; � � � ;8nð Þ ð22Þ

whose size is N × n. Thus, the vector containing the field
nodal values u can be expressed by:

u ¼
Xn
i¼1

8i � xiðtÞ ¼ B � xðtÞ ð23Þ

Now, if we consider the linear system of equations
resulting from the discretization of a partial differential
equation (PDE) in the form

Aup ¼ fp�1 ð24Þ

where f p−1 accounts for the solution at the previous time
step, taking into account Eq. 23 it reduces to:

A up ¼ fp�1 ) A Bxp¼fp�1 ð25Þ
and multiplying both terms by BT it results

BTA B xp¼BT fp�1 ð26Þ
which proves that the final system of equations is of low
order, i.e. the dimension of BTA B are n × n, with n ≪ N,
and the dimension of both ξ and BTf p−1 are n×1.

Reduced basis adaptivity

The just described strategy allows for very fast computation
of large size models. For example one could solve the full
model using some standard discretization technique (finite
differences, finite elements, boundary elements, ...) for a
small time interval and then define matrices Q and k
allowing to compute the reduced approximation basis
transformation B that leads to the reduced solution
procedure illustrated by Eq. 26. Another possibility consists
in solving a model in the whole time interval and then
extracting the most representative functions that could be
used for solving some “similar” models. We come back to
this discussion later.

However, in any case, it is not guaranteed that this reduced
basis that was built in the first scenario from the solution
known within a short time interval, and in the second one for a
particular model different to the present one, remains accurate
for describing the solution in the entire simulation interval or
for any other “similar”model respectively. In the first case it is
obvious that during the simulation, material properties,
boundary conditions, etc. could change, compromising the
validity of the reduced basis. In the second case, the model
being different to the one that served to extract the reduced
basis, nothing guarantees the validity of that reduced
approximation basis.

In this manner, if one would compute reduced model
solutions and keep the confidence on the related solution, a
check of the solution accuracy must be performed and an
enrichment strategy must be defined in order to adapt the
reduced approximation basis in order to capture the new
events present in the solution evolutions which cannot be
described accurately from the original reduced approximation
basis.

For this purpose, Ryckelynck proposed [32] to start with
a low order approximation basis, using some simple
functions (e.g. the initial condition in transient problems)
or using the eigenvectors of a “similar” problem previously
solved or the ones coming from a full simulation in a short
time interval. Now, we compute S iterations of the
evolution problem using the reduced model (26) without
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changing the approximation basis. After these S iterations,
the complete discrete system (25) is constructed, and the
residual R is evaluated:

R ¼ AuS�fS�1¼ ABxS�fS�1 ð27Þ

If the norm of the residual is small enough, Rk k", with ε
a small enough threshold value, we can continue for S more
iterations using the same approximation basis. On the
contrary, if the residual norm is too large, Rk k � ", we
need to enrich the approximation basis and compute again
the last S iterations. This enrichment is built using some
Krylov’s subspaces, in our case the first three subspaces:
B←(B,R,AR,A2R).

One could expect the enrichment process to increase
continuously the size of the reduced approximation basis,
but in fact, after reaching convergence, a Karhunen-Loève
decomposition is performed on the whole past time interval
in order to extract the significant information as well as to
define an orthogonal reduced approximation basis. The
interested reader can refer to Ryckelynck et al. [34] and the
references therein for a more detailed and valuable
description of the computational algorithm.

Application of BEM reduced model to mold cooling
optimization

Reduced model coupled with BEM

We solve the eigenvalue problem defined in “Reduced
modeling” selecting the eigenfunctions associated with the
n largest eigenvalues as described previously. In practice, n
is much lower than N. The B matrix is then assembled and
used to approximate the temperature. In fact, for the first
trial geometry, we solve the first injection cycle by applying
the standard BEM. During this solution procedure some
solution snapshots are stored and the eigenvalue problem
related to the proper orthogonal decomposition is solved at

the end of the first injection cycle to extract the main
representative modes defining the evolution of the thermal
fields. These modes are used for defining the matrix B that
allows moving from the global approximation basis (the
one related to the BEM discretization) to the reduced one
containing only the most representative modes. Then, the
subsequent injection cycles are solved by using the reduced
approximation basis contained in matrix B. The first
column of that matrix at each injection cycle contains the
nodal unknowns at the previous injection cycle in order to
represent accurately the initial temperature at each injection
cycle. This procedure can be repeated when the trial mold
geometry is modified during the optimization procedure.

Overall optimization methodology

We present in this section how we formulate the problem
under a mathematical programming form. In the sequel, x
will denote the vector of optimization variables (position
and shape parameters for the cooling channels). Since the
output of the heat-transfer problem is a function of x, we
shall make explicit the dependence of the temperature
measurements upon the position and shape parameters.
Most practical optimization problems involve several (often
contradictory) objective functions. The simplest way to
proceed in such a multi-criterion context is to consider as
objective function a weighted sum of the various criteria.
This involves choosing appropriate weighting parameter
values. An obvious alternative is to use one criterion as
objective function while requiring, in the constraints,
maximal threshold levels for the remaining criteria. We
choose here the latter approach because we do know a
threshold level value for the maximal temperature variation

Fig. 8 Upper-part of the mold mesh

Table 1 Thermo-physical properties

Polymer (PP) Mold (Steel)

l [W.m−1.K−1] 0.63 34

ρ[kg.m−1] 891 7,800

Cp [J.kg−1.K−1] 2,740 460
Fig. 7 Plastic part dimensions
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under which any variation is equally acceptable. More
precisely, we formulate our problem under the form:

min
x

TðxÞk k subject to f TðxÞð Þ and gðxÞ � 0 ð34Þ

where f is a real-valued function used to stipulate the
uniformity-temperature constraint, and g(x) is a general
vector-valued non-linear function. The complete methodology
to couple the thermal solver and the optimization algorithm
procedure is presented in [30].

The general constraints g(x)≤0 represent any geometry
related or other industrial constraints, such as:

▪ upper/lower-bound constraints on the xi’s,
▪ keeping the cooling channels within the mold,
▪ technically-forbidden zones where we cannot position the
cooling channels (for instance due to the presence of
ejectors),

▪ constraints stipulating a minimal distance between every
pair of cooling channels to avoid inter-channels collision.

Application

In this section, we report numerical simulations on a 3D
plastic part whose features are displayed on Fig. 7 (units in
mm). It is a semi-industrial injection mold design for the
European project: Eurotooling 21.

The mold is meshed using 5,592 linear triangles and
each cooling channel using 340 quadrangles (Fig. 8).

Thermo-physical properties of the polymer as well the
mold material is referenced in Table 1. Boundary conditions
are the same as defined in “BEM for transient heat balance
equation”.

The history matrix, corresponding to the first injection
cycle time, is computed using transient DRBEM code. The
mold temperature, for the next injection cycle time, is
computed using the reduced model. The optimization
objective consists in minimizing maximal temperature
while minimizing temperature variations:

minimizemax
i2N

Tið Þ subject to
X
i2N

Ti � Tavj j � s ð35Þ

where N is the number of elements and Tav the average
surface temperature. For illustration purposes, we consider
here eight cooling channels and the constraints and
optimization variables are sketched on Fig. 9.

The geometrical optimization parameters are here the
coordinates of the end points, P1 and P2of each cooling
channel (Fig. 7). Since P2 can be expressed in terms of the
other coordinates and since the channel length (L) is constant,

Fig. 11 Surface temperature distribution of the mold

Fig. 12 Temperature profile at the surface of mold cavity before and
after optimization (z=0.02 m)

Fig. 9 Constraints and optimization variables

Fig. 10 Convergence analysis
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the optimization parameters for locating the i-th cooling
channel are completely determined by Pi

1 ¼ Xi; Yi; Zið Þi¼1;���;8.
For this application, Zi is fixed and therefore the problem
reduces to 16 optimization variables.

We use as starting point, a heuristic solution provided by
an experienced engineer. In average, one objective function
evaluation requires 14 min of CPU time (one direct
computation). Since, we compute gradients using finite
difference approximation (associated with SQP method),
one optimization iteration involves 4 h of CPU time on
Macintosh 1.83 GHz Intel Core 2 Duo. 24 optimization
iterations were necessary in order to achieve convergence
for one injection cycle (Fig. 10).

In addition, the surface temperature distribution of the
mold is presented on Fig. 11 and the temperature profile
at the mold surface before and after optimization are
displayed in Fig. 12. We observe on Fig. 12 that both
temperature variance and temperature average decrease
significantly.

We need 96 h to perform complete optimization without
reduction model. If we use now reduction model and
DRBEM, we reduce the CPU time to 7 h40 (one direct
computation of 14 min and 24 optimization iterations of
18 min approximately). CPU time is divided approximately
by 13.

Discussion

We introduced a methodology based on the use of BEM to
solve the 3D heat transfer equation during the cooling step
of the injection molding process. The preliminary compu-
tation tests on a semi-industrial plastic part showed that the
approach is viable for optimizing the design of cooling
channels for injection molding. The numerical modeling
and optimization methodology can easily take into account
a large range of industrial constraints. Various optimization
criteria can be provided by the user (either directly as a cost
function or within constraints).

Another interesting aspect consists in using this tech-
nique in order to compute multi-cycles injection mold
cooling. The reduction model allows to extract from the
first cycle the relevant eigenfunctions associated with the
eigenvalues and consequently to calculate very rapidly all
the other cycles.
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